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Abstract. To predict how species establish and disperse within novel communities, the
spatial scale at which competition, predation, and habitat interact must be understood. We
explored how these factors affect the distribution and abundance of the exotic crayfishes
Orconectes rusticus and O. propinquus and the native O. virilis at both the site-specific
and whole-lake scales in northern Wisconsin lakes. During summer 1990, we quantified
crayfish, fish predators, and fish diets in cobble and macrophyte sites in Trout Lake, com-
paring resulting patterns to those in 21 lakes surveyed during summer 1987. Within and
across lakes, fish abundance was unrelated to habitat. Within Trout Lake, O. rusticus and
O. propinquus were common in both cobble and macrophyte. Orconectes virilis was re-
stricted to macrophyte, probably due to strong displacement by the invaders in cobble.
Across lakes, O. rusticus increased where habitat was more than 16.7% cobble, O. pro-
pinquus was generally rare, and O. virilis abundance was unrelated to cobble. Crayfish were
generally small in cobble and large in macrophyte, perhaps because of habitat-specific,
size-selective fish predation or because large crayfish leave cobble when it no longer pro-
vides refuge. Orconectes virilis, the largest of three congeners, may have a size refuge in
macrophyte but not in cobble. Across lakes, O. rusticus was only abundant when fish
biomass was low; O. virilis abundance varied positively with fish.

Effects of fish predation and habitat on the ability of invaders Orconectes rusticus and
O. propinquus to establish and replace O. virilis appear to be scale dependent. At local
(site-specific) scales, cobble likely interacts with selective predation for O. virilis to allow
the invaders to establish and replace the native. At the lake-wide scale, high cobble facilitates
invaders but predation may curb their successful dispersal and establishment at new sites.
Models of community assembly and invasions need to incorporate scale dependencies in
habitat availability and biotic interactions to effectively assess the invasion potential of
novel species.

Key words: community; competition; crayfish; exotic species; fish predation; habitat; littoral
zone; northern Wisconsin lakes; Orconectes; scale; species invasion.

INTRODUCTION

Community ecologists seek to understand mecha-
nisms underlying the persistence and establishment of
species (Elton 1958, Wellborn et al. 1996). Given that
introductions of exotic species are increasing at an un-
precedented rate (Kolar and Lodge 2001), understand-
ing how invaders successfully establish, disperse, and
modify the abundance and distribution of native species
also has become important within the disciplines of
conservation and resource management (Lodge et al.
2000).

Both competition and predation structure commu-
nities (Sih et al. 1985, Northcote 1988, Stein et al.
1995) and thus affect invasions (Abrams 1996, Hill and
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accepted 17 March 2003. Corresponding Editor: S. P. Lawler.

6 E-mail: jgarvey@siu.edu

Lodge 1999, Miller et al. 2002). The relative sizes and
behaviors of species influence invasions by altering
interactions (Kiesecker and Blaustein 1998, Holway
and Suarez 1999). If predators reduce the density or
dispersive ability of invaders, then establishment of
these species will be suppressed (Lodge 1993). Still,
characteristics such as high aggression or unique mor-
phology (e.g., large size, claws, or body armor) may
render invaders successful by reducing predatory sus-
ceptibility and eliminating competitors (Garvey et al.
1994, Holway and Suarez 1999). Although interactions
often occur initially at relatively small, local scales,
established invaders may disperse from these localities
and dramatically alter ecosystems (Vitousek 1990,
Lodge and Hill 1994, VanderZanden et al. 1999).

In northern Wisconsin (USA) lakes, the invading
crayfish Orconectes rusticus has been replacing the na-
tive O. virilis and a previous invader O. propinquus
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since it was introduced .35 years ago (Capelli 1982,
Lodge et al. 1986, Olsen et al. 1991). Similar replace-
ments are occurring among other crayfishes (Butler and
Stein 1985, Corey 1988, Söderbäck 1990, Lodge et al.
2000). Orconectes virilis is the largest of the three con-
geners. Although large size often reduces the vulner-
ability of crayfish to gape-limited fish predators (Stein
1977, Garvey et al. 1994, Kershner and Lodge 1995),
O. rusticus is more aggressive and outcompetes its con-
geners for refuge, rendering it less vulnerable to pre-
dation in sympatry (Capelli and Munjal 1982, Di-
Donato and Lodge 1993, Garvey et al. 1994). Although
O. rusticus may successfully replace its congeners at
contact zones, complete species replacements within
lakes do not appear to be rapid (Byron and Wilson
2001). Cobble (diameter 64–256 mm) substrate may
affect the establishment and dispersal of O. rusticus,
because it provides more refuge than sand and vege-
tation (Kershner and Lodge 1995). Without adequate
refuge, predation may slow lake-wide dispersal rates
of O. rusticus (Kershner and Lodge 1995, Byron and
Wilson 2001) by reducing activity (Collins et al. 1983)
and perhaps increasing mortality of dispersers.

To determine how habitat type and fish assemblages
affect crayfish abundance and species composition, we
sampled fish and crayfish intensively in Trout Lake,
Wisconsin, and extensively in 21 additional lakes. In
Trout Lake, we explored relationships among habitat
type, fish abundance and fish diets, and crayfish species
composition, size structure, and abundance. Across
lakes, we tested the generality of patterns in Trout Lake
by associating fish abundance, habitat availability (i.e.,
cobble), and crayfish species composition. Crayfish siz-
es should vary with local-scale habitat type and fish
abundance, ultimately affecting the establishment of O.
rusticus and persistence of its congeners at the whole-
lake scale. Cobble should positively affect the abun-
dance of O. rusticus (see Lodge and Hill 1994), where-
as increasing predation should reduce its lake-wide
abundance.

METHODS

Trout Lake

We quantified crayfish and their fish predators in
Trout Lake, a large (1570 ha) mesotrophic lake in Vilas
County, Wisconsin, during June through August 1990.
We compared crayfish size distribution and abundance
between three littoral sites dominated by cobble (i.e.,
64–256 mm diameter rocks) and three comprised of
macrophyte (mostly Elodea spp. and Potamogeton
spp.). Each site was 500 m long, adjacent to patches
of sand, and between one and three m deep. All sites
were at least 1000 m apart. Cobble sites 1 and 2 and
macrophyte site 1 were both in the south-southeast por-
tion of Trout Lake, where O. rusticus was established
(Lodge et al. 1986). Macrophyte site 2 was located on
the western shore, where the status of O. rusticus was

unclear. Both cobble site 3 and macrophyte site 3 were
in the northern portion of the lake, where O. rusticus
was absent. Orconectes propinquus was established
throughout the lake (Lodge et al. 1986). Within each
site, we quantified densities, species composition, and
size distributions of crayfish, yellow perch Perca fla-
vescens, largemouth bass Micropterus salmoides,
smallmouth bass M. dolomieu, walleye Stizostedion vi-
treum, and rock bass Ambloplites rupestris.

Between 2100 and 2400 hours on three nights (with
at least 48 h between each night), fishes were sampled
with boat-mounted, direct current electrofishing at each
500-m transect. For each transect, we identified, count-
ed, and measured (total length, TL, to the nearest 1.0
mm) each fish. Because fish size may affect the quan-
tities and sizes of crayfish consumed, we pooled all
fishes into three size classes: small (,150 mm TL),
medium (150–299 mm TL), and large ($300 mm TL).
Number per site was averaged across the three nights,
with sites as replicates. We analyzed density differ-
ences with respect to size class and habitat using mul-
tivariate analysis of variance (MANOVA, Proc GLM,
Type III sums of squares; SAS 1996). In addition, three
separate one-way ANOVAs compared abundance of
each size class between habitats.

Within each transect, we sampled diets using gastric
lavage (Seaburg 1957), which were quantified by iden-
tifying crayfish species and carapace length (CL, the
distance between the tip of the rostrum and the pos-
teriomedian edge of the carapace). When only chelae
were recovered, crayfish size was back calculated using
chela length vs. CL regressions (Garvey and Stein
1993). Although a few chelae in diets might have been
regenerated and thus would have been smaller than
normal, effects on estimated CLs were likely small.
Dry mass (g) of crayfish and other prey items also was
quantified.

Crayfish were sampled midway along each 500-m
cobble or macrophyte transect. In cobble, ten 1-m2

quadrats were dropped haphazardly; SCUBA divers
collected all crayfish within each the following morn-
ing. In macrophytes, a pop-net consisting of netting
attached between a weighted 1-m2 quadrat base and a
buoyant 1-m2 top was used, preventing escape. Oth-
erwise, the protocol was identical to quadrats. Crayfish
species, sex, and CL (to the nearest 0.5 mm) were quan-
tified. Mean crayfish per square meter was computed
across sites for each habitat and compared (Proc
TTEST, SAS 1996). For each species (excluding O.
virilis, which was generally rare) pooled across sites,
we compared mean CLs with t tests (SAS 1996).

For fish diets, we averaged fish stomach contents
within each replicate site. The percentage of fish con-
taining crayfish and the percentage dry mass of stomach
contents were compared between habitats using t tests.
We determined how size selection of crayfish by fish
predators depended on fish size and habitat type with
analysis of covariance (ANCOVA), including crayfish
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CL, fish size, and habitat (Neter et al. 1990; Proc GLM,
SAS 1996).

To assess fish preference for crayfishes, we regressed
(least squares linear regression) the proportion of spe-
cies at each site against the proportion of species in
pooled diets at each site. A slope of one indicated that
species were selected in proportion to their relative
abundance. Slopes greater than or less than one sug-
gested that crayfishes were either consumed propor-
tionally more or less than expected, respectively. To
quantify size-selective predation, we grouped crayfish
into three CL classes for those caught in the field and
in stomachs: small (10.0–19.0 mm), medium (20–29.5
mm), and large (30–39.5 mm). Selectivity was deter-
mined using Chesson’s a (Chesson 1978, 1983):

(r /n )i ia 5i (r /n )O i i

where ri is the proportion of prey, i, in the stomach; ni

is the proportion of prey, i, in the environment; a ranges
from 0 to 1. When ai . 1/m, where m is the number
of prey, the prey is taken more often than would be
predicted and is preferred. When ai 5 1/m, prey se-
lection is random. A prey item is avoided if ai , 1/m.
a was determined for each size of prey in each replicate
site. Mean a values for each size class were compared
between the two habitats using t tests.

Among lakes

Fish and crayfish were sampled in 21 northern Wis-
consin lakes (45–468 N) ranging widely in area (21–
518 ha; median 106 ha) and depth (2–27 m; median 7
m) during summer 1987 (Lodge et al. 1998). We de-
termined the number of habitats (open substrate, mac-
rophyte, cobble) within each lake. We then designated
12 sectors for each habitat and lake, causing sampling
effort to increase as habitat heterogeneity increased (36
sectors for lakes with three habitats, 24 for lakes with
two habitats, and 12 for lakes with one habitat). From
this, we estimated the proportion of lake littoral zone
comprised of each habitat (see Kershner and Lodge
1995). Within each sector, we set one minnow trap
overnight for crayfish during the period July 22 through
August 26 using the standard bait (beef liver) and trap
opening (Lodge et al. 1986). Abundances of large-
mouth bass, yellow perch, rock bass, smallmouth bass,
and walleye were quantified with night, boat electro-
fishing along 50-m transects (June 1–August 31) in 5–
11 sectors per lake, including all habitats. Crayfish and
fish were identified, counted, and measured (CL or TL).
We converted individual fish lengths to biomass (g)
using regressions (Carlander 1969, 1977, 1997).

To determine whether fish abundance differed among
habitats, we averaged their number and biomass within
each habitat and compared habitat-specific means
across lakes with analysis of variance (ANOVA, Proc
GLM, SAS 1996; lakes were considered replicates).
Otherwise, lake-wide crayfish (number per trap) and

fish (number or biomass per transect) abundances were
averaged across all sectors within each lake.

If site-specific interactions between crayfishes are
important, their associations should be stronger at the
site-specific rather than the whole-lake scale. Because
relationships between the species were nonlinear, we
used a two-dimensional Kolmogorov-Smirnov (2DKS)
test at each spatial scale to test the null hypothesis that
species abundances were independent (Garvey et al.
1998). Each test determined the maximum point of de-
parture between the observed and expected distribu-
tions, which often occurs at a threshold change in var-
iance (Garvey et al. 1998). Significance was deter-
mined by rerandomizing the observed X,Y pairs 5000
times (Manly 1991), determining the proportion of ran-
dom differences exceeding the observed one. Because
previous analyses of portions of these data revealed
that cobble affects crayfish (Lodge and Hill 1994, Ker-
shner and Lodge 1995), we also quantified associations
between lake-wide crayfish abundance and the pro-
portion of cobble among lakes using the 2DKS.

We explored relationships among lake-wide abun-
dances of crayfishes and fishes in the context of en-
vironmental variables (lake depth, surface area, and
percent cobble) using canonical correspondence anal-
ysis (CCA, McCune and Mefford 1999). Species abun-
dances and the three environmental variables were in-
cluded in the species and environmental matrix of the
CCA, respectively. Scores for lakes were centered and
scaled to represent the weighted mean scores for spe-
cies. Pearson correlation coefficients determined the
direction of associations between species abundances
and species scores. Environmental biplot scores were
plotted with the species scores to explore associations
among environmental characteristics, lakes, and spe-
cies. CCA species scores were used to select fishes that
may affect both local and lake-wide crayfish abun-
dances. We then determined whether bivariate distri-
butions of the combined biomass of these fishes and
abundances of each crayfish species could occur ran-
domly using the 2DKS at both the among-sector and
the whole-lake scale (Lodge et al. 1998).

RESULTS

Trout Lake

All fishes occurred in both cobble and macrophyte
in Trout Lake (Table 1). Mean number of fish per tran-
sect was similar between habitats (Table 1; MANOVA:
habitat effect, Wilk’s l, F3,2 5 7.06, P 5 0.13). How-
ever, large fish ($300 mm TL) were less frequent in
cobble than in macrophyte (0.67 6 0.19 individuals/
transect, 6 1 SE vs. 1.89 6 0.22; one-way ANOVA:
F1,5 5 17.29, P 5 0.014). Smaller fish did not differ
in abundance among habitats. Abundances of fish less
than 150 mm TL were 9.33 6 3.66 and 15.67 6 3.34
in cobble and macrophyte, respectively (one-way AN-
OVA: F1,5 5 1.64, P 5 0.27). Those of fish between
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FIG. 1. Mean (11 SE) fish dietary preference (a) for small,
medium, and large crayfish in three cobble and three mac-
rophyte sites in Trout Lake, Wisconsin during the summer of
1990. The dashed line indicates a neutral preference (a 5 1/
m, where m is the number of prey).

TABLE 1. Mean (with 1 SE in parentheses) number of fish captured, percentage of fish con-
taining crayfish, and percentage of crayfish tissue (by dry mass in g) in fish diet collected
at three cobble and three macrophyte sites in Trout Lake, Wisconsin, during June–August
1990.

Habitat Species

Individual fish
captured in
each habitat

Fish containing
crayfish (%)

Dry mass of
crayfish in

diet (%)

Cobble YP
RB
SMB
WE
LMB
Spp. pooled

16 (9)
8 (1)

18 (14)
6 (0.6)
0.3 (0.3)

49 (12)

80 (14)
76 (13)
50 (25)
25 (17)

100†
59 (16)

86 (3)
59 (8)
84 (9)
27 (18)
99†
66 (12)

Macrophyte YP
RB
SMB
WE
LMB
Spp. pooled

29 (8)
20 (5)

7 (4)
12 (4)

1 (1)
71 (7)

48 (6)
26 (17)
47 (23)
34 (17)
50 (50)
40 (2)

83 (9)
74 (0.4)
57 (13)
10 (5)
99†
57 (5)

Notes: Fish predators were yellow perch (YP) Perca flavescens, rock bass (RB) Ambloplites
rupestris, smallmouth bass (SMB) Micropterus dolomieu, walleye (WE) Stizostedion vitreum,
and largemouth bass (LMB) M. salmoides.

† Only one individual was analyzed.

150–299 mm TL were 11.67 6 3.20 and 14.89 6 1.11
in cobble and macrophyte (one-way ANOVA: F1,5 5
0.90, P 5 0.40).

Crayfish species and densities differed among sites
both within and between habitats in Trout Lake. Or-
conectes virilis occurred exclusively in macrophyte.
All three species co-occurred at only one site, with the
order of abundance being O. propinquus, O. rusticus,
and O. virilis (2.3, 1.2, and 0.6 individuals/m2, re-
spectively). Orconectes rusticus only occurred in lower
Trout Lake and was abundant at only one cobble site
(.90% of individuals). In cobble, mean crayfish per

m2 6 1 SE was 19.1 6 18.9, 6.2 6 1.5, and 0.0 6 0.0
for O. rusticus, O. propinquus, and O. virilis, respec-
tively. In macrophyte, O. rusticus, O. propinquus, and
O. virilis densities were 0.4 6 0.4, 3.6 6 2.4, and 0.3
6 0.2, respectively. Total crayfish densities were 6.9
6 1.2 in cobble and 4.3 6 2.3 in macrophyte (pooled
t test: df 5 4, P 5 0.47).

Mean CLs of O. rusticus and O. propinquus were
larger in macrophyte (O. rusticus: mean 6 1 SE 5 30.2
6 0.8, N 5 27; O. propinquus: 24.6 6 0.3, N 5 139)
than in cobble (O. rusticus: 17.9 6 0.6, N 5 59; O.
propinquus: 17.6 6 0.4, N 5 198; pooled t-tests for
both species, P 5 0.0001). In macrophyte, mean CL
of O. virilis (32.2 6 1.1, N 5 16) was larger than O.
propinquus but not O. rusticus (Fig. 1; one-way AN-
OVA: F2, 179 5 52.08, P 5 0.0001; Scheffe’s between
O. virilis and O. propinquus: P 5 0.0001; between O.
virilis and O. rusticus: P 5 0.24).

Crayfish were consumed in both habitats, occurring
most frequently in largemouth bass and yellow perch
and least frequently in walleye (Table 1). Neither the
percentage of fishes containing crayfish nor the per-
centage of crayfish comprising diets differed between
habitats (Table 1; all fishes pooled, t tests, P . 0.05).
As fish size increased, crayfish size eaten increased
(ANCOVA: fish size, F1, 100 5 30.9, P 5 0.0001). A
fish size 3 habitat effect (ANCOVA: F1, 100, P 5 0.025)
indicated that slopes for cobble and macrophyte hab-
itats were unequal, likely because fish and crayfish size
were positively related in cobble (N 5 58, R2 5 0.36,
P 5 0.0001, slope 5 0.0735) but not in macrophyte
(N 5 46, R2 5 0.048, P 5 0.15, slope 5 0.0248). In
both habitats, fishes of all sizes consumed crayfish, with
fish lengths ranging 75–350 mm TL (total length).

Within cobble and macrophyte, 93% and 78% of the
consumed crayfishes could be identified. Across all
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FIG. 2. (A) Sector and (B) mean lake-wide abundances
of O. rusticus and O. virilis in the littoral zones of 21 northern
Wisconsin lakes during the summer of 1987.

FIG. 3. Mean lake-wide abundance of O. rusticus and O.
virilis as a function of percentage cobble in the littoral zones
of 21 northern Wisconsin lakes during the summer of 1987.

cobble sites, 70% of the crayfish in diets were O. pro-
pinquus and 30% were O. rusticus. Across macrophyte
sites, O. propinquus, O. rusticus, and O. virilis occur-
rences were 64, 11, and 25%, respectively. Relative
proportions of each species occurring in the field and
in diets at each site were positively related (N 5 6 for
each test; O. rusticus, R2 5 0.99, P 5 0.0001; O. pro-
pinquus, R2 5 0.86, P 5 0.005; O. virilis, R2 5 0.97,
P 5 0.0002). Slopes for O. rusticus and O. propinquus
did not differ from 1, indicating that they were con-
sumed in proportion to their relative abundance. A
slope of 0.4 for O. virilis suggested it was consumed
less than expected.

Because habitat-specific sizes were similar for all
crayfishes, we pooled species for calculation of fish size
preference. Fishes selected small crayfish more intensely
in macrophyte than in cobble (Fig. 1, t test: P 5 0.02).
Medium crayfish were selected equally in cobble and
macrophyte. Selectivities between cobble and macro-
phyte for large crayfish did not differ because, at one
of the three cobble sites, no large crayfish occurred in
fish. However, at the other two cobble sites, a values
were 0.85 and 0.81 for large crayfish (mean a value for
large crayfish in macrophyte 5 0.089, Fig. 1).

Among lakes

For fishes, neither mean number per transect nor
mean biomass per transect differed among macrophyte,

cobble, and open areas among lakes (one-way ANO-
VA: number, F2,43 5 0.18, P 5 0.83; biomass, F2,49 5
2.1, P 5 0.12). Because O. propinquus was only 2%
of total crayfish, we focused on O. rusticus and O.
virilis. At the sector-specific scale, O. virilis trap abun-
dance varied greatly below 6 individuals per trap but
was low and invariant above this apparent threshold
(2DKS, P 5 0.0002; Fig. 2A). Species associations at
the whole-lake scale did not differ from random
(2DKS, P 5 0.22; Fig. 2B). For O. rusticus, mean
abundance and variance increased beyond a threshold
of 16.7% cobble in lakes (Fig. 3A; 2DKS, P 5 0.01).
Conversely, no pattern between cobble and abundance
of O. virilis emerged (Fig. 3B; 2DKS, P 5 0.19).

The CCA revealed associations among lakes with
different mean abundances of O. rusticus, O. virilis,
and the five fishes, in the context of cobble, depth, and
surface area. The first and second axes for the species
data explained 39.9 and 3.2% of the variance, respec-
tively (Table 2). Species scores in the first axis were
positive for O. virilis, yellow perch, rock bass, and
largemouth bass and negative for O. rusticus, small-
mouth bass and walleye (Table 2; Fig. 4). The biplot
scores for area, depth, and cobble generated from the
environmental data were all negatively correlated with
species axis 1 (Pearson correlation: area, 20.582;
depth, 20.641; cobble,20.933; Fig. 4).
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TABLE 2. Final species scores from a canonical correspon-
dence analysis (CCA) with lakewide abundances (crayfish,
mean individuals per trap; fish, mean biomass per transect)
of O. rusticus (OR), O. virilis (OV), yellow perch (YP),
rock bass (RB), smallmouth bass (SMB), walleye (WE),
and largemouth bass (LMB) included in the main species
matrix and percentage cobble, surface area (ha), and max-
imum depth (m) in the secondary lake matrix.

Species
variable

CCA axis 1

Final
score r

CCA axis 2

Final
score r

OR
OV
YP
RB
SMB
WE
LMB

21.871
0.433
1.402
0.312

20.463
20.812

0.543

20.74*
20.04

0.40*
20.12
20.25
20.63*

0.00

5.497
20.696

0.456
0.162

20.525
20.278
21.623

20.38
20.27
20.16
20.21
20.16
20.26
20.24

Notes: Data were compiled for 21 northern Wisconsin lakes
during the summer of 1987. Pearson correlation coefficients
were generated for lake-wide abundances and species scores
across lakes. For CCA axis 1, the eigenvalue was 0.338 and
the percentage variance 39.9; for CCA axis 2, the eigenvalue
was 0.027 and the percentage variance 3.2.

* Significant at P , 0.05.

FIG. 4. Results of canonical correspondence analysis
(CCA) including lake-wide mean abundances of O. rusticus
(OR), O. virilis (OV), yellow perch (YP), rock bass (RB),
smallmouth bass (SMB), walleye (WE), and largemouth bass
(LMB) in the species matrix and surface area (ha), maximum
depth (m), and percentage cobble in the environmental matrix.
Data derive from 21 northern Wisconsin lakes sampled during
the summer of 1987. Open triangles on the ordination plot
are lakes with O. rusticus mean trap densities .20. Lines
depict the direction and magnitude of biplot scores for the
environmental data.

Because the CCA suggested that largemouth bass,
yellow perch, rock bass, and smallmouth bass may be
negatively associated with O. rusticus (Table 2), we
combined the biomass of these fishes to further explore
potential effects on crayfish. Densities of O. rusticus
and O. virilis were differentially related to fish biomass,
depending on spatial scale. Among sectors within
lakes, only 4% of rerandomized data sets produced
more significant patterns than that between fish bio-
mass and O. rusticus (2DKS; Fig. 5A). The mean and
variance of O. rusticus was high below 141 g fish per
transect and effectively 0 above this apparent threshold
(Fig. 5A). A similar pattern occurred at 217 g fish for
O. virilis at the sector-specific scale (2DKS, P 5 0.06,
Fig. 5B). Similar to the sector-specific pattern, the mean
and variance in lake-wide abundance of O. rusticus
declined to 0 above 128 g fish (2DKS, P 5 0.06; Fig.
5C). In contrast, O. virilis densities varied between 0
and 2 below 151 g fish and, above this biomass, never
equaled 0 and exceeded 5 in one lake (2DKS, P 5
0.02; Fig. 5D).

DISCUSSION

Habitat as well as fish composition and abundance
were differentially associated with the size structure
and abundance of the invader O. rusticus and the native
O. virilis. Orconectes propinquus, the previous invader,
was only abundant in Trout Lake, making it difficult
to generate general conclusions about its distribution.
The direction of species and habitat associations de-
pended on spatial scale, with important implications
for community assembly and invasion processes.

Habitat

Crayfish occurrence was linked to habitat in Trout
Lake. Orconectes rusticus did not occur at all sites

because it had not completely dispersed by 1990 (By-
ron and Wilson 2001). Although O. virilis actively
seeks cobble to evade predators (Hill and Lodge 1994),
it occurred exclusively in macrophytes. Interactions be-
tween O. virilis and the invaders probably resulted in
its exclusion from cobble (Capelli and Munjal 1982,
Hill et al. 1993, Garvey et al. 1994, Hill and Lodge
1999). Hence, local species composition and perhaps
diversity are strongly affected by competitive inter-
actions for habitat patches that provide ‘‘enemy free
space’’ (Jeffries and Lawton 1984, Hill and Lodge
1994).

Because abundance of O. rusticus but not O. virilis
increased across lakes with increased cobble (also see
Lodge and Hill 1994), greater depths, and larger surface
areas, these factors appear to influence the successful
establishment and likely dispersal of O. rusticus (Ker-
shner and Lodge 1995, Byron and Wilson 2001). How-
ever, in lakes with high cobble, O. rusticus abundance
varied substantially, probably as a function of factors
such as predator abundance (see Discussion: Predation
and crayfish size structure) and history of introduction.
If introduction history is important, understanding how
O. rusticus is transported among lakes will be critical
(Buchan and Padilla 1999).

Predation and crayfish size structure

Body size often mediates interactions among prey
and their predators (Zaret 1980, Stein et al. 1988, Math-
er and Stein 1993). Size-specific predation risk varies
with habitat for crayfish (Garvey et al. 1994, Kershner
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FIG. 5. (A, B) Sector and (C, D) mean lake-wide abundance of O. rusticus and O. virilis as a function of the combined
biomass of yellow perch, largemouth bass, and rock bass in the littoral zones of 21 northern Wisconsin lakes during the
summer of 1987.

and Lodge 1995). Similar to Stein (1977), average cray-
fish size in Trout Lake was small in cobble and large
in macrophyte, regardless of species. Although small
crayfish use interstices to evade consumption in cobble,
large spaces may be limited for large individuals. In-
deed, fishes selected large crayfish over more abundant
small ones in cobble. In macrophytes, small crayfish
were selected by fish although large crayfish were more
prevalent. Given no structure, fish tend to select the
smallest crayfish to minimize handling costs (Stein
1977). It appears that macrophytes do not provide a
size-based refuge. The shift to larger sizes also may
have occurred if large crayfish moved from cobble into
macrophytes to forage (Hill and Lodge 1994, 1999).

Size-selective fish predation also may explain spe-
cies-specific patterns of crayfish occurrence. Cobble is
an important nursery habitat for crayfish (Stein 1977).
Hence, competition between O. virilis and the invaders
in cobble would result in the native’s greater removal
as it grew through vulnerable, early life stages (Di-
Donato and Lodge 1993, Garvey et al. 1994), similar
to habitat-mediated ontogenetic bottlenecks in other
communities (Neill 1975, Persson and Greenberg 1990,
Olson et al. 1995). In macrophytes, the large average
size of O. virilis relative to the invaders would provide
a predatory size refuge for adults. Indeed, O. virilis
was consumed proportionally less than the congeners
in macrophytes in Trout Lake and subsequently only

occurred in this habitat. Although abundant macro-
phytes may facilitate the persistence of O. virilis, we
must explore how cobble affects recruitment of O. vi-
rilis to determine to what extent this species can persist
when cobble is restricted or absent.

Fish assemblages and crayfish

Largemouth bass, yellow perch, and rock bass fre-
quently consumed crayfish in Trout Lake, which was
supported by the strong decline in O. rusticus beyond
an intermediate biomass of fishes both within and
across lakes. Within lakes, O. virilis abundance also
declined beyond a threshold fish abundance. At the
whole-lake scale, the opposite pattern emerged—abun-
dance of this species was positive beyond a threshold
predator biomass. Although either the abundance or
trapability (see Collins et al. 1983) of O. virilis should
be reduced by fishes at individual sites, the positive
across-lake relationship may have arisen due to the
negative effect of O. rusticus in low fish lakes and
perhaps abiotic factors (e.g., ‘‘bottom-up’’ effects of
lake productivity) that facilitated both fish growth and
O. virilis density in high fish lakes. Lake-wide densities
of O. virilis were low even when invaders were absent
and predators rare, suggesting this species is typically
scarce.

As with all observational studies, we need to ex-
amine both possible directions of causality for the cor-
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relations among the taxa. Crayfish, in particular O. rus-
ticus, may reduce fish success by consuming fish eggs
and larvae (Dorn and Mittelbach 1999). Therefore, fish-
es that spawn on benthic substrate would be negatively
affected, although nest-guarding behavior should mit-
igate crayfish predation. Among lakes, high O. rusticus
corresponded with low but not zero fish biomass. Yet,
the lowest fish abundances occurred in lakes with low
crayfish, suggesting that others factors limit fish. Wall-
eye, a species that spawns on gravel with no parental
care, should be very susceptible to O. rusticus preda-
tion. However, the positive association between this
species and O. rusticus in lakes makes a negative effect
of crayfish suspect. Still, young walleye are stocked
into many of these lakes to supplement natural repro-
duction, potentially masking crayfish effects. Without
experimental verification, the importance of this po-
tential interplay between fish and crayfish is unknown.

Habitat may directly affect the abundance and dis-
tribution of fishes, thereby indirectly affecting crayfish.
However, both within Trout Lake and among lakes, the
sizes and abundance of fishes varied among sites, yield-
ing no detectable habitat differences. Thus, the robust
habitat-specific differences in crayfish abundance and
species composition probably cannot be attributed to
habitat-mediated fish assemblages. It is important to
note that fish are mobile and may forage among hab-
itats, potentially masking site-specific linkages be-
tween fish and crayfish.

Scale dependence of interactions

The establishment of O. rusticus and its ability to
replace O. virilis may depend on the spatial scale of
inquiry (Lodge et al. 1998, Levine 2000). Across sec-
tors in lakes, O. rusticus and O. virilis were negatively
associated, confirming that the more aggressive and
less susceptible O. rusticus should strongly negatively
affect O. virilis and perhaps O. propinquus at local
contact zones (Garvey et al. 1994). Although direct
interactions between the congeners are likely, increases
in total crayfish density at contact areas may tempo-
rarily increase fish density, perhaps facilitating the
predatory removal of the less abundant O. virilis (i.e.,
apparent competition, Holt 1977). Although biotic in-
teractions may rapidly shift species composition at con-
tact zones, fish predation may hinder the dispersal of
O. rusticus at the whole-lake scale. Interestingly, O.
rusticus and O. virilis were not negatively associated
at this scale. Low power may be responsible, because
only a subset of the 21 lakes contained O. rusticus.
Conversely, O. rusticus may only rapidly disperse and
replace O. virilis at the whole-lake scale when predators
are scarce and cobble is abundant. Understanding the
scale dependency of biotic interactions is critical for
predicting rates of replacement and invasion, as it is
in general models of community assembly (Persson et
al. 1999, Weiher and Keddy 1999).

Generality

Many species that co-exist with predators use cryptic
morphological characteristics and reduced activity to
evade detection (Peacor and Werner 2001). Orconectes
virilis reduces activity more with fish than the invading
congeners (Garvey et al. 1994), suggesting that it pos-
sesses these adaptations. Aggressive invaders such as
O. rusticus may dramatically shift species composition
if less aggressive, more cryptic natives such as O. vi-
rilis are present. However, these highly active or ag-
gressive characteristics may increase their vulnerabil-
ity, excluding them from systems with abundant pred-
ators. These differences among closely related species
reflect apparent tradeoffs of residing in different en-
vironments (Skelly 1995, Van Buskirk et al. 1997).
Identifying the invasion potential of a species may in-
volve weighing the positive influence of these traits on
its ability to replace natives at local contact zones
against their negative influence on system-wide pred-
atory mortality.

Both physical attributes of the system and native
species should affect the ability for an invader to es-
tablish (Kolar and Lodge 2001). Cobble, and to a lesser
extent lake depth and surface area, appear to be good
predictors of the potential for O. rusticus to establish
and spread (Lodge and Hill 1994, Kershner and Lodge
1995). Managers might prioritize lakes with these char-
acteristics to receive elevated protection from illegal
introductions or enhanced eradication programs if the
invader is newly established (Myers et al. 2000). Or-
conectes rusticus can dramatically reduce macrophytes
within lakes through mechanical clipping (Lodge et al.
1994, Wilson 2002). Given the apparent dependence
of O. virilis on macrophytes in Trout Lake, habitat
alteration by the invader may further contribute to this
native’s decline, necessitating conservation of macro-
phyte to protect O. virilis (see Wilson 2002). Because
only a subset of fishes appeared to strongly affect O.
rusticus success, we must understand the linkages be-
tween invaders and their predators. Differential re-
cruitment and harvest of ecologically and economically
important fishes may influence O. rusticus, providing
a direct linkage between the policies of resource man-
agers and the spread of an invader (see Stewart et al.
1981 for example in the Great Lakes).

With global homogenization of biota well underway,
quantitative methods for predicting the invasibility of
species are sorely needed. Clearly, policies for curbing
the further spread of O. rusticus require a quantitative
grasp of the interrelationships between fishes and cob-
ble availability. Our results are compelling but correl-
ative. Other factors must be explored, including ter-
restrial predators, lake productivity, and crayfish ef-
fects on fish. Because mechanisms affecting invasions
appear to be scale dependent, determining how invad-
ing species establish, interact, and disperse must be
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approached at spatial scales relevant to each underlying
process.
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