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SINR-based Channel Assignment for Dense
Wireless LANs

Xiangping Qin, Xingang Guo, Randall Berry

Abstract- The biggest challenge in channel assignment
for dense, multi-celllAP wireless LANs is to arrange co-
channel cells so as to maximize the aggregate network
throughput. Most previous work models this problem
as a vertex coloring problem. In this paper we model
it as a non-linear optimization problem to maximize
overall network throughput. We prove that the new
optimization problem is NP-hard and vertex-coloring is
a simplified case. We then propose a polynomial time
heuristic algorithm called MIF (Most-Interfered-First) for
channel assignment. The performance for a line topology
is analyzed. Simulations for random topologies-show that
MIF consistently produces better network throughput
than vertex-coloring based heuristic algorithms with less
computation cost.

1. INTRODUCTION

Over the past few years we have witnessed the rapid
proliferation of wireless LANs in various network en-
vironments. The need for higher throughput and im-
proved coverage has led to the deployment of multi-
cell networks in places such as enterprises and hotspots.
Meanwhile, similar multi-cell networks have also started
to appear in residential areas, where cells are often
formed of WLANs in homes or apartment units within
close proximity. In both cases, each cell is managed
and serviced by its own access point (AP). The AP
communicates in a selected frequency channel and every
clients in that cell must use the same channel.

Partitioning radio spectrum into channels is an en-
gineered design choice that enables concurrent com-
munications using different channels. As cells quickly
outnumbers available channels, channels need to be
carefully allocated to each cell so as to reduce the
interference and maximize the overall performance of
the entire network. Good channel allocation has proven
to be one of the biggest challenges in deploying and man-
aging wireless LANs. For example, average consumers
normally don't coordinate with each other in selecting
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channels, nor do they often possess the knowledge
of how to select the best channel in their residential
neighborhood. Even in a managed network such as
the enterprise or hotspot network, channel configuration
relies on IT personnel for site surveying and manual
configuration.-Good understanding to the channel allo-
cation problem and an effective method for autonomous
channel allocation method are critical to the scalability
of the WVLAN technology, and ultimately, good end-user
experience.

Channel allocation schemes have been studied ex-
tensively for cellular networks, where the base stations
are often deployed in pre-selected locations to form
hexagon-shape cells, see for example [5]-[8], [15]-[17].
However, due to the low-cost and flexibility of WLAN
devices, APs in multi-cell WLANs often form a random
topology. Furthermore, the multiplexing approaches used
in WLANs are typically quite different from the cellular
environment. For example, in 802.11 wireless LANs the
same channel is used by all clients to communicate to a
given AP and this channel is used for both up-link and
downlink traffic. On the other hand, in many cellular
systems each user may be assigned a different channel,
and different channels are used for the up-link and down-
link. Another important consideration is that in current
wireless LANs, it is desirable for the channel assign-
ments to be relatively static, i.e. it is not feasible to con-
sider dynamic assignment schemes that vary on the time-
scale of the traffic (see e.g., [8]). Traditionally, channel
allocation for WLANs has been abstracted into various
graph theoretic vertex-coloring problems (e.g. [9], [10],
[12]-[14]), where each AP or cell is represented by a
vertex and channels are represented by different colors.
One widely used example is the minimum distance-2
vertex coloring [11]. Two APs within a certain distance
are consider connected, and an edge, therefore, is created
between the two corresponding vertices. The goal is to
find a coloring scheme such that no neighboring nodes
will have the same color. Hence, neighboring cells will
use different channels and avoid interfering each other.

In this paper, instead of relying on the vertex-coloring
approach, we consider a model that optimizes channel
allocation for aggregate network throughput, which is
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determined by the SINR (Signal to Interference and
Noise Ratio) at each AP. Our contribution in this paper
lays in two aspects: First, we will present a model for
channel allocation as a non-linear integer optimization
problem. Furthermore, we prove that channel allocation
for maximal network throughput is NP-hard, and vertex-
coloring is a simplified case of our model. Second,
we propose a MIF (Most-Interfered-First) algorithm - a
heuristic algorithm. The performance for a line topol-
ogy is analyzed. When compared against a heuristic
algorithm based on vertex-coloring, simulations show
channel allocations produced by MIF are consistently
better with less computational cost.

It is worth pointing out that in this paper, we consider
the downlink model where the traffic is heavy and the
interference from other APs is considered as noise in the
physical layer. We do not consider a model where an AP-
may defer transmissions to avoid interference from a co-
channel AP. Such issues with a random traffic model and
MAC layer design are left as topics of future work.

II. SYSTEM MODEL
In a multi-cell wireless network, assume there are N

AP's, APn, n = 1,... ,N and K channels, fk, k =
1, ... ,K . We focus on a backlogged downlink model in
this paper, where each AP always has a packet to send
to some client. A K x N allocation matrix A is used to
indicate how the channels are allocated to AP's. It is a
{0, 1} matrix, where

Akn { 1, if fk is allocated to APn (
A, otherwise.

We focus on the case where each AP can only
transmit on one channel, i.e. K Akn = 1 for all
n = 1, ... , N. This is commonly the case, for example in
802.11 wireless LANs. We assume that constant power
is used, i.e., Pn = P for all n = 1,... N; again,
this is commonly the case, though some slow time-scale
power allocation may be possible. Let Hmn denote the
channel gain between APm and APn. We say that the
channel gains are symmetric if Hmn = Hnm for all
m,n; this will be the case, for example, when these
gains represent the channel gains between the two AP's
(assuming reciprocity).
We consider maximizing the total "throughput" given

by the following optimization problem,

max W log (1 + Zm AknPHn+ )
n k

s.t. Akn = 1forn=1,...,N. (2)
k=l..K

Akn E {0, 1}.

where W is the bandwidth of one channel, Hn is the
channel gain of AP, to a reference point in the cell and
a2 is background noise power. The interference at the
reference point in a cell is measured by the correspond-
ing AP. Clearly this is a simplification; however, we will
show in an example later, that because of the convexity of
the model, this is a good approximation. Also in practice,
it is desirable to do channel assignment on a relatively
slow time-scale. During the time a channel is assigned,
the actual client locations will likely vary and not be
known a priori. In particular, when an access point must
choose a channel and there are no clients present.

In much of the previous work, the channel allocation
problem has been modelled as a graph coloring problem.
The coloring approach can be viewed as a special case
of (2), where the channel gain matrix is simplified by
setting

Ho for all Hj > Hth
0 Otherwise, (3)

where Hth is a given threshold. This binary quantization
simplifies the model so that APs either interfere with
each other or not. The APs who interfere with each
other are considered to be neighbors. A graph is created,
where APs are represented as vertices and APs who are
neighbors are connected by edges. The vertex coloring
problem is to assign colors so that vertices that are con-
nected have different colors, i.e., no two neighbors can
be assigned to the same channel. The coloring problem
has two formulations. One is to find a feasible allocation
for a given number of channels. The other to find the
minimal number of channels for a given topology. In
most applications, the first formulation is used. It is
well-known that the vertex coloring problem is NP-hard
[18]. The following proposition and its proof further
illustrates the relation between the coloring problem and
the problem in (2).

Proposition 1: The optimization problem in (2) is NP-
hard.
Proof: As noted above, a vertex coloring problem can
be modelled as a special case of (2). Specifially given
any graph, let the set of nodes correspond to a set of
AP's in (2) and set Hij = 1 if node i and node j
have an edge between them and set Hij = 0 otherwise.
Suppose we can efficiently solve (2) for any given
number of channels. The solution to (2) must be less
than or equal to Nso, where so = Wlog(l + P2o)
and this will be achieved if there are enough channels
available so that no two nodes i, j with Hi,j = 1 share
the same channel. But such an assignment corresponds to
a vertex coloring of the original graph. Thus for a given
number of channels, K, if the solution to (2) is less than
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Nso, then the original graph cannot be colored with K
colors. Therefore, if we can solve (2) in polynomial time,
then we can also solve the vertex coloring problem in
polynomial time. So (2) must be NP-hard. X

In this paper, instead of modeling the channel as-
signment problem as a coloring problem, we propose
heuristic algorithms to solve (2) directly. In the following
section, we show that this approach achieves better per-
formance than the coloring approach and simplifies the
procedure of graph generation and solving the problem
for difficult topologies.
As an aside, we now briefly discusss the validity

of the approximation in (2). Consider a model where
the channel gain is given by a path loss model, i.e.
the received power at distance d is given by Pr (d)
Pr (d) * Here y is the path loss exponent, and Pr is
the received power at reference distance d. Typically, y
is between 2 to 4. We choose -y = 2.4 in this example.
Equivalently, the channel gain between APi and the
reference point of APj is given by

Hij = H(J) (dj ) 7(4

where dij is the distance between the APt and the
reference point APj, and H(d) is the channel gain at
the reference distance d. We set d= 1 and assume that
H(d) = 1 so that Hij = (1 )Y In one cell of the AP,
clients that are closer to the interfering AP have a lower
throughput while clients that are farther away have a
higher throughput. Consider a simple case where there
is only one interfering APi and M clients for APj. The

total throughput isS= M Wlog (1 + PH

sm /
where dim is the distance of APi to client m. Let f(x) =
W log (1 + pH). With commonly used parameters,
f (x) is a concave function. So we have

S<Wlog(1+ PH
(Em=l..M di.

+

Let M clients uniformly distributed on a circle of radius,
then m dim dj, where dij is the distance
between APi and AP3. Then the throughput is upper

bounded by W log (1 + PH where interference
is measured at the AP. Simulation shows that in this
simple model, with commonly used parameters, there is
less than 1 percent of a throughput difference. Therefore,
it is reasonable to use (2) as a throughput metric. The
downlink throughput is then given by En Zk W log(1+

AknPH X
m PAkmHmn+f24

III. THE MOST-INTERFERED-FIRST ALGORITHM AND
ANALYSIS FOR A LINE TOPOLOGY

To solve (2), we propose the following heuristic algo-
rithm. This algorithm is essentially a greedy procedure
that attempts to assign each AP to the channel that
generates the least interference.

Most-Interfered-First (MIF) algo-
rithm:

initialize: Randomly choose an initial APM, and
assign it to any channel fi; set N = {m =
1,...,N;m# M}.
while N :L q do

Measure interference In,= Ek Ikn for all n E N.
set M = {mlm = argmaxjE iN}
randomly choose m C M
Assign APm to channel fi where I =
arg MinkE{1,...,K} Ikm
set N = N \{m}.

end while
In this algorithm, channels are assigned to APs se-

quentially; the set N contains those access points that
are not yet assigned a channel. The initial AP is chosen
randomly and randomly assigned some channel. After
this AP is assigned to that channel, the other APs re-
measure the interference on each- channel and compute
the sum of the interference they see across all channels
Ij = , Ij. The algorithm then chooses the most
interfered AP, i.e. access point APm such that m =
arg maX3EN Ij; this AP is assigned its least interfered
channel fi. Once assigned a channel an AP is removed
from the set N; the algorithm continues until there are
no more APs in this set. Note that at each iteration, the
interference measured includes that generated by all the
APs which have previously been assigned channels.

IV. ANALYSIS FOR LINEAR TOPOLOGIES

We next look at the performance of the MIF algorithm
for a simple line topology as in Fig. 1, where neighboring
APs are equal distance apart. For this topology, it can
be seen that MIF algorithm will always result a periodic
channel assignment as shown in Fig. 1. Intuitively, this
is a desireable assignment for this setting. We next make
this precise by showing that this assignment minimizes
the total interference when there are a large number of
APs.1 Note we are not proving that this assignment is
the optimal solution to (2) - for a symmetric model, we
conjecture that this is the case, but we have not been able
to prove this. We proceed by first giving two lemmas.

'The reason for considering a large number of APs is to avoid
"edge effects".6941-
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Fig. 1. Channel Assignment of the MIF algorithm in a line network.

The first lemma says if N APs share one channel,
then, for the same total length, APs that are equal
distance apart will have a smaller total interference than
any other allocation, for a large number of APs. Given
N such APs on a line, let the distance between two adja-
cent APs be dl,d2 ...,dN-l and let I(dl,d2,...,dNl)
denote the total interference summed over all the AP's,
where we assume that the interference for APi is mea-
sured at the AP.
Lemma 1: For large enough N,

I(dl, d27...,dN-1) 1
I(do) do7 ...,7 do)

where do = N-1 Z v4l di.
Proof: Omitted due to space limitation.
Now assume we have N AP's located on a line of

length D -cN and a total of K channels available,
where D is a mulitple of N. Let Nk denote the number of
APs assigned to each channel k = 1,... ,K, and assume
that all AP sharing a given channel are equal distance
apart (as suggested by lemma 1).2 The next lemma says
+1,-+ -_ -o1,-.] A;.,:A- +U- AT AT D 4,Al- +Le

V. Two DIMENSIONAL RANDOM TOPOLOGY:
COMPARISON TO THE COLORING APPROACH

In this section, we consider a L meters by L meters
area with N APs randomly located in it, i.e. each AP's
x coordinate and y coordinate is uniformly distributed
in (0, L). We use the same path loss model as in (4).
First, consider a common coloring approach. A graph
is created taking APs as vertices. The edges are drawn
in the way described in (3). Setting a threshold on the
channel gain Hij is the same as setting a threshold on
the distance between two APs Dij. So we will first
set a threshold dth. If the distance between two APs
is less than dth, an edge is draw between them and
these two APs are considered as neighbors. After a graph
is generated, we will color the vertices so that no two
neighboring vertices are assigned the same color. The
number of colors is the same as the number of channels.
There are many coloring heuristics. In our simulation, we
use one of the most commonly used coloring heuristics,
saturated degree algorithm [1] [2] [3], as an example to
color the graph. The coloring result can be written as a
channel allocation matrix A as defined in (1) and a total
throughput s(A) is computed as in (2), where

s(A) Wlog( AkPH+k

nk Zm PAkmHmn + U2
hanne,we mnuiu uiveLtCIhtotav invte ency among inc A If there is no feasible coloring solution, we let the

channels to minimize the total interference Specifically, throughput be zero to be easy to capture. The type of the
let I(No,... ,Nk) denote the total interference as a graphs generated from the same topology depends on the
function of the number of AP assigrned to each AP. Then choice of dth. In the following simulation, we do an ex-
we have: haustive search for an optimal dth. In a 100 meter by 100
Lemma 2: For large enough values of N, if N/K is meter area, we randomly generate networks with 25 APs

an integer, I(N N NK) or 50 APs. We simulated for 100 random realizations.
I(N,N2, NK) > 1 For each realization, dth is set to the value of 5 meters,

I(N°,' ,N') °-10 meters, 15 meters, ..., 100 meters, accordingly. With
where NO = NIK = k=l Nk. different dth, different graphs are generated. For each
Proof: Omitted due to space limitation. graph, we use the saturated degree algorithm to color the

In the above lemmas, we did not consider the fact that graph and a throughput is calculated. Parameters used are
the locations of the APs are fixed. The next proposition

2 = 10-12, Ho = 1, W = lMHz, -y = 2.4. Compare
applies to the case where the AP have a fixed location the throughput for all these graphs with different dth, the
and are all equal distance from their neighbors. optimal dth is found. Fig. 2 shows the optimal dth with

Proposition 2: Consider a network with N APs lo- 25 APs and 50 APs and four channels. It can be seen that
cated equal distance do apart on a line, and K channels, the optimal threshold is different for different random
where M = N is an integer. Let I* denote the minimum graphs, for 25 APs, the optimal dth varies from 5 to 30.
total interference achievable by any channel allocation, The optimal dth also varies with different parameters,
and let IMIF be the total interference of from the MIF such as the number of APs, the dimension of the area
algorithm. For a fixed K, then and the number of channels. The exhaustive search has a

I* high computational cost. Therefore in real applications,lim IF= 1 it is not realistic to assume for any topology, the optimal
Proof: Omit due to space limitation. threshold dth can be found efficiently.

2Note that this assumption implies that if we change the number If an optimal threshold dth is provided, the maximal
AP assigned to a channel, we can also change the location of the AP. throughput achieved by coloring is compared to the

695
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Worst Case Minimrrn Throughput Ratio of coloring to MIF

20

10 .

0 10 20 30 40 50 60 70 80 90 100
Rhlalizations ot random topology in a 10Om by lOOts area with 4 channels

Fig. 2. Optimal threshold to maximize the throughput of coloring

Realizations of random topology in a 100m by 100rm area with 4 channels

Fig. 3. Throughput ratio of coloring with optimal threshold to MIF
with 4 channels in lOOm by lOOm area, when ratio is less than 1,
MIF performance better.

10 20 30 40 50 60 70 80 90
Realizations of random topology in a l00rn by 1OOm area with 4 channels

Fig. 4. Ratio of the minimum throughput achieved with the coloring
based heuristic to the MIF algorithm.

0.8655. The coloring has a worse fairness guarantee. For
50 APs, the average ratio is 0.9625. For certain topolo-
gies, coloring has a high minimal throughput. Overall,
coloring does not provide a better fairness guarantee.

Since the computation cost is high to find the optimal
dth, we simulate when dth is fixed for all the random
graphs. Fig. 5 shows the throughput for random topolo-
gies if we set a fixed threshold dth = 20 for 25 APs. It
can be seen that for certain graphs, no feasible solution
exists, (throughput is shown as zero). In order to avoid
these graphs, we set dth = 5 for 50 APs in the Fig. 6. It
shows if a low distance threshold is used, throughput of
the coloring approach is much lower than the MIF. On
average, the throughput ratio is only 0.7436, because no
maximal spatial reuse is guaranteed.

throughput of the MIF algorithm. Fig. 3 shows the Therefore, we conclude that the MIF algorithm has a
throughput ratio of these two. On average, for 25 APs the better performance than the common coloring approach
throughput ratio of coloring with the optimal threshold in terms of total throughput and worst case minimum
to MIF is 0.9816. For some random graphs with 25 throughput guarantee. MIF algorithm has a much lower
APs, coloring does slightly better than MIF. For 50 computational complexity. With N APs, the computa-
APs, the average throughput ratio of coloring to MIF tional cost of the MIF is only log(N!), which is less
is 0.9017. Therefore the coloring approach has no better than N log(N). The original saturation degree coloring
performance in terms of total throughput compared to the algorithm for a given graph has a computational cost
MIF algorithm, but with a much higher computational of O(N2) [1], with special programming techniques, it
cost. can be reduced to Mlog(N) where M is the number

Besides the total throughput, another important per- of edges [4]. For a random topology, if each node
formance criterion is the fairness criterion. Here we has two or more than two neighbors in the coloring
use the minimum throughput among all the APs as a graph, then M > N. Moreover, the search for hth
fairness criterion. The minimum throughput gives a worst will multiply the computational cost for the coloring
case throughput guarantee. Fig. 4 shows the ratio of the approach. Further more, MW is easy to implement. The
minimum throughput of the coloring with the optimal only input parameter is the total interference which can
threshold to the MIF. For 25 APs, the average ratio is be easily measured at each AP.696
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minimizing the SINR for aggregate throug,hput gain is a
promising method for research and algorithm design in
:hannel assignment for WLANs.
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VI. CONCLUSION

In this paper, we investigated the problem of assigning

wireless channels to each cell (AP) so as to maximize
the aggregate network throughput. We have modeled this
problem as a non-linear optimization problem to maxi-
mize network throughput. We have proved that this chan-
nel assignment problem is NP-hard, and vertex-coloring
is a simplified case. Hence, we proposed a heuristic MIF
(Most-Interfered-First) algorithm that produces channel
assignment in polynomial time. When compared with
the most commonly used heuristic algorithm based on

vertex-coloring, simulations have shown that MIF con-

sistently results in better network throughput. It also pro- [
duced better fairness with less computational overhead.
Autonomous channel assignment is a key enabler for the
future scalability and ease-of-management of wireless
networks. We believe examining approaches based upon
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