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Outline

Formulate a Local Stable Manifold Theorem for stochas-

tic differential equations with and without memory

(SFDE’s and SODE’s).

Spatial Kunita-type semimartingales noise, with sta-

tionary ergodic increments.

Start with the existence of a stochastic semiflow for
SDE.

Concept of a hyperbolic stationary trajectory. For
Stratonovich SODE, stationary trajectory is a solu-
tion of the forward /backward anticipating equation

for all time.

Existence of a stationary random family of asymptot-
ically invariant stable and unstable manifolds within
a stationary neighborhood of the hyperbolic station-

ary solution.

For Stratonovich SODE, stable and unstable man-
ifolds are dynamically characterized using forward
and backward solutions of anticipating versions of the
equation.



e Proofs based on Ruelle-Oseledec (non-linear) multi-
plicative ergodic theory and anticipating stochastic
calculus.



Formulation of the Theorem

I. SODE Case:

Stratonovich SODE

dz(t) = dt+Zgz ) o dW;(t), (1)

on R? driven by m-dimensional Brownian motion W :=
(Wi, W)
(2, F, (Fi)ier, P) := canonical filtered Wiener space.

Q) := space of all continuous paths w: R — R™, w(0) = 0,
in FEuclidean space R™, with compact open topology;

F := Borel o-field of Q;

F; = sub-o-field of F generated by the evaluations
w—owu), ut, teR.

P .= Wiener measure on f).

h,g; - R — R4 1 <i<m, vector fields on R¢. For some
k>1,0 € (0,1), h is CF°, viz. h has all derivatives Dih,1 <
j < k, continuous and globally bounded, D*» Holder con-
tinuous with exponent §. ¢;, 1 < i < m, globally bounded

and Oy,



0:R xQ— Qis the (ergodic) Brownian shift
O(t,w)(s) =w(t+s)—w(t), tseR,wel.

Let ¢ : R x R? x Q — R? be the stochastic flow of (I)
(o(t,-,w) = [p(—t,-,0(t,w))] ", t < 0). Then ¢ is a perfect C*<

cocycle:

¢(t + s, ',UJ) = ¢(t7 ) (9(3,(.4))) o ¢(S7 ',(.d),
for all s,t € R and all w e Q,¢e€(0,6) ([I-W], [Ku], [A-S]).

Figure illustrates the cocycle property. Vertical solid
lines represent random fibers consisting of copies of R? (or
a Banach space of paths in R?.) (¢,6) is a “random vector-
bundle morphism” over the “base” probability space Q.



The Cocycle

¢(t17 '7w) ¢(t27 '70(t17w)>
T~~~ T
RY RY RY
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¢(tlax7w)
d(t1 + t2, z,,w)
0(ts, ) 0(ts, )
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Definition

SODE (I) has a stationary point if there exists an F-
measurable random variable Y : O — R4 such that

O(t,Y (w),w) =Y (0(t,w)) (1)
for all t € R and every w € Q. Denote stationary trajectory

(1) by ¢(t,Y) =Y (0(t)).

Examples of Stationary Points

1. Fixed points:
dg(t) = h(o(t) dt + 3 _ gi(6(t)) o dWi(?)

h(xo) = gi(zo) =0, 1<i<m
Take Y (w) = z¢ for all w € Q.

2. Linear affine case d = 1:
do(t) = \o(t) dt + dW (1)

A > 0 fixed, W(t) € R. Take



O(t,w)(s) =w(t+s) — w(t).

Check that ¢(t,Y(w),w) = Y(0(t,w)), using integration by

parts and variation of parameters.

3. Affine linear SODE in d = 2:
do(t) = Ag(t) dt + GAW (1)

with A a fixed hyperbolic 2 x 2-diagonal matrix; G a con-

stant matrix.

4. Generate a large class of stationary points as follows:
Let p be an invariant probability measure for the one-point
motion in R?. Then p gives rise to a stationary point
by suitably enlarging the underlying probability space: If
P; : Cy(R4R) — (R4, R),t > 0, is the Markov semigroup
associated with the SODE, then

/ (Puf)(@)dp(a) = | f(z)dp(z), t>0
Rd Rd
where

(Pif)(x) == E[f(¢(t,z,"))], t=0, z€R,



for all f € Cy(R4,R). Define

Q:=QxR¢ F=FeoBR?Y, P:=Pxp &:=w,z) e,
0(t,@) = (0(t,w), d(t,z,w)), t e RY, we Q,zeR?
o(t, ', @) = o¢(t,2',w), teRY, 2z’ eRY e
(

=
&

)=z, ©=(w,z)€

The group 6(t,-) : Q — Q t e R+, is P-preserving (and er-
godic) (Carverhill [C]). ., @),0(t,0)) is a perfect cocycle
on R% and Y : Q — R4 satlsﬁes

o(t,Y (@), 0) =Y (0(t,@))

for all t e RT,& € Q. Hence Y is a stationary point for the
cocycle (¢,0), and p=PoY 1.

Conversely, let Y : @ — R? be a stationary random
point satisfying the identity (1) and independent of the
Brownian motion W(t),t > 0. Then p:= PoY~! is an in-

variant measure for the one-point motion.

Let ¢(t,Y) be a stationary solution of (I). Cocycle
property of ¢ implies that the linearization

<D2¢(t7 Y(w>7 w)? 0(t7 w))



along the stationary solution is also a d x d-matrix-valued
cocycle. Using Kolmogorov’s theorem, the random vari-

ables
sup ‘D2¢(tax)|
verd (14 |z]7)
have moments of all orders. If Elog® |Y| < oo, then
Elog" |Dy¢(1,Y)| < co. Apply Oseledec’s Theorem to get a

non-random finite Lyapunov spectrum:

, v >0,

lim llog|D2¢>(n,Y(cu),<,u)(v(<,u))|, v e LY(Q,RY).

n—oo M

Spectrum takes finitely many values {\;}?_, with non-random

p

multiplicities ¢;, 1 <14 < p, and Z% = d ([Ru.1], Theorem
1=1

1.6).

Definition

A stationary point Y is hyperbolic if Elog™ |Y(-)| < oo,
and if (Dy¢(n,Y (w),w), 8(n,w)) has a non-vanishing Lyapunov

spectrum
{)\p< </\¢0+1 <)‘i0 <0<)‘io—1 << Ao <)\1}

i.e. \;#A0forall 1 <i<p.

Define )\;, := max{); : \; < 0} if at least one \; < 0. If
all \; >0, set \;, = —oo. (This implies that X;,_; := min{)\; :

10



\; > 0}, if at least one )\; > 0; in case all )\; are negative, set

)‘io—l = OO)

Let pc R*, 2 € R4
B(z,p) := open ball in R?, center = and radius p;
B(z, p) := corresponding closed ball;
C(R?) := the class of all non-empty compact subsets of R4
with Hausdorff metric d*:

d* (A1, Az) := sup{d(z, A1) : ¥ € Az} Vsup{d(y, A2) : y € A;}

where A, A, € C(RY);
d(z,A;) =inf{|lz —y|:ye€ A;}, z e R% i =1,2;
B(C(RY)) := Borel s-algebra on C(R?) with respect to the

metric d*.

11



Theorem 1 (Stable Manifold Theorem-SODE) ([M-S],
1997)

Assume that the coefficients of SODE (I) satisfy the given hy-
potheses. Suppose ¢(t,Y) is a hyperbolic stationary trajectory of (I)
with Elog™ |Y]| < oo.

Fix e; € (0,—\;,) and €2 € (0, \;,—1). Then there exist

(i) a sure event Q* € F with 6(t,-)(Q*) = Q* for all t € R,
(ii) F-measurable random variables p;, 3; : Q* — (0,1), 8; > p; >

0, ¢ = 1,2, such that for each w € Q*, the following is true:

There are C*¢ (e € (0,6)) submanifolds S(w), U(w) of
B(Y (w), p1(w)) and B(Y (w), p2(w)) (resp.) with the following prop-

erties:

(a) S(w) is the set of all z € B(Y (w), p1(w)) such that
[p(n, z,w) = Y (B(n,w))| < fi(w) ePiote)n
for all integers n > 0. Furthermore,

limsup — log o(t, 7,w) — ¥ (0, )| < A (2)

t—o00

for all z € S(w). Each stable subspace S(w) of the linearized
flow Dy¢ is tangent at Y(w) to the submanifold S(w), viz.
Ty(w)S(W) = S(w). In particular, dim S(w) = dim S(w) and

is non-random.

12



(b) hmsup log[ sup {|§b(t,l’1,W) _ ¢(t,$2,(ﬂ)| }] < )‘io'

t—o0 T1FT2 |LC1 _332‘
zy,w2 €S (w)

(c) (Cocycle-invariance of the stable manifolds):

There exists 71 (w) > 0 such that
Oty ,w0)(SW)) CSO(tw)), t>7(w). (3)
Also
Dy¢(t,Y (w),w)(S(w)) = S(0(t,w)), t=0. (4)
(d) U(w) is the set of all z € B(Y (w), p2(w)) with the property that
[B(=n,2,0) = Y (B(—n,w))| < fa(w) e NomrFen(5)
for all integers n > 0. Also

fimsup 108 [¢(~,7,w) ~ Y (B(~,0)| < Ay 1. (6)

t—o0

for all * € U(w). Furthermore, the unstable subspace U(w) of
Dy¢ is the tangent space to U(w) at Y (w), viz. Ty(w)l;{(w) =
U(w). In particular, dim U(w) = dim U(w) and is non-random.

(e) hmsup%log[ sup {|¢( txl? )_¢<—t,$2,u))|}] < _>\i0—1'

t—o0 @] Fwg |331 _332‘
rq,x0€U(wW)

13



(f) (Cocycle-invariance of the unstable manifolds):

There exists T2(w) > 0 such that
$(—t, - w)UW)) CUB(—t,w)), t>T2(w). (7)
Also
Dag(—t,Y (w),w)U(w)) = U(0(-t,w)), t=0. (8)
(g) The submanifolds U(w) and S(w) are transversal, viz.

R = Ty (,)U(w) @ Ty (1) S(w). (9)

(h) The mappings

are (F, B(C(R%)))-measurable.

Assume, further, that h,g;, 1 <i < m, are Cy° Then the local

stable and unstable manifolds S(w), U(w) are C.

14



(b(ta '7w)

t> 7'1(&))

A picture is worth a 1000 words!

15



t > Tz(w)

16



II. SFDE Case:
“Regular” Ito SFDE with finite memory:

dx(t ), x¢) dt Gi( ) dW;(t
(1) = +Z ol

(2(0),20) = (v,n) € My := Rd x L?([-r,0], RY)

Solution segment z;(s) := z(t +s), t > 0,5 € [-r,0].

Smooth memory: g : L?([-r,0,R%) — R? is C¥% (k >
1,6 € (0,1]) with all Fréchet derivatives D’g,1 < j <k, glob-
ally bounded; ¢t — g;(z;) locally of B.V., with

L*([-r,T,R) 3z +— {t — dg( )} L?([0,T],R™)

globally bounded, globally Lipschitz and of class C*°.
m-dimensional Brownian motion W := (Wy,--- ,W,,)
Ergodic Brownian shift § as before.

State space M,, Hilbert with usual norm.
Smoothness Hypotheses:

H : M, — R? of class ¢°, viz. all Fréchet deriva-
tives D’H,1 < j < k, continuous and globally bounded,
DFH Holder continuous with exponent 6 on bounded sets
in M.

17



G;: R x R — R% 1< i<m, of class CFt+1.9,

Then (I’) has a stochastic semiflow X : Rt x My x Q —

My with X (¢, (v,n),-) = (z(t),x;). X is of class C*< for any

€ (0,9), takes bounded sets into relatively compact sets

in M. (X,0) is a perfect cocycle on M, ([M-S]). Define

hyperbolic stationary point Y :  — M, as in SODE case (replace
¢ by X; apply [Mo.1] to linearized cocycle).

Theorem 1’ (Stable Manifold Theorem-SFDE) ([M-S], 1998)

Assume above smoothness Hypotheses on H,G;,g. Let Y be
a hyperbolic stationary point of (I') such that E(||Y (-)||€) < oo for
some € > 0

Suppose (D3 X (t,Y (w),w),0(t,w),t > 0) has a Lyapunov spec-
trum {--- < A\jy1 < A; < -+ < Ay < A1 }. Define \;, to be the largest
negative Lyapunov exponent (as before).

Fix ¢; € (0,—\;,) and €3 € (0, A\;,—1). Then there exist

(i) a sure event Q* € F with 0(t,-)(Q2*) = Q* for all t € R,

(ii) F-measurable random variables p;, 3; : Q* — (0,1), 8; > p; >
0, ¢ = 1,2, such that for each w € Q0*, the following is true:
There are C*< (e € (0,6)) submanifolds S(w), U(w) of

B(Y (w), p1(w)) and B(Y (w), p2(w)) (resp.) with the following prop-

erties:

18



(a)

(b)

(c)

S(w) is the set of all (v,n) € B(Y (w), p1(w)) such that
1X (n, (v,m), ) = Y(0(n,w))|| < fi(w) ePioTe)n
for all integers n > 0. Furthermore,

1
lim sup Z log HX(ta (Ua 77)7 w) o Y(Q(t, w))” < )‘io
t—o0

for all (v,n) € S(w). Each stable subspace S(w) of the linearized
semiflow Do X is tangent at Y (w) to the submanifold S(w), viz.
Ty () S(w) = S(w). In particular, codim S(w) = codim S(w), is
fixed and finite.

[ {‘|X(t7 (017771)700)_X(t7 (027772)7("))“
sup

[(v1,m1) = (v2,m2) |

(v20m). (o1,m), (12.) € ) | < 0

1
lim sup n log D (v1,m) #

t—o0
(Cocycle-invariance of the stable manifolds):
There exists 11 (w) > 0 such that

X(t, -, w)(Sw)) CSOt,w), t>7(w).
Also

Dy X(t,Y(w),w)(S(w)) =S(0(t,w)), t=>0.

(d) U(w) is the set of all (v,n) € B(Y (w), p2(w)) with the property

that there is a unique “history” process y(-,w) : Z= — Ms

19



such that y(0,w) = (v,n) and for each integer n > 1, one has
X(T7 y(—TLT, (U), 0<_n7n7 w)) - y(_(n T 1)T7 w) and

ly(=nr,w) = Y (O(—nr,w))|las, < Ba(w)e™ Riomrme2nr,

Furthermore, for each (v,n) € U(w), there is a unique continuous-
time “history” process also denoted by y(-,w) : (—o0,0] — Ms
such that y(0,w) = (v,n), X(t,y(s,w),0(s,w)) = y(t + s,w) for
all s <0,0<t< —s, and

1
lim sup — og ly(~t,w) = Y (6(—t, )| < —Aiy1.

t—o0
FEach unstable subspace U(w) of the linearized semiflow Dy X is
tangent at Y (w) toU (w), viz. Ty (., U(w) = U(w). In particular,
dimU(w) is finite and non-random.

(e) Let y(-, (vi,mi),w),i = 1,2, be the history processes associated
with (vi, ;) = y(0, (vi,m;),w) € U(w), i = 1,2. Then

[yt ), @) = (=t (02, me), )]
[ p{ [(wem) — (va, )| '

) 1
lim sup n log

t— o0

(v1,71) # (v3,1m2), (v mi) € U(w), i = 1,2}] <

(f) (Cocycle-invariance of the unstable manifolds):

There exists To(w) > 0 such that

UWw)) € X[t 0(—t,w)UB(~t,w)))

20



for all t > m(w). Also
Dy X (t,-,0(=t,w))U(O(-t,w))) =U(w), t=0;
and the restriction
Dy X(t,-,0(—t,w)|UO(—t,w)) : UO(-t,w)) - U(w), t>0,

is a linear homeomorphism onto.

(g) The submanifolds U(w) and S(w) are transversal, viz.
My = Ty ()U(w) & Ty (1) S(w).
(h) The mappings

Q — C(My), Q — C(Ma),

w— S(w) w—Uw)

are (F,B(C(Ms)))-measurable.

Assume, in addition, that the smoothness hypotheses hold for
every k > 1 and § € (0,1]. Then the local stable and unstable mani-

folds S(w), U(w) are C.

21



Sketch of Proof-SODE Case

Broad Outline:

e Linearize along stationary solution and use substitu-

tion formula;:

1=1

do(t,Y) = h(o(t,Y)) dt + igi@(zﬁ, Y))odWi(t), t> O}

$(0,Y) =Y.
(1)
(IN-P]).
dD2¢(t,Y) = Dh((t,Y))D2¢(¢,Y) dt )
+ZD9Z (t,Y))Dod(t,Y) 0 dWi(t), ¢t>0°
D2¢<O,Y) =

(IIT)

Dy, D denotes spatial (Fréchet) derivatives.
do(t,Y) = =h(¢(t,Y)) dt = > gi(¢(t,Y)) 0 dWi(t), <0
50.Y) =Y. _ )
(I17)
dDyp(t,Y) = =Dh(¢(t,Y))D2¢(t,Y ) dt \

—ZDgZ (t,Y))Dagp(t,Y) o dWi(t), t<0%

(I1T°)

22



Above SODE’s (II)-(III)~ give dynamic characteriza-
tions of stable/unstable manifolds.

o “Perfection” of ergodic theorem and Kingman’s sub-
additive ergodic theorem under suitable integrability
hypotheses.

e Apply the Oseledec theorem to the linearized sys-
tem. Get a fixed Lyapunov spectrum. Hyperbolicity
is well-defined.

e Continuous-time integrability estimates on the non-
linear cocycle in a neighborhood of the stationary tra-
jectory. Uses sharp global spatial estimates on the
stochastic flow via Kolmogorov’s theorem; viz. the
following quantities have ¢-th moments for all ¢ > 1:

Pt (z,w)] |DZ s t(z, w)|
sup - : sup :
0<s,t<T, [1 + |x|(log ‘:L")'Y] 0<s,t<T, (1 -+ \x|’Y)
zeRd zeRd
|ng/)s’t<x,W) - Dg¢8’t(x/7w)|

Su Su
e iz — 2/ [<(1 + |z|)7
0< |z’ —z|<p

Y

€€ (0,9),7,p,T>0,1<|a] <k

e Use Ruelle’s discrete non-linear ergodic theorem on
the auxiliary perfect cocycle

Z(t,z,w) = ¢(t, z+Y (w),w)-Y (0(t,w)), teR,zcRwe

23



to construct the stable/unstable manifolds. Based
on difficult computations using implicit function the-
orem, perfection arguments and local perturbation of

discrete cocycle under the norm

1Dl == sup [D2(L,Y(0(n — 1,w)),0(n — 1,w)) ™"

for small n > 0.

Use the continuous-time integrability estimates and
the perfect subadditive ergodic theorem to interpo-
late between discrete time units (or delay periods in
SFDE case). This gives asymptotic invariance of the
stable /unstable manifolds.

24



Linearization and Substitution

Assume regularity conditions on the coefficients h, g;.
By the Substitution Rule, ¢(t,Y (w),w) is a stationary solution
of the anticipating Stratonovich SODE

do(t,Y) = h(¢(t,Y)) dt + i G (D, Y)) 0 dWi(t), t>0

1=1

(1)
$(0,Y) =Y.
(IN-P]).

Linearize the SODE (I) along the stationary trajec-
tory. By substitution, match the solution of the linearized
equation with the linearized cocycle Dy¢(t, Y (w),w). Hence
Dyo(t,Y (w),w), t > 0, solves the SODE:

dD>¢(t,Y) = Dh((t,Y))Dag(t,Y) dt )

+ Y Dgi(¢(t,Y))Dagp(t,Y) 0 dWi(t), t>03
=1

/

(I11)
D», D denotes spatial (Fréchet) derivatives.

Similarly, the backward trajectories

¢(t7Y)7 D2¢(t7y)7 < Oa

25



solve the corresponding backward Stratonovich SODE’s:

\

dMLY):—hwaﬂﬂﬂﬁ—E:%@MuY»oﬁ%@L t<0
$(0,Y) =Y. )
dD2¢(t,Y) = —Dh(¢(t,Y))Dag(t,Y) dt )

—E:D% (t,Y))Dagp(t,Y) o dWi(t), t<0%

(I11)

(I17)

Above SODE’s (II)-(IIT)~ give dynamic characteriza-

tions of the stable/unstable manifolds.

The following lemma is used to construct the shift-

invariant sure event appearing in the statement of the lo-

cal stable manifold theorem. Gives “perfect versions”

the ergodic theorem and Kingman’s subadditive ergodic

theorem.

Lemma 1

(i) Let h: Q — R* be F-measurable and

/ sup h(0(u,w))dP(w) < oc.
Q

0<u<1

26



Then there is a sure event )3 € F such that 6(t,-)(£21) =
for allt € R, and

lim ~A(0(¢,w)) = 0

t— o0
for all w € €.

(ii) Suppose f : Rt x @ — R U {—oco} is a measurable process on

(Q, F, P) satisfying the following conditions

(a) E sup fT(u) <oco, E sup fT(1—u,0(u)) < oo

0<u<1 0<u<l1
(b) f(t1 +t2,w) < f(t1,w) + f(ta,0(t1,w)) for all t1,t2 > 0 and all
w e .

Then there is sure event )y € F such that 6(t,-)(2y) = 2y for
allt € R, and a fixed number f* € RU{—o0} such that

lim (1) = f°

t—o0

for all w € Q5.

Proof

[Mo.1], Lemma 7. O

27



Theorem 2 ([O], 1968)
Let (2, F, P) be a probability space and 6 : RT x Q — Q

a measurable family of ergodic P-preserving transformations. Let
T :R* x Q — L(R?) be measurable, such that (T,) is an L(R?)-
valued cocycle. Suppose that

E sup log™ |T(t,-)|| < oo, FE sup log™ | T(1—t,0(t,))] < oc.
0<t<1 0<t<1

Then there is a set Qg € F of full P-measure such that
0(t,) () C Qq for all t € RT, and for each w € g, the limit

lim [T(t,w)* o T(t,w)]/ ) := A(w)

n—aoo

exists in the uniform operator norm. FEach A(w) has a non-random
spectrum

eM > e > e’ s s et

where the \;’s are distinct. Each e has a fixed non-random multi-

plicity m; and eigen-space F;(w), with m; := dimF;(w). Define

i— 1 .
Fi(w):=R% E;(w):= [Qszlle(w)} , 1 <i<np.

Ey(w)C - CEiy1(w) C Bij(w) -+ C By(w) C Ey(w) =RY,
lim %log T )zl = \(w) if 2 € Fi(w)\Fi (w),

t—o0
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and

T(t,w)(Ei(w)) € Ei(0(t,w))
forall t >0, 1 <1i<p.

Proof.

Based on the discrete version of Oseledec’s multiplica-
tive ergodic theorem and Lemma 1. ([Ru.1], .H.E.S Pub-
lications, 1979, pp. 303-304; cf. Furstenberg & Kesten
(1960), [Mo.1]), “perfect” infinite-dimensional version and
application to regular linear SFDE’s. O
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Spectral Theorem

/@_m

T Ex(0(t,w))

T(t w)

\

/

T E3(0(t,w))

N
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Apply Theorem 2 with T(t,w) := Dy¢(t,Y (w),w). Then
linearized cocycle has random invariant stable and unsta-
ble subspaces {S(w),U(w) : w € Q}:

Daop(t, Y (w),w)(S(w)) = S(6(t,w)),
Dad(—t, Y (w), ) (UW)) = UB(~t,w)), > 0.
[Mo.1].

S(0(t.)

|- U(0(t,w))
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Estimates on the non-linear cocycle

Theorem 3 (|M-S.2])

There exists a jointly measurable modification of the trajectory
random field of (I), denoted by {¢s+(z) : —00 < s,t < 00, x € R4},
with the following properties:

Define ¢ : R x R% x Q — RY by
o(t, z,w) = ¢o¢(r,w), z€RLwetecR.

Then the following is true for all w € Q, € € (0,9):
(i) For each x € R%, and s,t € R, ¢s (7, w) = ¢(t — s,7,0(s,w)).

(ii) (¢,0) is a perfect cocycle:

(b(t + 8, '7w) - ¢(ta ) 9(S7w)) © ¢(37 '7(*‘))7

for all s,t € R.
(iii) For eacht € R, ¢(t,-,w) : R* — R is a C*¢ diffeomorphism.

(iv) The mapping R? 3 (s,t) — ¢4,(-,w) € Diff*(R?) is continuous,
where Diff® (R%) denotes the group of all C* diffeomorphisms of
RY, given the C*-topology.
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v) The quantities
(v) q

@5, (2, W) DS bs,(z, W)
sup — : sup ,
o<se<t, [1 4 |z|(log™ |z|)7] o<si<r, (14 |z|7)
zcR4 zERA
D¢ ¢(x,w) — DY (2, w
o e DEO0) — DR )]
rERA 0<si<T, |z — a’|<(1 + [z])7

o<z’ —z|<p

7,0, T >0,1<]|al <k

are finite. The random variables defined by the above expres-

sions have q-th moments for all ¢ > 1.
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ke = CP-norm on C*¢ mappings B(0,p) — RY.

Lemma 2

Assume that log™ |Y(-)| is integrable. Then

/10g+ sup  |lo(t2, Y(0(t1,w)) + (+), 0(t1,w)) |k, dP(w) < 00
Q —T<tq,t2<T
(10)

for any fixed 0 < T,p < oo and any € € (0,9). The linearized flow
(D2op(t,Y (w),w),0(t,w)), t > 0, is an L(R%)-valued perfect cocycle

and

/10g+ sup  |[D2¢(t2, Y (0(t1,w)), 0(t1, w)) || L(rey dP(w) < o0
Q —T<t1,t2<T
(11)

for any fixed 0 < T < oo. The forward cocycle
(D2¢(t,Y (w),w),0(t,w),t > 0) has a non-random finite Lyapunov
spectrum {A, < -+ < Aiy1 < A\j < --- < A2 < A1}, Each Lyapunov

p
exponent \; has a non-random multiplicity q;, 1 < i < p, and Z qi =

=1
d. The backward linearized cocycle (D2¢(t,Y (w),w),0(t,w),t < 0),

admits a “backward” non-random finite Lyapunov spectrum:

lim 11og|D2¢>(t,Y(w),w)(v(w))\, ve L°(Q,RY),

t——oo t

taking values {—\; }t_; with non-random multiplicities q;, 1 < i < p,
p

and Z q; =d.
i=1
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The Auxiliary Cocycle

To apply Ruelle’s discrete non-linear ergodic theorem
([Ru.1], Theorem 5.1, p. 292), introduce the following
auxiliary cocycle Z : R x R? x Q — R4. This a “centering”
of the flow ¢ about the stationary solution:

Z(t,z,w) = ¢tz +Y(w),w) — Y (0(t,w))
forte R,z € R4 w e Q.

Lemma 3
(Z,0) is a perfect cocycle on R% and Z(t,0,w) = 0 for allt € R,

and all w € €.

Proof.

Z(tg,Z(tl,x,w),H(tl,w))
= ¢(to, Z(t1,z,w) + Y (0(t1,w)),0(t1,w)) — Y (0(t2,0(t1,w)))
= ¢(t2, p(t1,x + Y(w),w),0(t1,w)) — Y(0(ta + t1,w))
= Z(t1 + t2,7,w), t1,t e R,w e Q,z € RL

Z(t,0,w) = 0 by definition of Z and stationary solution. O

The proof of the local stable-manifold theorem (The-
orem 1) uses a discretization argument that requires the

following lemma.
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Lemma 4

Suppose that log™ |Y (-)| is integrable. Then there is a sure event
Q3 € F with the following properties:

(i) 0(t,)(23) = Q3 for all t € R,
(ii) For every w € Q3 and any x € R%, the statement
_ 1
limsup — log |Z(n, z,w)| < 0 (17)
n—oo N

implies

1 1
lim sup n log |Z(t,z,w)| = limsup — log | Z(n,z,w)|.  (18)

t—o0 n—oo N
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Ruelle’s Non-linear Ergodic Theorem

Theorem 4 ([Ru.1], 1979)

Let Q > w — F, € C*°(R%,0;R%,0) be measurable such that
Elog™ |[F.|B(0,1)]| < co. Set F™(w) := Fp(n—1,0) © " © Fp(1,0) © Fl.
Suppose A < 0 is not in the spectrum of the cocycle (DF"(0),0(n,w)).
Then there is a sure event g € F such that 0(1,-)() C o, and
measurable functions 0 < a(w) < f(w) < 1,7v(w) > 1 with the follow-

ing properties:
(a) If w € Qq, the set
V> i={z € B(0,a(w)) : |F*(z)| < B(w)e™ for all n > 0}
is a C*° submanifold of B(0, a(w)).
(b) If z1,29 € V), then
|F2 (1) = F )] < ()21 — 2ae™
for all integers n > 0. If X < X and [\, \] is disjoint from the

spectrum of (DF(0),6(n,w)), then there exists a measurable

v'(w) > 1 such that
|F2 (1) = F (o)l <o (@) lar — w2]le™

for all x1, x5 € Vuj\ and all integers n > 0.

Proof
[Ru.1], Theorem 5.1, p. 292.
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Construction of the Stable/Unstable Manifolds

Assume the hypotheses of Theorem 1.

Consider the auxiliary cocycle (Z,0). Define the fam-
ily of maps F, : RY — R¢ by F,(z) = Z(1,z,w) for all
weNand x € RE Let 7 :=60(1,) : Q — Q. Define F" =

o---0F.)oF,. Then cocycle property for Z gives
F" = Z(n,-,w) for each n > 1. F, is C*“(e € (0,9)) and
(DF,)(0) = Dy¢(1,Y (w),w). By measurability of the flow ¢,
the map w — (DF,)(0) is F-measurable. By (11) of Lemma

L

2, the map w +— log™ | D2¢(1,Y (w),w)||(re) is integrable. The
discrete cocycle ((DE™)(0),0(n,w),n > 0) has a non-random
Lyapunov spectrum which coincides with that of the lin-
earized continuous cocycle (Dy¢(t,Y (w),w),0(t,w),t > 0), Viz.
A < - < Xip1 < A < -0 < Ay < A1}, where each \; has
fixed multiplicity ¢;, 1 <i < p (Lemma 2). If )\; > 0 for all
1 <i < m, then take S(w) := {Y(w)} for all w € Q. Theorem
is trivial in this case. Suppose that at least one \; < 0.

Use discrete non-linear ergodic theorem of Ruelle (The-
orem 4) and its proof to obtain a sure event Qi € F such
that 0(t,-)(Q%) = Qf for all t € R, F-measurable positive
random variables pi, 3 : QFf — (0,1), p1 < 31, and a random
family of C*< (e € (0,6)) submanifolds of B(0, p;(w)) denoted
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by Si(w), w € O, and satisfying the following properties for
each w € Q1

Sa(w) = {z € B(0,p1(w)) : | Z(n,z,w)| < Bi(w)ePioT)" for alln € Z+}.
(21)

Si(w) is tangent at 0 to the stable subspace S(w) of the lin-

earized flow Dy¢, viz. TyS4(w) = S(w). Therefore dim Sy(w)

is non-random by ergodicity of 6. Also

1 7 -7
lim sup — log sup |Z(n,z1,w) (n, x9,w)|

z1,22€Sg(w)

<A

10 °

(22)

The 6(t,-)-invariant sure event Qf € F is constructed
using the ideas in Ruelle’s proof (of Theorem 5.1 in [Ru.1],
p. 293), combined with the estimate (10) of Lemma 2 and
the subadditive ergodic theorem (Lemma 1 (ii)).

For each w € Qf, let S(w) be the set defined in part (a)
of the theorem. Then by definition of S;(w) and Z:

S(w) = S4(w) + Y(w). (23)

Since Sy(w) is a C*< (e € (0,6)) submanifold of B(0, p;(w)),
then S(w) is a C*< (e € (0,6)) submanifold of B(Y (w), p1(w)).
Furthermore, Ty (,)S(w) = TpSa(w) = S(w). Hence dim S(w) =

p
dim S(w) = ) _ ¢;, and is non-random.

i=ig

39



Now (22) implies that

1
lim sup — log |Z(n, z,w)| < A4, (24)
n

for all w in Qf and all z € S;(w). Therefore by Lemma 4,
there is a sure event Q3 C Q% such that 6(¢,-)(Q3) = Q3 for
all t e R, and

lim sup ! log |Z(t,z,w)| < A, (25)

t—o00 t

for all w € Q5 and all 2 € Sy(w). Therefore (2) holds.

To prove (b), let w € Q. By (22), there is a positive
integer Ny := Ny(w) (independent of z € Sy(w)) such that
Z(n,z,w) € B(0,1) for all n > Ny. Let Q} := Q5 N Q3, where
Q3 is the shift-invariant sure event defined in the proof of
Lemma 4. Then Q is a sure event and 6(¢,-)(Q;) = Q; for
all t € R. By cocycle property, Mean-Value theorem and
the ergodic theorem (Lemma 1(i)), we get (b).

To prove the invariance property (4), apply the Os-
eledec theorem to the cocycle (D2é(t, Y (w),w), 0(t,w)) ([Mo.1],
Theorem 4, Corollary 2). This gives a sure (¢, -)-invariant
event, also denoted by Qf, such that
Do (t,Y (w),w)(S(w)) C S(f(t,w)) for all + > 0 and all w €
Qr. Equality holds because Ds¢(t,Y (w),w) is injective and
dim S(w) = dim S(4(¢t,w)) for all ¢+ >0 and all w € Qf.
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To prove the asymptotic invariance property (3), use
the ideas in the proofs of Theorems 5.1 and 4.1 in [Ru.1],
pp. 285-297, to pick random variables p;,3; and a sure
event (also denoted by) Qi such that 0(t,-)(Q%) = Qf for all
t € R, and

p1(0(t,w)) > pr(w)ePio TV 5(6(t,w)) > Bi(w)ePio TVt (26)

for all ¢t > 0,w € Q. Use (b) to obtain a sure event Q C Q}
such that 0(¢,-)(Q%) = Q for all t € R, and for any 0 <e < ¢
and w € QF, there exists 3°(w) > 0 (independent of z) with

[B(t,2,w) = Y (B(t,w))| < B (w)ePio Tt (27)

for all z € S(w),t>0. Fix t >0, w e Qf and z € S(w). Let n
be a non-negative integer. Then the cocycle property and
(27) imply that

[o(n, oL, z,w), 0(t, w)) =Y (0(n, 0(t,w)))|
=lp(n+t,z,w) —Y(0(n+tw))]
< ﬁe(w)e(AiO +e)(n+t)

< ﬁe (w)e<>\i0+6)t6(>\i0+el)n. (28)

If w e Qz, then it follows from (26),(27), (28) and the
definition of S(6(t,w)) that there exists 7 (w) > 0 such that
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o(t,z,w) € S(A(t,w)) for all t > 7 (w). This proves asymptotic
Invariance.
Prove (d) by running both the flow ¢ and the shift ¢

backward in time:

o(t,z,w) = d(—t,z,w), Z(t,x,w) = Z(—t,z,w), 0(t,w) = 0(—t,w)

for all t >0 and all w € Q. (Z(t,-,w),0(t,w),t > 0) is a smooth
cocycle, with Z(¢,0,w) = 0 for all ¢t > 0. The linearized
flow (Dyo(t,Y (w),w),0(t,w),t > 0) is an L(R%)-valued per-
fect cocycle with a non-random finite Lyapunov spectrum
[N < =X < - < =N < —Ay1 < oo < =)\, } where {)\, <
s < Ajp1 < A < oo+ < A2 < A} is the Lyapunov spectrum
of the forward linearized flow (Dy¢(t,Y (w),w),0(t,w), t > 0).
Apply first part of the proof to get stable manifolds for the
backward flow ¢ satisfying assertions (a), (b), (¢). This
translates into the existence of unstable manifolds for the
original flow ¢, and (d), (e), (f) automatically hold. Hence
there is a sure event Q} € F such that 0(—¢,-)(Qg) = QF for
all t € R, and (d), (e) and (f) hold for all w € Q.

Define the sure event Q* := Q;NQE. Then (¢, -)(Q*) = Q*
for all t € R. Assertions (a)-(f) hold for all w € Q*.

Measurability of the stable manifolds follows from

S(w) =Y(w) + Sa(w) (29)



Sa(w) = lim B(0, p1(w ﬂﬂﬁ, 1) (30)

m—0o0

fulz,w) = Pr(w) e~ Kot Z(n,z,w), zeRY we]

for all integers n > 0. (Above limit is taken in the metric a*
on C(R%).) Use joint continuity of translation and measur-
ability of Y, fi, p1, finite intersections and the continuity
of the maps

R* 57— B(0,r) € C(RY).

Hom(RY) s f — f~1(B(0,1)) € C(RY).

When h,g; are in C{*, adapt above argument to give
a sure event in F, also denoted by Q* such that S(w), U(w)
are C> for all w e Q*. O
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Remarks

(i)

(i)

(iii)

(iv)

Replace the stationary random variable Y by its in-
variant distribution p, with / | dp(z) < 0. Formu-
Rd

late result with respect to the product measure P ® p
and the underlying skew-product flow. This would
give stable and unstable manifolds that are defined
a.e.(P®p); cf. [C] for the globally asymptotically sta-
ble case on a compact manifold.

In Stratonovich SODE (I), replace global bounded-

ness on g.s by requiring

R oo Y P8 g0y cr 1 <ij<d
=1 J

to be in C}°.

Conjecture: The global boundedness condition is not
needed. This conjecture is not hard to check if the
vector fields g;, 1 <i < m, are Cy° and generate a finite-
dimensional solvable Lie algebra. See [Ku], Theorem
4.9.10, p. 212.

Theorem holds for the Ito SODE
de(t) = h(e®) dt + 3 g @) dWi(t), (1)
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with h,g; : R - R4 1 <i<m, in C’f’é.

Replace (I) with Kunita-type SODE

db(t) = Fodt, 6(t)), t> 3}

where F is a spatial semimartingale helix (i.e. with
stationary ergodic increments) and with local charac-
teristics of class (B’ B"’) and the function

d j
0,00) x RY 3 (t,z) = > da (;Zf’y)

J=1

e R?

Yy=x

belongs to BY’. In the Itd case, last condition is not
needed.

[¢]

F(t,z) =V (t,x) + M(t,z)
G (L 3, y) = % < MP(-x), MI(-,y) > (t)

. d .
bi(t,z) := %Vl(t,a:), z,yeRY1<4,5<d
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Proof of Theorem 3

Cocycle property (ii): approximate the flow using he-
lix mollifiers of Brownian motion:
t 0

WF(t) =k W(s)ds —k W(s)ds.
t—1/k —1/k

WF(ta,0(t1,w)) = WF(t) + to,w) — WF(t1,w), k>1
([I-W], cf. [Mo.1], [Mo.2] for linear infinite-dimensional

case).

(iii) and (iv) are well-known to hold for a.a. w € Q
([Ku], Theorem 4.6.5).

A perfect version of ¢, satisfying (i)-(iv) for all w €
Q, is obtained in [A-S] by perfection techniques and the
diffeomorphism theorem for flows ([Ku], Theorem 4.6.5;
cf. also [M-S.1)).

By [M-S.2], the random variables

Xim sup Lol
0<s<t<T, [1 + |x\(10g ]:1:|)7]
mERd
kd
Xo:= sup
o<2tr, [T [us(, )| (log™ )]
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have ¢-th moments for all ¢ > 1. It is sufficient to show
that the random variable

Xl - sup |¢t,s(x7—+:)|
o<s<t<t, [1 4 |z|(log™ |x|)7]
zeRd

has ¢-th moments for all ¢ > 1. Assume (without loss of
generality) that v € (0,1). From the definition of X,

lyl < Xa[1 + [@s.e(y, )| (log™ [yl)7]
for all 0 <s<t< T,y e R% Use the substitution
Y= ¢ s(r,w) = ¢;,}(m,w), Ost(y,w) =2,0<s<t<T,weuxe R4,
to rewrite above inequality as
[yl < Xa[1 + [z|(log™ [y])7].

Solve above inequality (by taking log*) for log™ |y|. There-
fore, there exists a non-random constant K; := K;(y) > 0
such that

|y < K1 X1+ [e{1 + (log™ [ Xa|)” + (log™* )7}).

Since X, has moments of all orders, the above inequality
implies that X; also has ¢-th moments for all ¢ > 1.
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Complete proof by [Ku|, [M-S.2] and GRR. O
Proof of Lemma 2

We first prove (11). Start with the perfect cocycle
property for (¢,6):

¢(t1 + t27 '7‘*‘)) = ¢(tQa '7‘9(t1:w)) © ¢(t17 '7w) (12)

for all t;,t, € R and all w € Q. Cocycle property for
(D2g(t,Y (w),w),0(t,w)) follows directly by taking Fréchet deriva-
tives at Y (w) on both sides of (12); viz.

Dag(t1 +t2,Y (w),w)
— D2¢<t27 ¢(t17 Y(w)a w)’ (9(151, W)) © D2¢(t17 Y<w)7 w)

= ngb(tz, Y(Q(tl, w)), Q(tl, w)) o ngb(tl, Y(w), w)
(13)

for all w € Q,t;,t, € R. Existence of a fixed discrete spec-
trum for Dy¢(t,Y) follows from [Mo.1] and [M-S.1], using
the integrability property (11) and the ergodicity of .
((11) follows from (13) and Theorem 3 (v)). But (10)
implies (11)! Therefore it is sufficient to prove (10).

In view of (1) and the identity

Gty byt (T, W) = P(ta, 2,0(t,w)), =€ R ty,ts €R,
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(Theorem 3(i)), (10) (for ¢ =0) will follow from

/ logt sup  |DSési(dos(Y(w),w)+a’,w)|dP(w) < oo, 0<l|a| <k,
(@) 0<s,t<T,
2/ |<p

(14)
Denote random “constants” by K;,i =1,2,3,4. Each K, :=
Ki(p,T),i = 1,2,3,4, has ¢-th moments for all ¢ > 1. The
following inequalities follow easily from Theorem 3 (v).

log™ sup |Dgsi(do,s(Y(w),w) + 2’ w)|

s,t€[0,T],
|z |<p

<log" esEépT]{Kl @)1+ (p + [do,s(YV(w),w))*]}

< log™ Ka(w) + log* [1 +20% + Ks(w)(1 + ¥ ()|
<logt K4(w) +log[1 + 2p%] + 4log™ |V (w)] (15)

for all w € Q. (15)+ integrability hypothesis on Y imply
(14). O

Proof of Lemma 4

The integrability condition (10) of Lemma 2 implies
that

/logjL sup || D2Z(ty, 2%, 0(t2,w))|| L(re) dP(w) < o0o.  (19)
Q

0<ty,t2<1,
x*€B(0,1)
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Therefore by (the perfect version of) the ergodic theo-
rem (Lemma 1(i)), there is a sure event Q3 € F such that
0(t,-)(Q3) = Q3 for all t € R, and

lim %long sup  1D2Z(u, ", 0(t, )| may =0 (20)

t—o0 0<u<1,
x*€B(0,1)

for all w € Q5.

Let w € Q3 and suppose z € R? satisfies (17). Then
(17) implies that there exists a positive integer Ny(z,w)
such that Z(n,z,w) € B(0,1) for all n > Ny. Let n <t <
n+1, n > Ny. Then by the cocycle property for (Z,6) and
the Mean Value Theorem:

1
sup  —log|Z(¢,x,w)|
n<t<n41

1 1
SﬁlogJr sup || D2Z(u,x”,0(n,w))||L(re) + n Elog|Z(n,x,w)\.

0<u<1, (TL+ 1)

xz*€B(0,1)

Take limsup in the above relation and use (20) to get

n—oo

1 1
lim sup n log |Z(t,z,w)| < limsup — log |Z(n,z,w)].
n

t— o0 n— o0

The inequality
: 1 _ 1
lim sup — log | Z (n, z,w)| < lim sup n log |Z(t, z,w)],
n

n— o0 t—o0

is obvious. Hence (18) holds. O
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