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REPRESENTED VALUE SETS FOR INTEGRAL

BINARY QUADRATIC FORMS AND LATTICES

A.G. Earnest and Robert W. Fitzgerald

Southern Illinois University Carbondale

Abstract. A characterization is given for the integral binary quadratic forms for which
the set of represented values is closed under products. It is also proved that for an integral
binary quadratic lattice over the ring of integers of a global field, the product of three values
represented by the form is again a value represented by the form. This generalizes the trigroup
property discovered by V. Arnold for the case of integral binary quadratic forms.

1. Introduction

For an integral binary quadratic form f , let D(f) denote the set of integers represented
by f (i.e., a ∈ D(f) if and only if there exists (x, y) ∈ Z2 such that f(x, y) = a). V.
Arnold [2] posed the problem of characterizing the forms f for which D(f) is closed under
products. Following [1], we will say that such a form f has the semigroup property. For
example, if f(x, y) = x2 + dy2, then f has the semigroup property, as can be seen from
the classical composition identity

(u2 + dv2)(z2 + dw2) = (uz + dvw)2 + d(uw − vz)2.

On the other hand, the form f(x, y) = 3x2 + 3y3 does not have the semigroup property,
since f represents 3 but not 9.

While the set D(f) is not always closed under products, Arnold observed that it is
always true that products of three elements of D(f) again lie in D(f). This he termed the
“trigroup property”. One interesting consequence of the trigroup property is that mf has
the semigroup property whenever the integer m lies in D(f). It will be seen (Corollary
2.5) that the diagonal forms f with the semigroup property are those of the type mf0

with m ∈ D(f0), where m is the greatest common divisor of the coefficients of f . In
particular, the primitive diagonal forms with the semigroup property are precisely those
that represent 1. This characterization no longer holds for non-diagonal forms, as can be
seen by considering the primitive form f(x, y) = 2x2 +3xy +4y2, which has the semigroup
property (see Corollary 2.6) but does not represent 1.

The present paper has two primary goals. The first is to give a complete solution to the
problem posed by Arnold by giving a characterization of all integral binary quadratic forms
having the semigroup property (see Theorem 2.3). The second is to use the multiplicative
structure present on a binary quadratic space to show that the trigroup property holds
quite generally for integral o-lattices of rank 2 over the ring of integers o of any global field
(see Theorem 3.1).
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2. Integral binary quadratic forms with the semigroup property

In this section, we consider integral binary quadratic forms; that is, forms of the type
f(x, y) = ax2 + bxy + cy2 where a, b, c ∈ Z. For convenience, we refer to such an f
simply as a “form” and denote it by the shorthand notation (a, b, c). The discriminant of
f = (a, b, c) is ∆f = b2 − 4ac. It will be assumed here that all forms under consideration
are either positive definite (if ∆f < 0) or indefinite (if ∆f > 0). A form (a, b, c) is said to
be primitive if g.c.d.(a, b, c) = 1. When f is not primitive, we will write f = cff0, where
cf = g.c.d.(a, b, c) and f0 is primitive.

Two forms f and g are equivalent, denoted f ∼ g, if there is an integral transformation
of determinant +1 taking one form to the other. For a form f , [f ] will denote the set
of all forms equivalent to f . The set of equivalence classes of primitive forms of a fixed
discriminant ∆ forms a finite abelian group under the operation induced by composition.
Using the united forms approach of Dirichlet, we now briefly summarize the basic properties
of this operation; details can be found, for example, in [3]. Two forms f = (a, b, c) and
g = (a′, b′, c′) of the same discriminant are said to be united if g.c.d.(a, a′, b+b′

2 ) = 1. If f
and g are united, then there exist B, C ∈ Z such that f ∼ (a,B, a′C) and g ∼ (a′, B, aC).
For these forms, there is a composition identity

(au2 + Buv + a′Cv2)(a′z2 + Bzw + aCw2) = aa′X2 + BXY + CY 2, (2.1)

where
X = uz − Cvw and Y = auw + a′vz + Bvw. (2.2)

Any two primitive forms of the same discriminant are united, and the rule

[(a, b, c)][(a′, b′, c′)] = [(aa′, B,C)]

gives a well-defined operation on the set of equivalence classes of primitive forms of a fixed
discriminant ∆. Under this operation, this set forms a finite abelian group, which will be
denoted by F∆. The identity element of F∆ is the class id∆ consisting of the forms that
represent 1. If f = (a, b, c), then [f ]−1 = [fop], where fop = (a,−b, c).

As all equivalent forms represent the same integers, the notation D([f ]) will be used to
denote the set D(g) for any g ∈ [f ]. It follows from the composition identity (2.1) that
if f and g represent the integers m and n, respectively, then the forms in the equivalence
class [f ][g] represent the product mn; that is, D([f ][g]) = D(f)D(g). Note also that
D(fop) = D(f) since fop(x, y) = f(x,−y).

The above properties lead to an immediate proof of the trigroup property (as was
observed in [1]).

Proposition 2.1. Let f be an integral binary quadratic form. If a, b, c ∈ D(f), then
abc ∈ D(f).

Proof. Write a = cfa0, b = cf b0 and c = cfc0, where a0, b0, c0 ∈ D(f0) = D(fop
0 ). Then

a0b0c0 ∈ D([f0][f0][f
op
0 ]) = D([f0][f0][f0]−1) = D([f0]) = D(f0).
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Consequently, cfa0b0c0 ∈ D(cff0) = D(f). So there exists (x, y) ∈ Z2 such that f(x, y)) =
cfa0b0c0. Then f(cfx, cfy) = abc. ¤
Remark. The assumption of integrality is essential for the trigroup property to hold. For
example, consider the form f = 1

2x2 + 2y2. Then f represents 1
2 , 5

2 and 4, but f does not
represent 5.

In order to characterize forms with the semigroup property, we will need the following
preliminary result.

Lemma 2.2. Let g and h be primitive integral binary quadratic forms of the same dis-
criminant ∆, let p be an odd prime and n an integer. If p ∈ D(g) and np ∈ D(h), then
either n ∈ D([g][h]) or n ∈ D([gop][h]).

Proof. Without loss of generality, it can be assumed that g = (a, b, a′c) and h = (a′, b, ac),
where a, a′ and p are pairwise relatively prime. Let u, v, z, w ∈ Z be such that g(u, v) = p
and h(z, w) = np. Completing squares gives 4ap = (2au + bv)2 − ∆v2 and 4a′np =
(2a′z + bw)2 − ∆w2. From the first of these equations, note that p does not divide v;
otherwise, we would also have p|u, leading to the contradiction p2|p. Suppose that p does
not divide w. Then, solving for ∆ in each of the previous equations leads to

(2au + bv)2

v2
≡ (2a′z + bw)2

w2
(mod p).

Hence, there exists ε = ±1 such that

(2au + bv)w ≡ ε(2a′z + bw)v (mod p). (2.3)

If p|w, then p|z and (2.3) still holds.
Consider first the case when ε = −1. Then (2.3) implies

2auw + bvw ≡ −2a′vz − bvw (mod p)

and
auw + bvw + a′vz ≡ 0 (mod p). (2.4)

From the composition identity (2.1), we have

np2 = aa′X2 + bXY + cY 2, (2.5)

where p|X by (2.2). It follows that p|Y and, upon cancelling p2 from both sides of (2.5),
that n ∈ D([g][h]).

Now consider the case when ε = +1. Then (2.3) implies that auw ≡ a′vz (mod p). Since
g.c.d.(a, a′) = 1, there exist l, k ∈ Z such that al−a′k = b. Set B = 2al− b = 2a′k + b and
C = c+lk. Let g′(x, y) = gop(x+ly,−y) and h′(x, y) = h(x+ky, y). Then g′ ∼ gop, h′ ∼ h,
g′(x, y) = ax2 + Bxy + a′Cy2 and h′(x, y) = a′x2 + Bxy + aCy2. Now set u′ = u + lv,
v′ = −v, z′ = z − kw and w′ = w. Then g′(u′, v′) = gop(u,−v) = g(u, v) = p and
h′(z′, w′) = h(z, w) = np. From (2.1) and (2.2), it follows that

np2 = aa′X2 + BXY + CY 2, (2.6)

3



where
Y = au′w′ + a′v′z′ + Bv′w′ = auw − a′vz + vw(a′k − al + b).

Here a′k − al + b = 0 by the choice of l, k, and p|(auw − a′vz) from (2.3). Hence, p|Y .
It follows that p|X and, upon cancelling p2 from both sides of (2.6), that n ∈ D([gop][h]).
This completes the proof of the lemma. ¤

Theorem 2.3. Let f be an integral binary quadratic form. Then f has the semigroup
property if and only if cf ∈ D(f0) ∪D([f0]3).

Proof. ( ⇐= ) Let A, B ∈ D(f). Then A = cfa and B = cfb, where a, b ∈ D(f0).
Then ab ∈ D([f0]2) = D([fop

0 ]2). If cf ∈ D([f0]), then cfab = cf (ab) ∈ D([f0][f
op
0 ]2) =

D([f0][f0]−2) = D([f0]−1) = D(fop
0 ) = D(f0). On the other hand, if cf ∈ D([f0]3), then

cfab = cf (ab) ∈ D([f0]3[f
op
0 ]2) = D([f0]3[f0]−2) = D([f0]) = D(f0). So, in either case,

cfab ∈ D(f0) and it follows that AB = cf (cfab) ∈ D(f), as required.
( =⇒ ) By a classical theorem due to Weber, there exists an odd prime p such that

p ∈ D(f0). Then cfp ∈ D(f), and so c2
fp2 ∈ D(f) by the semigroup property. Hence,

cfp2 ∈ D(f0). It then follows from the lemma, with g = h = f0 and n = cfp, that either
cfp ∈ D(id∆) or cfp ∈ D([f0]2). In the first case, Lemma 2.2 (with g = f0, h = id∆ and
n = cf ) implies that cf ∈ D(f0). In the second case, Lemma 2.2 (with g = f0, [h] = [f0]2

and n = cf ) implies that either cf ∈ D(f0) or cf ∈ D([f0]3). ¤

Corollary 2.4. Let f be a primitive integral binary quadratic form of discriminant ∆.
The following are equivalent:

(a) f has the semigroup property.
(b) There is an odd prime p such that f represents both p and p2.
(c) f or [f ]3 represents 1.
(d) [f ] has order 1 or 3 in F∆.

Remark. Forms which admit certain types of integer normed pairings are seen in [1] to
give rise to elements of order 3 in the corresponding class group.

Corollary 2.5. Let f be a diagonal integral binary quadratic form. Then f has the
semigroup property if and only if f0 represents cf .

Proof. Since f0 is diagonal, [f0]2 is the identity and [f0]3 = [f0]. ¤

Corollary 2.6. For any a, b ∈ Z, the form (a, b, a2) has the semigroup property.

Proof. Let f = (a, b, a2). Then cf = g.c.d.(a, b), and f0 = (a0, b0, cfa2
0), where a = cfa0

and b = cf b0. Since g.c.d.(a0, b0) = 1, identity (2.1) with B = b0 and C = cfa0 gives [f0]2 =
[(a2

0, b0, cfa0)]. Then applying (2.1) with B = b0 and C = cf to the forms (a0, b0, cfa2
0) and

(a2
0, b0, cfa0) gives [f0]3 = [(a3

0, b0, cf )]. Hence, cf ∈ D([f0]3) and it follows from Theorem
2.3 that f has the semigroup property. ¤

3. The trigroup property for binary quadratic lattices

In the remainder of the paper, the notation and terminology of O’Meara’s book [5] will
be adopted. Let F be a global field with ring of integers o. Let (V, Q) be a nondegenerate
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quadratic space over F of dimension 2, and let B be the symmetric bilinear form on V
such that B(v, v) = Q(v) for all v ∈ V .

Let E be an extension of the field F such that (V̂ , Q̂) represents 1 over E, where (V̂ , Q̂)
denotes the space obtained from (V, Q) via extension of scalars to E. Then V̂ can be given
the structure of a commutative E-algebra with involution − (for example, see [4]). Let 1V̂

be the identity element of this algebra. The multiplication on V̂ is related to the quadratic
mapping Q̂ by the identity

xx̄ = Q̂(x)1V̂ , for all x ∈ V̂ ,

from which follow the identities

xȳ + x̄y = 2B̂(x, y)1V̂

and
Q̂(x)Q̂(y) = Q̂(xy)

for all x, y ∈ V̂ .
Let L be an o-lattice on V , and let {v1, v2} be a basis for V over F that is adapted to

L. That is, L = a1v1 + a2v2 for some fractional ideals a1, a2 of F . Then, by 82:8 of [5],
the scale and norm ideals of L are given by the equations

sL =
∑

i,j

aiajB(vi, vj), nL =
∑

i

a2
i Q(vi) + 2sL.

Theorem 3.1. Assume that nL ⊆ o. If a, b, c ∈ Q(L), then abc ∈ Q(L).

Proof. Let x, y, z ∈ L. It suffices to show that xyz̄ ∈ L, since then Q(xyz̄) = Q̂(xyz̄) =
Q̂(x)Q̂(y)Q̂(z) = Q(x)Q(y)Q(z).

To establish this, write x = x1v1 + x2v2, y = y1v1 + y2v2 and z = z1v1 + z2v2 with
xi, yi, zi ∈ ai for i = 1, 2. Consider the expansion

xyz̄ =
∑

i,j,k∈{1,2}
xiyjzkvivj v̄k. (3.1)

Consider first the terms in (3.1) for which i = k. Such a term has the form

xiyjzivivj v̄i = xiyjziQ(vi)1V̂ vj = (xiziQ(vi))yjvj .

Now
xiziQ(vi) ∈ a2

i Q(vi) ⊆ nL ⊆ o.

So
(xiziQ(vi))yj ∈ aj

and
(xiziQ(vi))yjvj ∈ ajvj ⊆ L
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since aj is a fractional ideal of F .
The terms in the expansion (3.1) with j = k are similarly in L. The only other terms

in the expansion are those involving v2
i v̄k with i 6= k. From the identity viv̄k + v̄ivk =

2B(vi, vk)1V̂ , it follows that

v2
i v̄k = vi(viv̄k) = vi(2B(vi, vk)1V̂ − v̄ivk) = 2B(vi, vk)vi −Q(vi)vk.

The corresponding term in (3.1) can thus be expressed as

xiyizkv2
i v̄k = (2yizkB(vi, vk))xivi − (xiyiQ(vi))zkvk.

Here (xiyiQ(vi))zkvk ∈ L follows as in the previous paragraph. For the other term, note
that

2yizkB(vi, vk) ∈ 2sL ⊆ nL ⊆ o,

from which it follows that

(2yizkB(vi, vk))xivi ∈ aivi ⊆ L.

It now follows that xyz̄ ∈ L and the proof is complete. ¤
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