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A PROPOSED MEASURE OF INTERNAL CONSISTENCY
RELIABILITY: COEFFICIENT L-alpha

Todd C. Headrick∗ and Yanyan Sheng∗

Data sets in the social and behavioral sciences are often small or heavy-tailed. Previ-
ous studies have demonstrated that small samples or leptokurtic distributions adversely
affect the performance of Cronbach’s coefficient alpha. To address these concerns, we
propose an alternative estimator of reliability based on L-comoments. The empirical
results of this study demonstrate that when sample sizes are small and distributions
are heavy-tailed that the proposed coefficient L-alpha has substantial advantages over
the conventional Cronbach estimator of reliability in terms of relative bias and relative
standard error.

1. Introduction

Coefficient alpha (Cronbach, 1951; Guttman, 1945) is a commonly used index for
measuring internal consistency reliability. Consider alpha (α) in terms of a model
that decomposes an observed score into the sum of two independent components: a
true unobservable score ti and a random error component eij . The model can be
summarized as

Xij = ti + eij (1)

where Xij is the observed score associated with the i-th examinee on the j-th test
item, and where i = 1, . . . , n; j = 1, . . . , k; and the error terms (eij) are independent
with a mean of zero. Inspection of (1) indicates that this particular model restricts
the true score ti to be the same across all k test items. The reliability measure asso-
ciated with the test items in (1) is a function of the true score variance and cannot
be computed directly. Thus, estimates of reliability such as coefficient α have been
derived and will be defined herein as (e.g., Christman and Van Aelst, 2006)

α =
k

k − 1

(
1 −

∑
j σ2

j∑
j σ2

j +
∑∑

j �=j′ σjj′

)
. (2)

A conventional estimate of α can be obtained by substituting the usual OLS sample
estimates associated with σ2

j and σjj′ into (2) as

α̂C =
k

k − 1

(
1 −

∑
j s2

j∑
j s2

j +
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j �=j′ sjj′

)
(3)

where s2
j and sjj′ are the diagonal and off-diagonal elements from the variance-

covariance matrix, respectively.
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Although coefficient α is often used as an index for reliability, it is also well known
that its use is limited when data are non-normal, in particular leptokurtic, or when
sample sizes are small (e.g. Bay, 1973; Christman and Van Aelst, 2006; Sheng and
Sheng, 2012; Wilcox, 1992). These limitations are of concern because data sets in the
social and behavioral sciences can often possess heavy tails or consist of small sample
sizes (e.g. Micceri, 1989; Yuan et al., 2004). Specifically, it has been demonstrated
that α̂C can substantially underestimate α when heavy-tailed distributions are en-
countered. For example, Sheng and Sheng (2012, Table 1) sampled from a symmetric
leptokurtic distribution and found the empirical estimate of α to be approximately
α̂C = 0.70 when the true population parameter was α = 0.80. Further, it is not
uncommon that data sets consist of small sample sizes e.g. n = 10 or 20 which are
encountered in the contexts of rehabilitation (e.g. alcohol treatment programs, group
therapy, etc.) and special education as student-teacher ratios are often small. Fur-
thermore, Monte Carlo evidence has demonstrated that α̂C can underestimate α -
even when small samples are drawn from a normal distribution (see Sheng and Sheng,
2012, Table 1).

L-moment estimators (e.g. Hosking, 1990; Hosking and Wallis, 1997) have demon-
strated to be superior to the conventional product-moment estimators in terms of
bias, efficiency, and their resistance to outliers (e.g. Headrick, 2011; Hodis et al.,
2012; Hosking, 1992; Vogel and Fennessy, 1993). Further, L-comoment estimators
(Serfling and Xiao, 2007) such as the L-correlation has demonstrated to be an attrac-
tive alternative to the conventional Pearson correlation in terms of relative bias when
heavy-tailed distributions are of concern (Headrick and Pant, 2012a,b,c,d,e).

In view of the above, the present aim here is to propose a L-comoment based coef-
ficient L-α, and its estimator denoted as α̂L, as an alternative to conventional alpha
α̂C in (3). Empirical results associated with the simulation study herein indicate that
α̂L can be substantially superior to α̂C in terms of relative bias and relative standard
error when distributions are heavy-tailed and sample sizes are small.

The rest of the paper is organized as follows. In Section 2, summaries of uni-
variate L-moments and L-comoments are first provided. Coefficient L-α (α̂L) is then
introduced and numerical examples are provided to illustrate the computation and
sampling distribution associated with α̂L. In Section 3, a Monte Carlo study is carried
out to evaluate the performance of α̂C and α̂L. The results of the study are discussed
in Section 4.

2. L-moments, L-comoments, and Coefficient L-α

The system of univariate L-moments (Hosking, 1990, 1992; Hosking and Wallis,
1997) can be considered in terms of the expectations of linear combinations of order
statistics associated with a random variable Y . Specifically, the first four L-moments
are expressed as

λ1 = E[Y1:1]
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λ2 =
1
2
E[Y2:2 − Y1:2]

λ3 =
1
3
E[Y3:3 − 2Y2:3 + Y1:3]

λ4 =
1
4
E[Y4:4 − 3Y3:4 + 3Y2:4 − Y1:4]

where the order statistics Y1:m ≤ Y2:m ≤ . . . ≤ Ym:m are drawn from the random
variable Y . The values of λ1 and λ2 are measures of location and scale and are
the arithmetic mean and one-half the coefficient of mean difference (or Gini’s index
of spread), respectively. Higher order L-moments are transformed to dimensionless
quantities referred to as L-moment ratios defined as τr = λr/λ2 for r ≥ 3, and where
τ3 and τ4 are the analogs to the conventional measures of skew and kurtosis. In
general, L-moment ratios are bounded in the interval −1 < τr < 1 as is the index of
L-skew (τ3) where a symmetric distribution implies that all L-moment ratios with odd
subscripts are zero. Other smaller boundaries can be found for more specific cases.
For example, the index of L-kurtosis (τ4) has the boundary condition for continuous
distributions of (5τ2

3 − 1)/4 < τ4 < 1.
L-comoments (Olkin and Yitzhuki, 1992; Serfling and Xiao, 2007) are introduced

by considering two exchangeable random variables Yj and Yk with distribution func-
tions F (Yj) and F (Yk). The second L-moment associated with Yj can alternatively
be expressed as

λ2(Yj) = 2Cov(Yj, F (Yj)) (4)

where F (·) denotes the cumulative distribution function (cdf). The second L-
comoment associated with Yj and Yk is

λ2(Yj, Yk) = 2Cov(Yj, F (Yk)). (5)

The ratio ηjk = λ2(Yj, Yk)/λ2(Yj) is defined as the L-correlation of Yj with respect
to Yk, which measures the monotonic relationship (not just linear) between the two
variables (Headrick and Pant, 2012e). The estimators of (4) and (5), based on the
empirical cdf F̂ (·), are U-statistics (Serfling, 1980; Serfling and Xiao, 2007) and their
sampling distributions converge to a normal distribution when the sample size is suf-
ficiently large.

In terms of coefficient L-α, an approach that can be taken to equate the conven-
tional and L-moment (comoment) definitions of α is to express (2) as

α =
1

1 + (R − 1)/k
=

k

k − 1

(
1 −

∑
j σ2

j∑
j σ2

j +
∑∑

j �=j′ σjj′

)
(6)

where R > 1 is the common ratio between the main and off diagonal elements of the
variance-covariance matrix i.e. R = σ2

j /σjj′ . As such, given a fixed value of R in (6)
will allow us to define α in terms of the second L-moments and second L-comoments
as
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α =
1

1 + (R − 1)/k
=

k

k − 1

(
1 −

∑
j λ2(j)∑

j λ2(j) +
∑∑

j �=j′ λ2(jj′)

)
(7)

where R = λ2(j)/λ2(jj′). Thus, the estimator of L-α is expressed as

α̂L =
k

k − 1

(
1 −

∑
j �2(j)∑

j �2(j) +
∑∑

j �=j′ �2(jj′)

)
(8)

where �2(j) (�2(jj′)) denotes the sample estimate of the second L-moment (second
L-comoment) in (4) and (5). An example demonstrating the computation of α̂L is
provided below in equation (9). The computed estimator α̂L = 0.807 in (9) is based
on the data in Table 1 and the second L-moment-comoment matrix in Table 2. The
corresponding conventional estimate for the data in Table 1 is α̂C = 0.798.

Table 1: Data (Items) for computing the second L-moment-comoment matrix in Table 2. Note

that F̂ (·) denotes the empirical cdf.

Xi1 Xi2 Xi3 F̂ (Xi1) F̂ (Xi2) F̂ (Xi3)

2 4 3 0.15 0.45 0.15
5 7 7 0.75 0.95 1.00
3 5 5 0.35 0.65 0.40
6 6 6 0.90 0.80 0.75
7 7 6 1.00 0.95 0.75
5 2 6 0.75 0.10 0.75
2 3 3 0.15 0.25 0.15
4 3 6 0.55 0.25 0.75
3 5 5 0.35 0.65 0.40
4 4 5 0.55 0.45 0.40

The data are part of the “Satisfaction With Life Data” from McDonald (1999, p.47).

Table 2: Second L-moment-comoment matrix for coefficient α̂L in equation (9).

Item 1 2 3

1 �2(1) = 0.989 �2(12) = 0.500 �2(13) = 0.789
2 �2(21) = 0.500 �2(2) = 1.022 �2(23) = 0.411
3 �2(31) = 0.667 �2(32) = 0.333 �2(3) = 0.733

α̂L = 0.807 = (3/2)(1 − (�2(1) + �2(2) + �2(3))/(�2(1) + �2(2) + �2(3) +

�2(21) + �2(31) + �2(32) + �2(12) + �2(13) + �2(23))). (9)

The estimator α̂L in (8) and (9) is a ratio of the sums of U-statistics and thus a
consistent estimator of α in (7) with a sampling distribution that converges, for large
samples, to the normal distribution (e.g. Olkin and Yitzhuki, 1992; Schechtman and
Yitzhaki, 1987; Serfling and Xiao, 2007). For convenience to the reader, provided in



COEFFICIENT L-alpha 61

Figure 1 is the sampling distribution of α̂L that is approximately normal and based
on α = 0.50, n = 100, 000, and a symmetric heavy-tailed distribution (kurtosis of 25,
see Figure 2) that would be associated with ti in (1).

Figure 1: Approximate normal sampling distribution of α̂L with α = 0.50. The distribution
consists of 25,000 statistics based on samples of size n = 100, 000 and the heavy-tailed
distribution (kurtosis of 25) in Figure 2.

3. Monte Carlo Simulation

An algorithm was written in MATLAB (Mathworks, 2010) to generate 25,000 in-
dependent sample estimates of conventional and L-comoment α. The estimators α̂C

and α̂L were based on the specified (a) distributions depicted in Figures 2–4 for the
true score ti in (1), (b) diagonal and off-diagonal values given in Tables 3 and 4 for σ2

j ,
σjj′ in (6) and for λ2(j), λ2(jj′) in (7), (c) variance (σ2

e ) values given in Tables 3 and
4 for the error term eij in (1), (d) number of test items k = 4, 9, 10, and (e) sample
sizes of n = 10, 20, 1000 for all scenarios considered.

More specifically, the true score ti in (1) followed each of the three distributions
shown in Figures 2–4 and are referred to as (a) Distribution 1: symmetric and lep-
tokurtic (skew = 0, kurtosis = 25; L-skew = 0, L-kurtosis = 0.4225), (b) Distribution
2: asymmetric and leptokurtic (skew = 3, kurtosis = 21; L-skew = 0.3130, L-kurtosis
= 0.3335), and (c) Distribution 3: standard normal (skew = 0, kurtosis = 0; L-skew
= 0, L-kurtosis = 0.1226). We would point out that Distributions 1 and 2 were con-
sidered for the purpose of comparing and contrasting heavy-tailed distributions that
were symmetric with those that were skewed. Further, these two non-normal distri-
butions have also been used in several studies in the social and behavioral sciences
(e.g. Berkovits et al., 2000; Enders, 2001; Harwell and Serlin, 1988; Headrick and
Sawilowsky, 1999, 2000; Olsson et al., 2003).

The three distributions described above were generated for the Monte Carlo sim-
ulation study using the L-moment based power method transformation derived by
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Figure 2: Distribution 1 with skew (L-skew) of 0 (0) and kurtosis (L-kurtosis) of 25 (0.4225).

Figure 3: Distribution 2 with skew (L-skew) of 3 (0.3130) and kurtosis (L-kurtosis) of 21 (0.3335).

Figure 4: Distribution 3 is standard normal with skew (L-skew) of 0 (0) and kurtosis (L-kurtosis)
of 0 (0.1226).

Headrick (2011). Specifically, the true scores ti in (1) were generated using the fol-
lowing Fleishman (1978) type polynomial

ti = c1 + c2Zi + c3Z
2
i + c4Z

3
i (10)

where Zi ∼ iid N(0, 1). The shape of the distribution associated with the true scores
ti in (10) is contingent on the values of the coefficients, which are computed based on
Headrick’s Equations (2.14)–(2.17) in Headrick (2011) as
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Table 3: Conventional covariance (C) and L-comoment (L) matrices with the associated error
variances (σ2

e) for Distributions 1–3. The ratio of diagonal to off-diagonal is R = 2.

Distribution Procedure Diagonal Off-Diagonal σ2
e

1 C 3.420 1.710 1.710
1 L 0.848 0.424 1.000
2 C 3.224 1.612 1.612
2 L 0.842 0.421 1.000
3 C 2.000 1.000 1.000
3 L 0.798 0.399 1.000

Reliability is α = 0.80, 0.90; Number of Items are k = 4, 9.

Table 4: Conventional covariance (C) and L-comoment (L) matrices with the associated error
variances (σ2

e) for Distributions 1–3. The ratio of diagonal to off-diagonal is R = 5.

Distribution Procedure Diagonal Off-Diagonal σ2
e

1 C 8.550 1.710 6.840
1 L 1.470 0.294 5.313
2 C 8.060 1.612 6.448
2 L 1.443 0.2886 5.135
3 C 5.000 1.000 4.000
3 L 1.262 0.2524 4.000

Reliability is α = 0.50, 0.714; Number of Items are k = 4, 10.

c1 = −c3 = −τ3

√
π

3

c2 =
−16δ2 +

√
2(3 + 2τ4)π

8(5δ1 − 2δ2)

c4 =
40δ1 −

√
2(3 + 2τ4)π

20(5δ1 − 2δ2)
. (11)

The three sets of coefficients for the distributions in Figures 2–4 are (respectively):
(1) c1 = 0.0, c2 = 0.3338, c3 = 0.0, c4 = 0.2665; (2) c1 = −0.3203, c2 = 0.5315,
c3 = 0.3203, c4 = 0.1874; and (3) c1 = 0.0, c2 = 1.0, c3 = 0.0, c4 = 0.0. The values of
the three sets of coefficients are based on the values of L-skew and L-kurtosis given in
Figures 2–4 and where δ1 = 0.36045147 and δ2 = 1.15112868 in (11) (see Headrick,
2011, Eqs. A.1, A.2). The solutions to the coefficients in (11) ensure that λ1 = 0 and
λ2 = 1/

√
π, which are associated with the unit normal distribution.

The values of α for both conventional and L-moment procedures were determined
based on the three specified true score (ti) distributions, main diagonal (σ2

j , λ2(j)) to
off-diagonal (σjj′ , λ2(jj′)) ratios (R) as in (6) and (7), and the number of items (k). As
such, and given a specified true score (ti) distribution, the error variances (σ2

e ) were
subsequently determined so that the main diagonal and off-diagonal values in Table
3 and Table 4 yielded the appropriate ratios (R), i.e. R = 2 and R = 5, respectively.
Thus, using (6) and (7) with R = 2 and k = 4 (k = 9) will yield α = 0.80 (α = 0.90)
for all cases in Table 3. Analogously, the ratio R = 5 and k = 4 (k = 10) will yield
α = 0.50, (α = 5/7 = 0.714) for all cases in Table 4. These four values of α represent
commonly used references of various degrees of reliability i.e. 0.50 (poor); 5/7 = 0.714
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(acceptable); 0.80 (good); and 0.90 (excellent).
For all cases in the simulation, the error term eij in (1) was normally distributed

with a mean of zero and the variance parameters (σ2
e ) listed in Table 3 and Table

4. We would note that it was required for the values of σ2
e to differ for the conven-

tional moment and L-comonent procedures when the true score ti followed the two
non-normal distributions (i.e. Distributions 1 and 2) in order for the values of α to
be the same for both procedures. This requirement was necessary because it has been
demonstrated that the amount of bias associated with estimators of α depends on not
only the distribution and sample size, but also the value of α being estimated (see
Sheng and Sheng, 2012, Table 5).

The formulae used for computing the estimators α̂C and α̂L were computed using
(3) and (8) and the empirical estimates of the cdfs in (4) and (5), F̂ (·), as in Tables 1
and 2. The estimators were both transformed to the form of an intraclass correlation
(as the model in Eq. 1 assumes compound symmetry) as ρ̄C,L = α̂C,L/(1−(k−1)α̂C,L)
(e.g. Headrick, 2010, p.104) and were subsequently Fisher z′ transformed i.e. z′ρ̄C,L

.
Bias-corrected accelerated bootstrapped average (mean) estimates, confidence inter-
vals (C.I.s), and standard errors were subsequently obtained for z′ρ̄C,L

using 10,000
resamples. The bootstrap results associated with the means and C.I.s were then
transformed back to their original metrics (i.e. the estimators α̂C and α̂L). Further,
percentages of relative bias (RBias) and relative standard error (RSE) were computed
for α̂C,L as: RBias = ((α̂C,L − α)/α) × 100 and RSE = (standard error/α̂C,L) × 100.
The results of the simulation are reported in Tables 5–7 and are discussed in the next
section.

4. Discussion and Conclusion

One of the advantages that L-moment ratios have over conventional product-
moment estimators is that they can be far less biased when sampling is from dis-
tributions with more severe departures from normality (Hosking and Wallis, 1997;
Serfling and Xiao, 2007). And, inspection of the simulation results in Table 5 and
Table 6 clearly indicates that this is the case. That is, the superiority that the L-
comoment based estimator α̂L has over its corresponding conventional counterpart
α̂C is obvious in the contexts of Distributions 1 and 2. For example, inspection of
the first entry in Table 5 (α = 0.50, k = 4, n = 10) indicates that the estimator α̂C

associated with Distribution 1 was, on average, 88.32% of its associated population
parameter whereas the estimator α̂L was 96.94% of its parameter. Further, it is also
evident that α̂L is a more efficient estimator as its RSE is smaller than its correspond-
ing conventional estimator. For example, in terms of Distribution 1, inspection of
Table 5 (α = 0.50, k = 4, n = 10) indicates RSE measures of: RSE(α̂C) = 0.5661%
compared with RSE(α̂L) = 0.4725%. This demonstrates that α̂L has more precision
because it has less variance around its estimate. Moreover, one should note that α̂L

or α̂C performs similarly in the two heavy-tailed distributions, namely, Distributions
1 and 2. This suggests that skewness does not affect α̂C or α̂L, which agrees with
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Table 5: Simulation results for estimating α using the Conventional (C) and L-moment (L) pro-
cedures (Proc) based on the number of items (k) and samples of size n = 10.

α k Dist-Proc Estimate (α̂) 95% C.I. RSE % RBias %

0.50 4 1-C 0.4416 0.4367, 0.4465 0.5661 −11.68
0.50 4 1-L 0.4847 0.4801, 0.4891 0.4725 −3.06
0.50 4 2-C 0.4448 0.4400, 0.4495 0.3237 −11.04
0.50 4 2-L 0.4839 0.4796, 0.4883 0.2583 −3.22
0.50 4 3-C 0.4888 0.4852, 0.4922 0.3621 −2.24
0.50 4 3-L 0.5003 0.4968, 0.5040 0.3698 0.06
0.714 10 1-C 0.6617 0.6581, 0.6652 0.2720 −7.36
0.714 10 1-L 0.6960 0.6931, 0.6989 0.2155 −2.56
0.714 10 2-C 0.6662 0.6628, 0.6697 0.2612 −6.73
0.714 10 2-L 0.6975 0.6946, 0.7003 0.2079 −2.35
0.714 10 3-C 0.7069 0.7051, 0.7086 0.1273 −1.03
0.714 10 3-L 0.7131 0.7113, 0.7149 0.1290 −0.17
0.80 4 1-C 0.7306 0.7275, 0.7336 0.2053 −8.67
0.80 4 1-L 0.7887 0.7866, 0.7908 0.1357 −1.41
0.80 4 2-C 0.7398 0.7371, 0.7426 0.1906 −7.52
0.80 4 2-L 0.7924 0.7904, 0.7944 0.1287 −0.95
0.80 4 3-C 0.7908 0.7893, 0.7922 0.0923 −1.15
0.80 4 3-L 0.8030 0.8016, 0.8044 0.0909 0.37
0.90 9 1-C 0.8591 0.8575, 0.8609 0.0989 −4.54
0.90 9 1-L 0.8924 0.8914, 0.8936 0.0628 −0.84
0.90 9 2-C 0.8636 0.8620, 0.8651 0.0926 −4.04
0.90 9 2-L 0.8933 0.8922, 0.8944 0.0605 −0.74
0.90 9 3-C 0.8934 0.8927, 0.8941 0.0381 −0.73
0.90 9 3-L 0.8991 0.8985, 0.8998 0.0378 −0.10

See Tables 3 and 4 for the parameters and Figures 2–4 for the distributions (Dist).

Table 6: Simulation results for estimating α using the Conventional (C) and L-moment (L) pro-
cedures (Proc) based on the number of items (k) and samples of size n = 20.

α k Dist-Proc Estimate (α̂) 95% C.I. RSE % RBias %

0.50 4 1-C 0.4643 0.4606, 0.4679 0.3977 −7.15
0.50 4 1-L 0.4903 0.4870, 0.4933 0.3263 −1.94
0.50 4 2-C 0.4697 0.4663, 0.4732 0.3732 −6.05
0.50 4 2-L 0.4938 0.4909, 0.4967 0.306 −1.24
0.50 4 3-C 0.4945 0.4921, 0.4968 0.2389 −1.11
0.50 4 3-L 0.4995 0.4971, 0.5019 0.2456 −0.11
0.714 10 1-C 0.6852 0.6826, 0.6878 0.1926 −4.07
0.714 10 1-L 0.7056 0.7036, 0.7077 0.1485 −1.22
0.714 10 2-C 0.6858 0.6834, 0.6882 0.1831 −3.98
0.714 10 2-L 0.7047 0.7028, 0.7066 0.1414 −1.34
0.714 10 3-C 0.7098 0.7086, 0.7111 0.0881 −0.62
0.714 10 3-L 0.7130 0.7117, 0.7142 0.0882 −0.19
0.80 4 1-C 0.7569 0.7549, 0.7591 0.1404 −5.39
0.80 4 1-L 0.7937 0.7923, 0.7952 0.0917 −0.78
0.80 4 2-C 0.7612 0.7592, 0.7631 0.1330 −4.85
0.80 4 2-L 0.7940 0.7926, 0.7954 0.0893 −0.75
0.80 4 3-C 0.7944 0.7935, 0.7954 0.0627 −0.7
0.80 4 3-L 0.8000 0.7990, 0.8010 0.0613 −0.002
0.90 9 1-C 0.8750 0.8737, 0.8761 0.0690 −2.79
0.90 9 1-L 0.8958 0.8950, 0.8966 0.0431 −0.47
0.90 9 2-C 0.8784 0.8773, 0.8795 0.0644 −2.4
0.90 9 2-L 0.8965 0.8958, 0.8972 0.0411 −0.39
0.90 9 3-C 0.8969 0.8965, 0.8974 0.0247 −0.34
0.90 9 3-L 0.8998 0.8994, 0.9002 0.0250 −0.02

See Tables 3 and 4 for the parameters and Figures 2–4 for the distributions (Dist).
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Table 7: Simulation results for estimating α using the Conventional (C) and L-moment (L) pro-
cedures (Proc) based on the number of items (k) and samples of size n = 1000.

α k Dist-Proc Estimate (α̂) 95% C.I. RSE % RBias %

0.50 4 1-C 0.4988 0.4982, 0.4994 0.05814 −0.24
0.50 4 1-L 0.4988 0.4984, 0.4992 0.04210 −0.24
0.50 4 2-C 0.4993 0.4987, 0.4998 0.05613 −0.14
0.50 4 2-L 0.5001 0.4997, 0.5005 0.04200 0.02
0.50 4 3-C 0.5000 0.4997, 0.5003 0.03200 0.00
0.50 4 3-L 0.5000 0.4997, 0.5004 0.03400 0.00
0.714 10 1-C 0.7134 0.7129, 0.7138 0.03084 −0.12
0.714 10 1-L 0.7132 0.7129, 0.7135 0.02103 −0.15
0.714 10 2-C 0.7133 0.7129, 0.7137 0.02804 −0.14
0.714 10 2-L 0.7140 0.7137, 0.7143 0.01961 −0.04
0.714 10 3-C 0.7141 0.7140, 0.7143 0.01120 −0.03
0.714 10 3-L 0.7142 0.7140, 0.7144 0.01260 −0.01
0.80 4 1-C 0.7991 0.7987, 0.7994 0.02127 −0.11
0.80 4 1-L 0.8017 0.8015, 0.8019 0.01247 0.21
0.80 4 2-C 0.7990 0.7987, 0.7993 0.02003 −0.12
0.80 4 2-L 0.8011 0.8009, 0.8013 0.01248 0.14
0.80 4 3-C 0.7999 0.7998, 0.8000 0.00875 −0.01
0.80 4 3-L 0.8000 0.7998, 0.8001 0.00875 0.00
0.90 9 1-C 0.8992 0.8990, 0.8994 0.01001 −0.09
0.90 9 1-L 0.9008 0.9007, 0.9009 0.00555 0.09
0.90 9 2-C 0.8994 0.8992, 0.8995 0.01000 −0.07
0.90 9 2-L 0.9005 0.9004, 0.9006 0.00556 0.06
0.90 9 3-C 0.8999 0.8999, 0.9000 0.00333 −0.01
0.90 9 3-L 0.9000 0.8999, 0.9000 0.00333 0.00

See Tables 3 and 4 for the parameters and Figures 2–4 for the distributions (Dist).

results from Headrick and Pant (2012e, see Remark 2).
In summary, the L-comoment based α̂L is an attractive alternative to the tradi-

tional Cronbach alpha α̂C when distributions with heavy tails and small samples sizes
are encountered. It is also worthy to point out that α̂L had a slight advantage over α̂C

when sampling was from normal populations (see Table 5; α = 0.50, k = 4, n = 10,
3-C, 3-L). When sample sizes were large the performance of the two estimators α̂C,L

were similar (see Table 7; n = 1000). It is noted that the data in this study were
generated assuming (essential) tau-equivalence (Lord and Novick, 1968) and uncorre-
lated error terms (Guttman, 1945; Novick and Lewis, 1967). Thus, it would also be
interesting to see the performance of α̂L in comparison with α̂C in situations where
one or both of these assumptions are violated.
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