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ABSTRACT

This paper provides exact (finite-sample) test critical values for carrying out tests of no
cointegration versus some forms of nonlinear (threshold autoregressive) cointegration. The
nonlinear models, which include threshold autoregressive and momentum threshold
autoregressive behavior of deviations from long-run equilibrium, are easier to evaluate with the
aid of the reported critical values. The results cover avariety of practical situations, with varying
sample sizes, lag lengths, and number of time series.
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1. Introduction
Asymmetric behavior in economic variables has attracted considerable attention in the

last decades. Neftci (1984) showed that several measures of U.S. unemployment display
asymmetric adjustment over the course of the business cycle. Unlike Neftci, Falk (1986) found
little evidence in favor of asymmetry when he applied Neftci's method to real U.S. GNP,
investment, and productivity and to industrial production in Canada, France, Italy, Germany, and
the UK. Nevertheless, the most recent consensus seemsto be in favor of asymmetric adjustment.

Focusing on the asymmetric behavior of unemployment rates over the business cycle, Rothman
(1992) showed that the primary source of asymmetry is the cyclical behavior of the
unemployment rate in the manufacturing sector. Acemoglu and Scott (1994) have also shown
asymmetriesin the cyclical behavior of UK labor markets. Harris and Silverstone (1999) tested
asymmetric adjustment in specifications of Okun's law. Enders and Dibooglu (2001) studied the
long run Purchasing Power Parity with asymmetric adjustment using data from the post -Bretton
Woods period. They showed that cointegration with threshold adjustment holds for a number of
European countries on a bilateral basis. Furthermore, comparing the estimates of linear and
asymmetric adjustment error-correction models, the authors showed that prices and exchange
rates have markedly different adjustment patterns for positive deviations from the Purchasing
Power Parity than for negative deviations. Ball and Mankiw (1994) provide atheoretical
explanation for asymmetric adjustment of nominal prices. The authors present a menu-cost
model in which positive trend inflation causes firms' relative prices to decline automatically
between price adjustments. In this environment, the authors showed that shocks that raise firms

desired prices trigger larger responses than shocks that lower desired prices. Thusthereisalarge



body of literature concerning asymmetric adjustment in economics'.

This paper provides critical values for carrying out tests of asymmetric adjustment within
a cointegration framework. Previous work such as Dibooglu and Enders (2001), and Enders
(2003) provide critical values of for up to three variables. The objective of this paper isto extend
the critical values of the empirical F-distribution of the null hypothesis of cointegration with
asymmetric adjustment for up to five variables, various sample sizes, and 8 lagged changes. This
should be useful for macroeconomic models with alarger set of variables. The critical values are
derived for threshold autoregressive and momentum threshold autoregressive deviations from
long-run equilibrium. Section 2 of the paper devel ops the econometric framework, while Section

3 presents the methodology. Section 4 concludes.

2. Threshold and Momentum Models of Cointegration

Suppose variables in the vector {yy ,..., Y« areintegrated of order 1. The Engle and
Granger (1987) methodology entails estimating the regression,

Yu= Bt By Yat -t BVt by D

and applying a unit root test to p:

Ap=p U+ & 2
Cointegration implies that 1 is stationary with mean zero and that p = 0. Assuch, equation (1) is
an attractor such that its pull is strictly proportional to the absolute value of ;. The changein

equals p multiplied by p..; regardless of whether .1 iS positive or negative.

1 The second edition of W. Enders book, Applied Econometric Time Series has a chapter on asymmetric
adjustment; see, Enders (2003).



Similarly, the Johansen (1995) methodology begins with a specification of the form:

AY; = Ty + & ©)
wherey; isthe (k x 1) vector, misa(k x k) matrix, and g;isa(k x 1) vector of normally
distributed disturbances that may be contemporaneously correlated.

The Johansen procedure entails the estimation of « and testing the null hypothesis that
therank of  equals zero. Again, under the alternative hypothesis[i.e., rank(x) # Q] the
adjustment processis symmetric around y; = O in that for any y; # 0, Ay always equalsty; in
expectation. Thus, my; can be viewed as an attractor such that its pull is strictly proportional to
el

However, the implicit assumption of symmetric adjustment is problematic if the
adjustment towards the long-run equilibrium relationship is not linear. Enders and Granger
(1998), and Enders and Siklos (2001) introduce asymmetric adjustment by letting the deviations
from the long-run equilibrium in equation (1) behave as a Threshold Autoregressive (TAR)
process. Thus, they replace (2) with:

Ap= 1o Mt (A-10) Py st & ©)

where |; isthe Heaviside indicator such that:

| Lif gy zr
= 0if <7

Asymmetric adjustment isimplied by different values of p1 and p2; when .1 iS positive,
the adjustment is pyp.1, and if .1 is negative, the adjustment is pope;. A sufficient condition for

stationarity of { .} isfor: -2 < (p1, p2) <0. Moreover, if the { g} sequenceis stationary, the least



squares estimates of p; and p, have an asymptotic multivariate normal distribution if the value of
the threshold is known (or consistently estimated). Thus, if the null hypothesisp; =p>,=0is
rejected, it is possible to test for symmetric adjustment (i.e., p1 = p2) using a standard F-test.
Since adjustment is symmetric if p; = p,, the Engle-Granger test for cointegration is a special
case of (3).

Since the exact nature of the non-linearity may not be known, it is also possible to alow
the adjustment to depend on the changein . (i.€., Ap,) instead of the level of u;. Inthiscase,

the Heaviside indicator of (4) becomes:

| lifAp, =T
= 0if Ap, <7

Even though Hansen (1997) shows that setting the Heaviside indicator using Ap.1 can
perform better than the specification using pure TAR adjustment, Enders and Granger (1998) and
Enders and Siklos (2001) show that this specification is especialy relevant when the adjustment
is such that the series exhibits more “momentum” in one direction than the other. They call this
model momentum-threshold autoregressive (M-TAR) model. Respectively, the F-statistics for
the null hypothesis p; = p2 = 0 using the TAR specification of (4) and the M-TAR specification
of (5) arecalled ®, and ®,*. Asthereisgenerally no presumption asto whether to use (4) or
(5), the recommendation is to select the adjustment mechanism by a model selection criterion
such asthe AIC.

If the errorsin equation (3) are serially correlated, it is possible to use an augmented

threshold model for the residuals. In this circumstance, equation (3) is replaced by:



P
Ap =1 ooty (L 10) P+ D B DU+ & (6)
i=1

The distributions of ®, and ®,* depend on the number of observations, the number of
lags in equation (6) and the number of variablesin the cointegrating relationship. The empirical
F-distribution for the null hypothesis p1 = p, = O istabulated by Dibooglu and Enders (2001), and
Enders (2003) for up to three variables. The objective of this paper isto calculate critical values
of theempirical F-distribution (distributions of @, and ®,*) for the null hypothesisp; =p,=0
for up to five variables, various sample sizes, and 8 lagged changes. This should be useful for
macroeconomic models with alarger set of variables.

3. Critical Values of the Cointegration Test

In order to develop critical values that can be used to test for cointegration, we generated
50,000 random-walk processes of the following form:

Vit = V1t Vi, K=1,...,5 t=1,...,T @)

For T =50, 100, and 250, up to five sets of T normally distributed and uncorrelated
pseudo-random numbers with standard deviation equal to unity were drawn to represent the { vy}
sequences. Randomizing theinitial values of { yi }, the next T values of each were generated
using (7). For each of the 50,000 series, the TAR model given by (1), (4) and (5) was estimated.

Since the value of the threshold t istypically unknown, for each of the 50,000
replications, we used Chan’s (1993) method for obtaining the consistent estimate of the
threshold. To find the consistent estimate of the threshold, we ordered the { u.1} sequence from
smallest to largest. Although any value of { u.1} isapotentia threshold, we consider only values

of u1 between the lowest 15% and the highest 85% values of the series as a potential threshold.



Estimate regressions in the form of (1) using each potential value of ., asathreshold. The
value resulting in the lowest residual sum of squares is the estimate of the threshold7 . Using 7
asthe threshold, compare the F-statistic for the null hypothesis p1 = p, = 0 with the appropriate
critical value shown in Table 1. For each estimated equation, we estimated p; and p, and
recorded the F-statistic for the joint hypothesis p; = p, = 0 for the TAR and M-TAR models.
These F-statistics are reported in Tables 1-8 for various values of sample sizes (T) and lag
lengths p. For example, for T = 100, Table 1 shows that the ®-statistic for the null hypothesis p;
= p2 = 0 exceeded 8.09 in approximately 5% of the 50,000 trials using a model augmented with 2

lagged changesin { .} .

4. Conclusions

The present work reports an extensive set of exact (finite sample) test critical values for
nonlinear cointegration, and in the future these results may be further extended to cover an even
greater variety of sample sizes, lag lengths, and number of time series. Also, while we report
results for Gaussian time series, some applications may call for non-Gaussian models (allowing
heavy-tailed distributions, etc.), for which aparallel set of critical values may be computed. As
the sample size becomes very large, asymptotic theory becomes relevant for approximating exact

critical values, and more work in this areais needed.



References

Acemoglu, D., and Scott, A. “Asymmetriesin the Cyclical Behaviour of UK Labor Markets.”
The Economic Journal 104 (November, 1994): 1303-1323.

Ball, L. and Mankiw N. G. “Asymmetric price adjustment and economic fluctuations.” The
Economic Journal 104 (March, 1994): 247-261.

Chan, K. S. “Consistency and Limiting Distribution of the Least Squares Estimator of a
Threshold Autoregressive Model.” The Annals of Satistics 21 (March 1993): 520 - 33.

Dibooglu, S., and Walter Enders. “Do real wages respond asymmetrically to unemployment
shocks? Evidence from the US and Canada,” Journal of Macroeconomics, 23 (Fall 2001):
495-515.

Enders, Walter. Applied Econometric Time-Series. 2" edition. John Wiley and Sons: New Y ork,
2003.

Enders, Walter and Clive W.J. Granger. “Unit-root Tests and Asymmetric Adjustment with an
Example Using the Term Structure of Interest Rates.” Journal of Business and Economic
Satistics 16 (July 1998): 304 - 11.

Enders, Walter and S. Dibooglu “Long run Purchasing Power parity with Asymmetric
Adjustment,” Southern Economic Journal, 68 (October 2001): 433-45.

Enders, W., and P. Siklos. “ Cointegration and Threshold Adjustment.” Journal of Business and
Economic Satistics 19 (2001 April): 166-77

Engle, Robert F., and Clive W.J. Granger. “ Co-integration and Error Correction: Representation,
Estimation, and Testing. Econometrica 55 (March 1987): 251-276.

Fak, Barry. “Further Evidence on the Asymmetric Behavior of Economic Time Series over the
Business Cycle.” Journal of Political Economy 94 (October 1986): 1096-11009.

Harris, R. and Silverstone, B. “Testing for Asymmetry in Okun’s Law: A Cross-Country
Comparison.” Economics Bulletin 5 (July, 2001): 1-13.

Johansen, Soren. Likelihood-Based Inference in Cointegrated Autoregressive Models. Oxford:
Oxford University Press, 1995.

Neftci, S. “Are Economic Time Series Asymmetric Over the Business Cycle?” Journal of
Political Economy 92 (1984): 307-328.

Rothman, P. “Further Evidence on the Asymmetric Behavior of Unemployment Rates Over the

7



Business Cycle.” Journal of Macroeconomics 13 (Spring, 1991): 291-298.



Table 1. Distribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 2-variable case

T LAGGED CHANGES

1LAG 2LAGS 3 LAGS 4 LAGS

90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%

THE TAR MODEL: @,

50 |6.35 7.54 10.29 | 6.12 7.25 9.84 |599 7.13 9.84 5.83 6.98 9.56

100 | 595 6.99 9.39 5.80 6.82 9.04 |579 6.77 9.01 5.66 6.66 8.97

150 | 594 | 6.98 9.29 579 6.82 9.02 576 6.77 8.98 5.78 6.76 8.93

200 | 6.03 7.05 9.35 5.97 6.96 9.25 5.99 7.02 9.27 5.89 6.88 9.05

250 | 6.14 7.11 9.38 6.09 7.08 9.19 6.10 7.10 9.37 6.07 7.08 9.32

500 | 641 7.39 9.66 6.44 7.47 9.64 6.35 7.36 9.54 6.38 7.40 9.63

THE M-TAR MODEL: @',

50 | 7.22 8.49 1155 | 6.88 8.06 1091 | 6.79 8.04 10.72 | 6.54 7.76 10.50

100 | 6.97 8.15 10.67 | 6.84 7.95 10.35 | 6.77 7.87 10.34 | 6.61 7.73 10.14

150 | 6.75 7.87 10.40 | 6.62 7.71 10.09 | 6.58 7.65 10.06 | 6.54 7.62 9.96

200 | 6.62 7.72 10.04 | 6.58 7.64 9.97 6.52 7.62 9.94 6.46 7.51 9.85

250 | 6.61 7.76 10.15 | 6.51 7.57 9.91 6.50 7.59 9.84 6.41 7.44 9.71

500 | 6.52 7.55 9.93 6.47 7.53 9.76 6.46 7.54 9.77 6.42 747 9.72




Table 2. Digtribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 2-variable case

T LAGGED CHANGES

5LAGS 6 LAGS 7LAGS 8 LAGS

90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%

THE TAR MODEL: @,

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

100 | 5.62 6.64 8.87 5.53 6.52 8.76 5.49 6.50 8.72 5.37 6.33 8.48

150 | 571 6.70 8.88 5.61 6.61 8.76 5.61 6.60 8.80 5.55 6.53 8.76

200 | 5.87 6.92 9.10 5.87 6.83 9.11 5.80 6.77 9.00 5.78 6.76 8.95

250 | 6.01 7.02 9.14 6.03 7.05 9.31 5.99 7.00 9.18 5.90 6.88 9.01

500 | 6.38 7.42 9.69 6.32 7.34 9.55 6.35 7.32 9.53 6.31 7.30 9.45

THE M-TAR MODEL: @',

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

100 | 6.55 7.64 10.02 | 6.42 7.49 9.95 6.36 7.42 9.87 6.27 7.33 9.65

150 | 6.42 7.49 9.82 6.33 741 9.71 6.30 7.38 9.69 6.20 7.26 9.49

200 | 641 7.47 9.74 6.37 7.40 9.74 6.32 7.36 9.60 6.27 7.32 9.60

250 | 6.40 7.44 9.83 6.36 741 9.73 6.31 7.31 9.60 6.27 7.30 9.45

500 | 6.45 7.46 9.70 6.36 741 9.68 6.38 7.38 9.70 6.38 7.39 9.63
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Table 3. Digtribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 3-variable case

T LAGGED CHANGES

1LAG 2LAGS 3 LAGS 4 LAGS

90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%

THE TAR MODEL: @,

50 | 770 ]9.09 12.29 | 7.26 8.56 1141 | 6.97 8.22 11.06 | 6.61 7.78 10.53

100 | 7.17 8.34 10.94 | 6.97 8.09 10.61 | 6.86 7.98 10.39 | 6.65 7.73 10.21

150 | 710 | 823 10.71 | 700 |811 10.53 | 6.90 8.04 1044 | 6.77 7.87 10.18

200 | 7.24 | 840 10.77 | 7.18 8.30 10.69 | 7.11 8.22 10.61 | 7.00 8.11 10.50

250 | 7.37 8.50 10.79 | 7.27 8.43 10.99 | 7.22 8.30 10.66 | 7.16 8.27 10.62

500 | 760 |8.73 1116 | 754 | 8.66 11.06 | 7.53 8.63 10.97 | 7.49 8.58 11.03

THE M-TAR MODEL: @',

50 |849 9.92 1323 | 8.04 |942 12.42 | 7.82 9.10 12.00 | 741 8.65 11.47

100 | 8.25 9.55 12.13 | 7.98 9.20 11.88 | 7.88 9.09 11.77 | 7.62 8.79 11.34

150 | 7.98 9.20 11.82 | 7.83 9.04 1155 | 7.72 8.92 1147 | 7.55 8.71 11.22

200 | 7.90 9.10 11.71 | 7.77 8.95 1142 | 7.70 8.86 11.40 | 7.57 8.71 11.20

250 | 7.85 9.05 11.58 | 7.75 8.93 1142 | 7.75 8.91 11.29 | 7.61 8.77 11.26

500 | 7.78 8.98 1151 | 7.71 8.85 11.24 | 7.69 8.84 11.31 | 7.68 8.83 11.19
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Table4. Distribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 3-variable case

T LAGGED CHANGES
5LAGS 6 LAGS 7LAGS 8 LAGS
90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%
THE TAR MODEL: @,
50 |[N/A [NJA [NA [NA |[NA |[NA [NA [NA [NA [NA [NA [NA
100 [655 |761 [1004 [636 |744 |98 [630 [735 |961 [612 [715 |942
150 673 |782 [1014 [660 |[767 |994 [649 [754 |910 [643 [749 |972
200 [ 694 [803 [1037 |682 |791 [1029 [676 |7.83 [1034 |[669 |7.76 |[10.03
250 |70 [818 [1052 | 704 [812 [1051 |693 [803 [1027 |689 |7.95 [1021
500 | 746 [860 [1097 |740 |849 [1089 |[744 |851 [1076 |[741 |850 |[10.94
THE M-TAR MODEL: @',

50 |[N/A [NJA [NA [NA |[NA [NA [NA [NA |[NA [NA [NA [NA
100 | 755 |873 [1139 [734 [849 [11.08 |720 [833 |10.87 |7.06 [815 |10.61
150 | 747 |862 [1111 [735 [843 |1085 [7.28 [839 |1087 [717 [829 |10.70
200 | 756 [868 [11.13 |742 |855 [11.08 |7.39 [850 [1087 |722 [834 [1079
250 |757 |876 [1121 | 745 |856 [11.02 [740 [849 [1095 |[731 |[840 |[10.86
500 |7.63 [876 [11.17 |758 |872 [11.09 [753 |[866 [11.06 |752 |865 |[10.95
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Table5. Digtribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 4-variable case

T LAGGED CHANGES

1LAG 2LAGS 3 LAGS 4 LAGS

90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%

THE TAR MODEL: @,

50 |8.98 1053 | 13.91 | 8.28 9.63 12.85 | 7.92 9.31 12.39 | 7.36 8.64 11.56

100 | 8.45 9.77 12.63 | 8.09 9.36 12.05 | 7.92 9.13 11.82 | 7.61 8.84 11.39

150 | 840 | 965 12.42 | 8.17 9.41 11.97 | 8.04 9.22 11.88 | 7.84 9.00 11.61

200 | 8.53 9.71 12.44 | 8.33 9.57 12.17 | 8.27 9.47 12.13 | 8.11 9.24 11.74

250 | 854 |9.79 12.58 | 8.46 9.66 12.28 | 841 9.62 12.05 | 831 9.45 12.01

500 | 881 10.03 | 12.73 [ 874 | 9.92 12.60 | 8.69 9.86 12.40 | 8.70 9.92 12.44

THE M-TAR MODEL: @',

50 |9.85 1147 | 1491 | 9.05 10.53 | 1381 | 8.75 10.18 | 1358 | 8.14 9.53 12.58

100 | 9.55 10.89 | 1381 | 9.12 1046 | 13.33 | 8.91 10.21 | 13.03 | 8.62 9.84 12.66

150 | 9.28 10.63 | 1344 | 9.01 10.28 | 12.99 | 8.86 10.08 | 12.76 | 8.62 9.88 12.46

200 | 9.19 1046 | 13.17 | 8.98 10.28 | 13.04 | 8.83 10.07 | 12.68 | 8.72 9.95 12.50

250 | 9.10 10.36 | 13.09 | 8.96 10.17 | 12.90 | 8.87 10.16 | 12.82 | 8.72 9.90 12.54

500 | 9.05 10.30 | 12.99 | 8.99 1024 | 12.81 | 8.92 10.18 | 12.76 | 8.80 10.03 | 1254
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Table 6. Distribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 4-variable case

T LAGGED CHANGES

5LAGS 6 LAGS 7LAGS 8 LAGS

90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%

THE TAR MODEL: @,

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

100 | 7.45 8.60 11.15 | 7.19 8.29 10.71 | 7.02 8.15 10.57 | 6.80 7.89 10.22

150 | 7.65 8.80 11.26 | 7.48 8.60 1091 | 7.40 8.56 1095 | 7.19 8.29 10.66

200 | 7.95 9.13 11.65 | 7.78 8.93 11.38 | 7.76 8.91 11.37 | 7.61 8.71 11.14

250 | 822 9.40 12.01 | 8.03 9.19 11.71 | 8.00 9.13 1168 | 7.87 8.96 11.34

500 | 8.63 9.83 12.36 | 8.53 9.73 12.20 | 8.49 9.67 11.98 | 8.48 9.66 12.12

THE M-TAR MODEL: @',

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

100 | 840 | 9.66 12.25 | 8.17 9.36 12.08 | 8.05 9.26 11.85 | 7.75 8.91 11.52

150 | 8.47 9.67 12.34 | 8.29 9.46 12.07 | 8.16 9.33 11.93 | 7.97 9.10 11.66

200 | 860 |9.82 12.39 | 842 9.60 12.23 | 8.32 9.51 12.05 | 8.19 9.35 1181

250 | 8.63 9.84 12.40 | 8.53 9.76 12.20 | 845 9.62 12.12 | 8.33 9.49 12.02

500 | 8.77 10.04 | 12.65 | 8.72 9.87 12.43 | 8.72 9.88 12.41 | 8.58 9.78 12.19
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Table 7. Digtribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 5-variable case

T LAGGED CHANGES

1LAG 2LAGS 3 LAGS 4 LAGS

90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%

THE TAR MODEL: @,

50 10.29 | 11.88 | 1554 | 9.25 10.75 | 1410 | 881 10.22 | 1351 | 8.10 9.46 12.54

100 | 9.77 11.14 | 1417 | 9.16 10.45 | 13.24 | 8.97 10.25 | 13.02 | 8.50 9.73 12.43

150 | 9.62 10.96 | 13.80 | 9.33 10.65 | 13.54 | 9.16 10.45 | 1316 | 8.77 10.02 | 12.73

200 | 9.76 11.08 | 13.90 | 9.55 10.87 | 13.70 | 9.35 10.65 | 1345 | 9.17 10.40 | 13.06

250 | 9.83 11.18 | 13.87 | 9.69 10.99 | 13.80 | 9.57 10.83 | 13.52 | 9.34 10.57 | 13.20

500 | 10.07 | 11.34 | 14.08 | 9.90 11.17 | 1403 | 9.86 11.15 | 13.81 | 9.78 11.05 | 13.67

THE M-TAR MODEL: @',

50 11.07 | 1269 | 1647 | 10.03 | 11.54 | 1511 | 9.64 11.10 | 1460 | 8.90 10.26 | 13.44

100 |10.74 | 12.16 | 1518 | 10.20 | 11.60 | 14.64 | 9.98 11.34 | 14.25 | 9.52 10.81 | 13.72

150 | 10.55 | 12.00 | 1487 | 10.15 | 1151 | 14.23 | 9.93 11.29 | 14.19 | 9.66 10.99 | 13.74

200 | 1043 | 1178 | 1456 | 10.14 | 1149 | 14.40 | 9.97 11.26 | 1410 | 9.75 11.05 | 13.83

250 | 1039 | 11.70 | 1443 | 10.10 | 1143 | 1432 | 1000 | 11.33 | 1411 | 984 1112 | 13.82

500 | 1027 | 11.60 | 1445 | 1015 | 1147 | 1422 | 1009 | 11.37 | 1403 | 10.05 | 11.31 | 14.07
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Table 8. Distribution for the F-Statistic for the Null Hypothesis, p; = p,= 0, in the 5-variable case

T LAGGED CHANGES

5LAGS 6 LAGS 7LAGS 8 LAGS

90% | 95% [99% [90% |95% [99% [90% [95% [99% |90% |95% | 99%

THE TAR MODEL: @,

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

100 | 8.29 9.50 1219 | 794 911 11.66 | 7.66 8.83 11.38 | 7.38 8.51 11.05

150 | 8.67 9.88 12.48 | 840 |9.61 12.13 | 8.26 9.41 11.90 | 8.01 9.12 11.64

200 | 8.99 10.29 | 12.92 | 8.77 9.96 12.66 | 8.66 9.84 12.36 | 8.47 9.64 12.19

250 | 9.19 10.44 | 13.01 | 9.07 10.30 | 12.96 | 8.95 10.21 | 12.76 | 8.79 9.98 12.39

500 | 9.77 11.03 | 13.80 | 9.69 10.96 | 13.56 | 9.57 10.83 | 1351 | 9.49 10.78 | 13.44

THE M-TAR MODEL: @',

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

100 | 9.26 1053 | 1335 | 8.94 10.23 | 12.83 | 8.72 9.96 12.63 | 8.40 9.65 12.30

150 | 943 10.68 | 1341 | 9.17 1043 | 13.15 | 9.05 10.25 | 12.92 | 881 10.01 | 12.62

200 | 9.60 1091 | 1355 | 9.37 10.64 | 1342 | 9.25 10.48 | 1311 | 9.03 10.23 | 12.79

250 | 9.69 11.02 | 13.72 | 9.48 10.72 | 13.30 | 9.44 10.68 | 13.32 | 9.26 10.49 | 13.06

500 | 9.94 11.21 | 13.94 | 9.83 11.14 | 13.80 | 9.74 11.06 | 13.73 | 9.67 10.92 | 13.59

Note: NA indicates not available. We do not provide the critical values for the model with morethan 5 lags using
only 50 observations.
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