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ABSTRACT 
 

This paper provides exact (finite-sample) test critical values for carrying out tests of no 
cointegration versus some forms of nonlinear (threshold autoregressive) cointegration. The 
nonlinear models, which include threshold autoregressive and momentum threshold 
autoregressive behavior of deviations from long-run equilibrium, are easier to evaluate with the 
aid of the reported critical values. The results cover a variety of practical situations, with varying 
sample sizes, lag lengths, and number of time series. 
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1. Introduction 

Asymmetric behavior in economic variables has attracted considerable attention in the 

last decades. Neftci (1984) showed that several measures of U.S. unemployment display 

asymmetric adjustment over the course of the business cycle.  Unlike Neftci, Falk (1986) found 

little evidence in favor of asymmetry when he applied Neftci's method to real U.S. GNP, 

investment, and productivity and to industrial production in Canada, France, Italy, Germany, and 

the UK.  Nevertheless, the most recent consensus seems to be in favor of asymmetric adjustment. 

 Focusing on the asymmetric behavior of unemployment rates over the business cycle, Rothman 

(1992) showed that the primary source of asymmetry is the cyclical behavior of the 

unemployment rate in the manufacturing sector. Acemoglu and Scott (1994) have also shown 

asymmetries in the cyclical behavior of UK labor markets. Harris  and Silverstone (1999) tested 

asymmetric adjustment in specifications of Okun's law.  Enders and Dibooglu (2001) studied the 

long run Purchasing Power Parity with asymmetric adjustment using data from the post -Bretton 

Woods period.  They showed that cointegration with threshold adjustment holds for a number of 

European countries on a bilateral basis.  Furthermore, comparing the estimates of linear and 

asymmetric adjustment error-correction models, the authors showed that prices and exchange 

rates have markedly different adjustment patterns for positive deviations from the Purchasing 

Power Parity than for negative deviations.  Ball and Mankiw (1994) provide a theoretical  

explanation for asymmetric adjustment of nominal prices.  The authors present a menu-cost 

model in which positive trend inflation causes firms' relative prices to decline automatically 

between price adjustments.  In this environment, the authors showed that shocks that raise firms' 

desired prices trigger larger responses than shocks that lower desired prices. Thus there is a large 
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body of literature concerning asymmetric adjustment in economics1.  

This paper provides critical values for carrying out tests of asymmetric adjustment within 

a cointegration framework. Previous work such as Dibooglu and Enders (2001), and Enders 

(2003) provide critical values of for up to three variables. The objective of this paper is to extend 

the critical values of the empirical F-distribution of the null hypothesis of cointegration with 

asymmetric adjustment for up to five variables, various sample sizes, and 8 lagged changes. This 

should be useful for macroeconomic models with a larger set of variables. The critical values are 

derived for threshold autoregressive and momentum threshold autoregressive deviations from 

long-run equilibrium. Section 2 of the paper develops the econometric framework, while Section 

3 presents the methodology.  Section 4 concludes. 

 

2.  Threshold and Momentum Models of Cointegration 

Suppose variables in the vector {y1t ,…, ykt} are integrated of order 1. The Engle and 

Granger (1987) methodology entails estimating the regression,   

µβββ tktk2t211t  + y  ...++ y  +  = y      (1) 

and applying a unit root test to µt: 

εµρµ t1-tt  +   = ∆  (2) 

Cointegration implies that µt is stationary with mean zero and that ρ = 0.  As such, equation (1) is 

an attractor such that its pull is strictly proportional to the absolute value of µt-1.  The change in µt 

equals ρ multiplied by µt-1 regardless of whether µt-1 is positive or negative. 

                                                           
1 The second edition of W. Enders’ book, Applied Econometric Time Series has a chapter on asymmetric 
adjustment; see, Enders (2003). 
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Similarly, the Johansen (1995) methodology begins with a specification of the form: 

∆yt = πyt-1 + εt (3) 

where yt is the (k x 1) vector, π is a (k x k) matrix, and εt is a (k x 1) vector of normally 

distributed disturbances that may be contemporaneously correlated.  

   The Johansen procedure entails the estimation of π and testing the null hypothesis that 

the rank of π equals zero.  Again, under the alternative hypothesis [i.e., rank(π) ≠ 0] the 

adjustment process is symmetric around yt = 0 in that for any yt ≠ 0, ∆yt+1 always equals πyt in 

expectation.  Thus, πyt can be viewed as an attractor such that its pull is strictly proportional to    

|| yt ||. 

  However, the implicit assumption of symmetric adjustment is problematic if the 

adjustment towards the long-run equilibrium relationship is not linear.  Enders and Granger 

(1998), and Enders and Siklos (2001) introduce asymmetric adjustment by letting the deviations 

from the long-run equilibrium in equation (1) behave as a Threshold Autoregressive (TAR) 

process.  Thus, they replace (2) with: 

εµρµρµ t1-t2t1-t1tt  + )I-(1 + I = ∆  (3) 

where It is the Heaviside indicator such that: 
 
 



 ≥

τµ
τµ
 <  if 0 

   if

1t-

1t- 1 
 = I     t  

 

Asymmetric adjustment is implied by different values of ρ1 and ρ2; when µt-1 is positive, 

the adjustment is ρ1µt-1, and if µt-1 is negative, the adjustment is ρ2µt-1.  A sufficient condition for 

stationarity of {µt} is for: -2 < (ρ1 , ρ2) < 0.  Moreover, if the {µt} sequence is stationary, the least 
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squares estimates of ρ1 and ρ2 have an asymptotic multivariate normal distribution if the value of 

the threshold is known (or consistently estimated). Thus, if the null hypothesis ρ1 = ρ2 = 0 is 

rejected, it is possible to test for symmetric adjustment (i.e., ρ1 = ρ2) using a standard F-test.  

Since adjustment is symmetric if ρ1 = ρ2, the Engle-Granger test for cointegration is a special 

case of (3).  

Since the exact nature of the non-linearity may not be known, it is also possible to allow 

the adjustment to depend on the change in µt-1 (i.e., ∆µt-1) instead of the level of µt-1.  In this case, 

the Heaviside indicator of (4) becomes: 





∆
≥∆

τµ
τµ
 <  if 0 

   if

1t-

1t- 1 
 = I     t  

Even though Hansen (1997) shows that setting the Heaviside indicator using ∆µt-1 can 

perform better than the specification using pure TAR adjustment, Enders and Granger (1998) and 

Enders and Siklos (2001) show that this specification is especially relevant when the adjustment 

is such that the series exhibits more “momentum” in one direction than the other. They call this 

model momentum-threshold autoregressive (M-TAR) model.  Respectively, the F-statistics for 

the null hypothesis ρ1 = ρ2 = 0 using the TAR specification of (4) and the M-TAR specification 

of (5) are called Φµ and Φµ*.   As there is generally no presumption as to whether to use (4) or 

(5), the recommendation is to select the adjustment mechanism by a model selection criterion 

such as the AIC.  

If the errors in equation (3) are serially correlated, it is possible to use an augmented 

threshold model for the residuals.  In this circumstance, equation (3) is replaced by: 
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εµβµρµρµ ti-ti

p

=1i
1-t2t1-t1tt  +    + )I-(1 +  I = ∆∆ ∑  (6) 

The distributions of Φµ and Φµ* depend on the number of observations, the number of 

lags in equation (6) and the number of variables in the cointegrating relationship.  The empirical 

F-distribution for the null hypothesis ρ1 = ρ2 = 0 is tabulated by Dibooglu and Enders (2001), and 

Enders (2003) for up to three variables.  The objective of this paper is to calculate critical values 

of the empirical F-distribution (distributions of Φµ and Φµ*) for the null hypothesis ρ1 = ρ2 = 0 

for up to five variables, various sample sizes, and 8 lagged changes. This should be useful for 

macroeconomic models with a larger set of variables. 

3. Critical Values of the Cointegration Test  

In order to develop critical values that can be used to test for cointegration, we generated 

50,000 random-walk processes of the following form: 

ykt = ykt-1 + νkt,   k = 1, ... , 5,  t = 1, ..., T (7) 

For T = 50, 100, and 250, up to five sets of T normally distributed and uncorrelated 

pseudo-random numbers with standard deviation equal to unity were drawn to represent the {νkt} 

sequences.  Randomizing the initial values of { ykt }, the next T values of each were generated 

using (7).  For each of the 50,000 series, the TAR model given by (1), (4) and (5) was estimated. 

  Since the value of the threshold τ is typically unknown, for each of the 50,000 

replications, we used Chan’s (1993) method for obtaining the consistent estimate of the 

threshold.  To find the consistent estimate of the threshold, we ordered the {µt-1} sequence from 

smallest to largest.  Although any value of {µt-1} is a potential threshold, we consider only values 

of  µt-1 between the lowest 15% and the highest 85% values of the series as a potential threshold. 
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 Estimate regressions in the form of (1) using each potential value of µt-1 as a threshold.   The 

value resulting in the lowest residual sum of squares is the estimate of the thresholdτ̂ . Using τ̂  

as the threshold, compare the  F-statistic for the null hypothesis ρ1 = ρ2 = 0 with the appropriate 

critical value shown in Table 1.  For each estimated equation, we estimated ρ1 and ρ2 and 

recorded the F-statistic for the joint hypothesis ρ1 = ρ2 = 0 for the TAR and M-TAR models.  

These F-statistics are reported in Tables 1-8 for various values of sample sizes (T) and lag 

lengths p.  For example, for T = 100, Table 1 shows that the Φ-statistic for the null hypothesis ρ1 

= ρ2 = 0 exceeded 8.09 in approximately 5% of the 50,000 trials using a model augmented with 2 

lagged changes in {µt}.  

 

4. Conclusions 

The present work reports an extensive set of exact (finite sample) test critical values for 

nonlinear cointegration, and in the future these results may be further extended to cover an even 

greater variety of sample sizes, lag lengths, and number of time series. Also, while we report 

results for Gaussian time series, some applications may call for non-Gaussian models (allowing 

heavy-tailed distributions, etc.), for which a parallel set of critical values may be computed. As 

the sample size becomes very large, asymptotic theory becomes relevant for approximating exact 

critical values, and more work in this area is needed.
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Table 1.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 2-variable case 
 

T LAGGED CHANGES 
1 LAG 2 LAGS 3 LAGS 4 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 6.35 7.54 10.29 6.12 7.25 9.84 5.99 7.13 9.84 5.83 6.98 9.56 
100 5.95 6.99 9.39 5.80 6.82 9.04 5.79 6.77 9.01 5.66 6.66 8.97 
150 5.94 6.98 9.29 5.79 6.82 9.02 5.76 6.77 8.98 5.78 6.76 8.93 
200 6.03 7.05 9.35 5.97 6.96 9.25 5.99 7.02 9.27 5.89 6.88 9.05 
250 6.14 7.11 9.38 6.09 7.08 9.19 6.10 7.10 9.37 6.07 7.08 9.32 
500 6.41 7.39 9.66 6.44 7.47 9.64 6.35 7.36 9.54 6.38 7.40 9.63 

THE M-TAR MODEL: Φ*
µ 

50 7.22 8.49 11.55 6.88 8.06 10.91 6.79 8.04 10.72 6.54 7.76 10.50 
100 6.97 8.15 10.67 6.84 7.95 10.35 6.77 7.87 10.34 6.61 7.73 10.14 
150 6.75 7.87 10.40 6.62 7.71 10.09 6.58 7.65 10.06 6.54 7.62 9.96 
200 6.62 7.72 10.04 6.58 7.64 9.97 6.52 7.62 9.94 6.46 7.51 9.85 
250 6.61 7.76 10.15 6.51 7.57 9.91 6.50 7.59 9.84 6.41 7.44 9.71 
500 6.52 7.55 9.93 6.47 7.53 9.76 6.46 7.54 9.77 6.42 7.47 9.72 
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Table 2.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 2-variable case 
 

T LAGGED CHANGES 
5 LAGS 6 LAGS 7 LAGS 8 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 5.62 6.64 8.87 5.53 6.52 8.76 5.49 6.50 8.72 5.37 6.33 8.48 
150 5.71 6.70 8.88 5.61 6.61 8.76 5.61 6.60 8.80 5.55 6.53 8.76 
200 5.87 6.92 9.10 5.87 6.83 9.11 5.80 6.77 9.00 5.78 6.76 8.95 
250 6.01 7.02 9.14 6.03 7.05 9.31 5.99 7.00 9.18 5.90 6.88 9.01 
500 6.38 7.42 9.69 6.32 7.34 9.55 6.35 7.32 9.53 6.31 7.30 9.45 

THE M-TAR MODEL: Φ*
µ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 6.55 7.64 10.02 6.42 7.49 9.95 6.36 7.42 9.87 6.27 7.33 9.65 
150 6.42 7.49 9.82 6.33 7.41 9.71 6.30 7.38 9.69 6.20 7.26 9.49 
200 6.41 7.47 9.74 6.37 7.40 9.74 6.32 7.36 9.60 6.27 7.32 9.60 
250 6.40 7.44 9.83 6.36 7.41 9.73 6.31 7.31 9.60 6.27 7.30 9.45 
500 6.45 7.46 9.70 6.36 7.41 9.68 6.38 7.38 9.70 6.38 7.39 9.63 
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Table 3.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 3-variable case 
 

T LAGGED CHANGES 
1 LAG 2 LAGS 3 LAGS 4 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 7.70 9.09 12.29 7.26 8.56 11.41 6.97 8.22 11.06 6.61 7.78 10.53 
100 7.17 8.34 10.94 6.97 8.09 10.61 6.86 7.98 10.39 6.65 7.73 10.21 
150 7.10 8.23 10.71 7.00 8.11 10.53 6.90 8.04 10.44 6.77 7.87 10.18 
200 7.24 8.40 10.77 7.18 8.30 10.69 7.11 8.22 10.61 7.00 8.11 10.50 
250 7.37 8.50 10.79 7.27 8.43 10.99 7.22 8.30 10.66 7.16 8.27 10.62 
500 7.60 8.73 11.16 7.54 8.66 11.06 7.53 8.63 10.97 7.49 8.58 11.03 

THE M-TAR MODEL: Φ*
µ 

50 8.49 9.92 13.23 8.04 9.42 12.42 7.82 9.10 12.00 7.41 8.65 11.47 
100 8.25 9.55 12.13 7.98 9.20 11.88 7.88 9.09 11.77 7.62 8.79 11.34 
150 7.98 9.20 11.82 7.83 9.04 11.55 7.72 8.92 11.47 7.55 8.71 11.22 
200 7.90 9.10 11.71 7.77 8.95 11.42 7.70 8.86 11.40 7.57 8.71 11.20 
250 7.85 9.05 11.58 7.75 8.93 11.42 7.75 8.91 11.29 7.61 8.77 11.26 
500 7.78 8.98 11.51 7.71 8.85 11.24 7.69 8.84 11.31 7.68 8.83 11.19 
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Table 4.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 3-variable case 
 

T LAGGED CHANGES 
5 LAGS 6 LAGS 7 LAGS 8 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 6.55 7.61 10.04 6.36 7.44 9.86 6.30 7.35 9.61 6.12 7.15 9.42 
150 6.73 7.82 10.14 6.60 7.67 9.94 6.49 7.54 9.10 6.43 7.49 9.72 
200 6.94 8.03 10.37 6.82 7.91 10.29 6.76 7.83 10.34 6.69 7.76 10.03 
250 7.10 8.18 10.52 7.04 8.12 10.51 6.93 8.03 10.27 6.89 7.95 10.21 
500 7.46 8.60 10.97 7.40 8.49 10.89 7.44 8.51 10.76 7.41 8.50 10.94 

THE M-TAR MODEL: Φ*
µ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 7.55 8.73 11.39 7.34 8.49 11.08 7.20 8.33 10.87 7.06 8.15 10.61 
150 7.47 8.62 11.11 7.35 8.43 10.85 7.28 8.39 10.87 7.17 8.29 10.70 
200 7.56 8.68 11.13 7.42 8.55 11.08 7.39 8.50 10.87 7.22 8.34 10.79 
250 7.57 8.76 11.21 7.45 8.56 11.02 7.40 8.49 10.95 7.31 8.40 10.86 
500 7.63 8.76 11.17 7.58 8.72 11.09 7.53 8.66 11.06 7.52 8.65 10.95 
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Table 5.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 4-variable case 
 

T LAGGED CHANGES 
1 LAG 2 LAGS 3 LAGS 4 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 8.98 10.53 13.91 8.28 9.63 12.85 7.92 9.31 12.39 7.36 8.64 11.56 
100 8.45 9.77 12.63 8.09 9.36 12.05 7.92 9.13 11.82 7.61 8.84 11.39 
150 8.40 9.65 12.42 8.17 9.41 11.97 8.04 9.22 11.88 7.84 9.00 11.61 
200 8.53 9.71 12.44 8.33 9.57 12.17 8.27 9.47 12.13 8.11 9.24 11.74 
250 8.54 9.79 12.58 8.46 9.66 12.28 8.41 9.62 12.05 8.31 9.45 12.01 
500 8.81 10.03 12.73 8.74 9.92 12.60 8.69 9.86 12.40 8.70 9.92 12.44 

THE M-TAR MODEL: Φ*
µ 

50 9.85 11.47 14.91 9.05 10.53 13.81 8.75 10.18 13.58 8.14 9.53 12.58 
100 9.55 10.89 13.81 9.12 10.46 13.33 8.91 10.21 13.03 8.62 9.84 12.66 
150 9.28 10.63 13.44 9.01 10.28 12.99 8.86 10.08 12.76 8.62 9.88 12.46 
200 9.19 10.46 13.17 8.98 10.28 13.04 8.83 10.07 12.68 8.72 9.95 12.50 
250 9.10 10.36 13.09 8.96 10.17 12.90 8.87 10.16 12.82 8.72 9.90 12.54 
500 9.05 10.30 12.99 8.99 10.24 12.81 8.92 10.18 12.76 8.80 10.03 12.54 
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Table 6.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 4-variable case 
 

T LAGGED CHANGES 
5 LAGS 6 LAGS 7 LAGS 8 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 7.45 8.60 11.15 7.19 8.29 10.71 7.02 8.15 10.57 6.80 7.89 10.22 
150 7.65 8.80 11.26 7.48 8.60 10.91 7.40 8.56 10.95 7.19 8.29 10.66 
200 7.95 9.13 11.65 7.78 8.93 11.38 7.76 8.91 11.37 7.61 8.71 11.14 
250 8.22 9.40 12.01 8.03 9.19 11.71 8.00 9.13 11.68 7.87 8.96 11.34 
500 8.63 9.83 12.36 8.53 9.73 12.20 8.49 9.67 11.98 8.48 9.66 12.12 

THE M-TAR MODEL: Φ*
µ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 8.40 9.66 12.25 8.17 9.36 12.08 8.05 9.26 11.85 7.75 8.91 11.52 
150 8.47 9.67 12.34 8.29 9.46 12.07 8.16 9.33 11.93 7.97 9.10 11.66 
200 8.60 9.82 12.39 8.42 9.60 12.23 8.32 9.51 12.05 8.19 9.35 11.81 
250 8.63 9.84 12.40 8.53 9.76 12.20 8.45 9.62 12.12 8.33 9.49 12.02 
500 8.77 10.04 12.65 8.72 9.87 12.43 8.72 9.88 12.41 8.58 9.78 12.19 
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Table 7.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 5-variable case 
 

T LAGGED CHANGES 
1 LAG 2 LAGS 3 LAGS 4 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 10.29 11.88 15.54 9.25 10.75 14.10 8.81 10.22 13.51 8.10 9.46 12.54 
100 9.77 11.14 14.17 9.16 10.45 13.24 8.97 10.25 13.02 8.50 9.73 12.43 
150 9.62 10.96 13.80 9.33 10.65 13.54 9.16 10.45 13.16 8.77 10.02 12.73 
200 9.76 11.08 13.90 9.55 10.87 13.70 9.35 10.65 13.45 9.17 10.40 13.06 
250 9.83 11.18 13.87 9.69 10.99 13.80 9.57 10.83 13.52 9.34 10.57 13.20 
500 10.07 11.34 14.08 9.90 11.17 14.03 9.86 11.15 13.81 9.78 11.05 13.67 

THE M-TAR MODEL: Φ*
µ 

50 11.07 12.69 16.47 10.03 11.54 15.11 9.64 11.10 14.60 8.90 10.26 13.44 
100 10.74 12.16 15.18 10.20 11.60 14.64 9.98 11.34 14.25 9.52 10.81 13.72 
150 10.55 12.00 14.87 10.15 11.51 14.23 9.93 11.29 14.19 9.66 10.99 13.74 
200 10.43 11.78 14.56 10.14 11.49 14.40 9.97 11.26 14.10 9.75 11.05 13.83 
250 10.39 11.70 14.43 10.10 11.43 14.32 10.00 11.33 14.11 9.84 11.12 13.82 
500 10.27 11.60 14.45 10.15 11.47 14.22 10.09 11.37 14.03 10.05 11.31 14.07 
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Table 8.  Distribution for the F-Statistic for the Null Hypothesis, ρ1 = ρ2 = 0, in the 5-variable case 
 

T LAGGED CHANGES 
5 LAGS 6 LAGS 7 LAGS 8 LAGS  

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 
THE TAR MODEL: Φµ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 8.29 9.50 12.19 7.94 9.11 11.66 7.66 8.83 11.38 7.38 8.51 11.05 
150 8.67 9.88 12.48 8.40 9.61 12.13 8.26 9.41 11.90 8.01 9.12 11.64 
200 8.99 10.29 12.92 8.77 9.96 12.66 8.66 9.84 12.36 8.47 9.64 12.19 
250 9.19 10.44 13.01 9.07 10.30 12.96 8.95 10.21 12.76 8.79 9.98 12.39 
500 9.77 11.03 13.80 9.69 10.96 13.56 9.57 10.83 13.51 9.49 10.78 13.44 

THE M-TAR MODEL: Φ*
µ 

50 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
100 9.26 10.53 13.35 8.94 10.23 12.83 8.72 9.96 12.63 8.40 9.65 12.30 
150 9.43 10.68 13.41 9.17 10.43 13.15 9.05 10.25 12.92 8.81 10.01 12.62 
200 9.60 10.91 13.55 9.37 10.64 13.42 9.25 10.48 13.11 9.03 10.23 12.79 
250 9.69 11.02 13.72 9.48 10.72 13.30 9.44 10.68 13.32 9.26 10.49 13.06 
500 9.94 11.21 13.94 9.83 11.14 13.80 9.74 11.06 13.73 9.67 10.92 13.59 

 
 
Note: NA indicates not available.  We do not provide the critical values for the model with more than 5  lags using 
only 50 observations. 
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