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Highly degenerate quadratic forms over F2

Robert W. Fitzgerald

Abstract

Let K be a finite extension of F2. We consider quadratic forms
written as the trace of xR(x), where R(x) is a linearized polynomial.
We determine the K and R(x) where the form has a radical of codi-
mension 2. This is applied to constructing maximal Artin-Schreier
curves.

Set F = F2 and let K = F2k be an extension of degree k. Let

Rε̄(x) =
m∑

i=0

εix
2i

,

with each εi ∈ K and either k = 2m or k = 2m + 1. We consider the
quadratic forms QK

ε̄ : K → F given by QK
ε̄ (x) = trK/F (xRε̄(x)).

These trace forms have appeared in a variety of contexts. They have
been used to compute weight enumerators of certain binary codes [1], [2] ,
to construct curves with many rational points and the associated trace codes
[9], as part of an authentication scheme [3], and to construct certain binary
sequences in [6] and [5].

In each of these applications one wants the number of solutions (in K) to
QK

ε̄ (x) = 0, denoted by N(QK
ε̄ ). This is easily worked out (see [8], 6.26,6.32)

in terms of the standard classification of quadratic forms:

N(QK
ε̄ ) = 1

2
(2k + Λ(QK

ε̄ )
√

2k+w). (1)

where w is the dimension of the radical, v = (k − w)/2 and

Λ(QK
ε̄ ) =





0, if QK
ε̄ ' z2 +

∑v
i=1 xiyi

1, if QK
ε̄ ' ∑v

i=1 xiyi

−1, if QK
ε̄ ' x2

1 + y2
1 +

∑v
i=1 xiyi.
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However, there is no simple way to determine the dimension of the rad-
ical or the invariant Λ. The one general result is due to Klapper [7] which
only covers the case when R consists of a single term. In roughly half the
applications ([1], [2], [9]) one wants highly degenerate forms, which give large
N(QK

ε̄ ) when Λ = 1. In a previous paper [4] we considered only those R with
all coefficients εi ∈ F2 but allowed F to be any finite field of characteristic 2.
Here we restrict to F = F2, the case of most applications, and allow arbitrary
coefficients εi. Our main result is to determine all such Rε̄, and all extensions
K, such that the radical of QK

ε̄ has codimension at most 2. We compute the
invariant Λ in each case. We apply the result to a classification of maximal
Artin-Schreier curves y2 = xRε̄(x).

The two situations, εi ∈ F2 (treated in [4]) and F = F2 (treated here),
look similar but are in fact quite different. For instance, when K = F29 ,
there are exactly two quadratic forms of codimension 2 radical with εi ∈ F2

but over 22 million with arbitrary εi. The classification here is then not a
list of possible Rε̄ but formulas showing how an arbitrary ε0, ε1 determine
the other εi. We also give formulas for the number of forms of codimension
2 radical of each invariant Λ.

1 Determining the coefficients

We recall the basic result from [4].

Lemma 1.1. (1) The radical of QK
ε̄ does not depend on ε0, that is, if εi = ε′i

for i ≥ 1 then
rad(QK

ε̄ ) = rad(QK
ε̄′ ).

(2) We have dim rad(QK
ε̄ ) = k − 2 iff there exist independent (over F )

a, b ∈ K such that

εi = a2i

b + ab2i

, (2)

for 1 ≤ i ≤ m, except when k = 2m in which case εm ≡ a2m
b (mod F2m).

Moreover, Λ(QK
ε̄ ) = +1 if ε0 = ab, Λ(QK

ε̄ ) = −1 if ε0 = a2 + ab + b2 and
Λ(QK

ε̄ ) = 0 in all other cases.

If Equation 2 holds then ε1 = ab(a + b) so that ε1 = 0 implies a = 0,
b = 0 or a = b. This contradicts the independence of a, b. Hence if QK

ε̄ has
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a codimension 2 radical then ε1 6= 0. We will use this fact constantly, and
without further mention, throughout.

Set h = b(k − 1)/2c. Then Equation 2 holds for 1 ≤ i ≤ h (that is, we
have excluded the exceptional case i = m when k = 2m).

Lemma 1.2. QK
ε̄ has a codimension 2 radical iff there exists a v ∈ K∗ such

that each of the following holds:

1. ε1 6= 0 and y2 + (ε1/v)y + v splits in K.

2. For all 2 ≤ i ≤ h,

v2i−1

εi = ε2i−1

1 εi−1 + ε1v
2i−1.

3. If k = 2m then εm ≡ a2m
b (mod F2m), where a, b are the roots of (1).

Proof: First suppose QK
ε̄ has a codimension 2 radical. Let a, b ∈ K

be the elements giving Lemma 1.1 (2). Set u = a + b and v = ab. Then
ε1 = ab + ab2 = uv. Hence

y2 +
ε1

v
y + v = (y + a)(y + b)

splits in K.
From [4] p. 173,

v

i−1∑
j=0

u2i−2j+1+1v2j−1 = εi.

Replacing u by ε1/v, and multiplying by v2i−2 gives

i−1∑
j=0

ε2i−2j+1+1
1 v3(2j−1) = εiv

2i−2.

Hence

ε2i−1

1

i−2∑
j=0

ε2i−1−2j+1+1
1 v3(2j−1) + ε1v

3(2i−1−1) = εiv
2i−2

ε2i−1

1 εi−1v
2i−1−2 + ε1v

3(2i−1−1) = εiv
2i−2

ε2i−1

1 εi−1 + ε1v
2i−1 = εiv

2i−1

,
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which gives (2). And (3) follows Lemma 1.1.
Now suppose (1), (2) and (3) hold. Let a, b ∈ K be the roots of (1). Note

that a and b are independent over F as v 6= 0 shows a 6= 0 and b 6= 0, while
ε1 6= 0 shows a 6= b. Note that v = ab and ε1/v = a + b. So ε1 = a2b + ab2.
We show by induction that Lemma 1.1 (2) holds for all 2 ≤ i ≤ h. We have
by (2) and induction that

(ab)2i

εi+1 = [ab(a + b)]2
i

(a2i

b + ab2i

) + ab(a + b)(ab)2i+1−1

εi+1 = (a2i

+ b2i

)(a2i

b + ab2i

) + (ab)2i

(a + b)

= a2i+1

b + ab2i+1

.

This, with (3), shows QK
ε̄ has a codimension 2 radical.

We want a formula for εi that does not depend on v, only on the initial
coefficients ε1 and ε2. Now

v3 =
ε2

ε1

v2 + ε2
1

v4 =
ε2

ε1

εv3 + ε2
1v =

ε2
2

ε2
1

v2 + ε2
1v + ε1ε2.

Hence for each i ≥ 0 we can write

v2i

= Aiv
2 + Biv + Ci,

where Ai, Bi, Ci ∈ F (ε1, ε2).

Lemma 1.3. Suppose v2ε2 = ε3
1 + v3ε1.

1. We have A1 = 1, B1 = 0, C1 = 0 and for each i ≥ 1

Ai+1 =
ε2
2

ε2
1

A2
i + B2

i Bi+1 = ε2
1A

2
i Ci+1 = ε1ε2A

2
i + C2

i .

2. C2
i = ε2

1AiBi for i ≥ 1.

3. ε2
2A

2
i Bi + ε4

1A
3
i + ε2

1B
3
i = ε2i+1

1 for i ≥ 1.

4. (ε2Ai + ε1Bi)Ci + ε3
1A

2
i = ε2i

1 (ε2Ai−1ε + ε1Bi−1) for all i ≥ 1.
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Proof: (1) We have

v2i+1

= A2
i v

4 + B2
i v

2 + C2
i

= (
ε2
2

ε2
1

A2
i + B2

i )v
2 + ε2

1A
2
i v + (ε1ε2A

2
i + C2

i ).

(2) This is true for i = 1. And

ε2
1Ai+1Bi+1 = (ε2

2A
2
i + ε2

1B
2
i )ε

2
1A

2
i

= ε2
1ε

2
2A

4
i + ε4

1A
2
i B

2
i

= ε2
1ε

2
2A

4
i + C4

i (by induction)

= C2
i+1,

by (1).
(3) This is true for i = 1. And

ε2
2A

2
i+1Bi+1 + ε4

1A
3
i+1 + ε2

1B
3
i+1

= (
ε2
2

ε2
1

A2
i + B2

i )
2ε2

1ε
2
2A

2
i + ε4

1(
ε2
2

ε2
1

A2
i ε

2 + B2
i )

3 + ε2
1(ε

2
1A

2
i )

3

= ε4
2A

4
i B

2
i + ε4

1B
6
i + ε8

1A
6
i

= (ε2
2A

2
i Bi + ε4

1A
3
i + ε2

1B
3
i )

2 = (ε2i+1

1 )2 = ε2i+2

1 ,

using induction.
(4) This is true for i = 1. And

(ε2Ai+1 + ε1Bi+1)Ci+1 + ε3
1A

2
i+1

= (ε2[
ε2
2

ε2
1

A2
i + B2

i ] + ε3
1A

2
i )(ε1ε2A

2
i + C2

i ) + ε3
1(

ε2
2

ε2
1

A2
i + B2

i )
2

= (
ε3
2

ε2
1

A2
i C

2
i + ε2B

2
i C

2
i ) + ε4

1ε2A
4
i + (ε1ε

2
2A

2
i B

2
i + ε2

1A
2
i C

2
i + ε3

1B
4
i )

=
ε2

ε2
1

C2
i (ε2

2A
2
i + ε2

1B
2
i ) + ε4

1ε2A
4
i + ε1Bi(ε

2
2A

2
i Bi + ε4

1A
3
i + ε2

1B
3
i )

=
ε2

ε2
1

(ε3
1A

2
i + ε2i

1 (ε2Ai−1 + ε1Bi−1))
2 + ε4

1ε2A
4
i + ε1Biε

2i+1

1

=
ε2

ε2
1

ε2i+1

1 (ε2
2A

2
i−1 + ε2

1B
2
i−1) + ε1Biε

2i+1

1

= ε2i+1

1 (ε2Ai + ε1Bi).

Here the third line uses (2) while the fourth line uses induction and (3).
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Proposition 1.4. Suppose v2ε2 = ε1v
3 + ε3

1. Then Lemma 1.2 (2) holds iff
εi+1 = ε2Ai + ε1Bi = ε1

√
Ai+1 for all i ≥ 1.

Proof: Suppose Lemma 1.2 (2) holds. The second equation is true for
i = 1. For i > 1, Lemma 1.3 (1) gives :

εi+1 =
ε1v

2i+1−1 + ε2i

1 εi

v2i

=
ε1

v
(Ai+1v

2 + Bi+1v + Ci+1) + ε2i

1 εi

Aiv2 + Biv + Ci

.

Now
1

v
=

1

ε2
1

v2 +
ε2

ε3
1

v.

Then

εi+1 =

1
ε1

Ci+1v
2 + ( ε2

ε2
1
Ci+1 + ε1Ai+1)v + ε1Bi+1 + ε2i

1 εi

Aiv2 + Biv + Ci

=
(ε2A

2
i + 1

ε1
C2

i )v2 + ( ε2

ε2
1
C2

i + ε1B
2
i )v + ε3

1A
2
i + ε2i

1 εi

Aiv2 + Biv + Ci

.

By Lemma 1.3 (2)

(ε2Ai + ε1Bi)Ai = ε2A
2
i + ε1AiBi = ε2A

2
i +

1

ε1

C2
i

(ε2Ai + ε1Bi)Bi = ε2AiBi + ε1B
2
i =

ε2

ε2
1

C2
i + ε1B

2
i .

Lastly, from Lemma 1.3 (4)

(ε2Ai + ε1Bi)Ci = ε3
1A

2
i + ε2i

1 (ε2Ai−1 + ε1Bi−1)

= ε3
1A

2
i + ε2i

1 εi,

using induction. Hence εi+1 = ε2Ai + ε1Bi.
For the converse, the steps may be reversed.

Theorem 1.5. QK
ε̄ has codimension 2 radical iff there exists v ∈ K∗ such

that each of the following holds

1. ε1 6= 0 and y2 + (ε1/v)y + v splits in K,

6



2. v2ε2 = ε3
1 + ε1v

3,

3. for i ≥ 2 we have

εi+1 =
ε2

ε2
1

ε2
i +

1

ε1

ε4
i−1,

4. if k = 2m then εm ≡ a2m
b (mod F2m), where a, b are the roots of (1).

Moreover, in this case,

Λ(QK
ε̄ ) =





1, if ε0 = v

−1, if ε0 = v + (ε1/v)2

0, otherwise.

Proof: We need to show that Lemma 1.1 (2) is equivalent to the state-
ment (3) here, given (1) and (2). We first check that Lemma 1.1 implies
(3).

εi+1 = ε2Ai + ε1Bi by Proposition 1.4

= ε2(
√

Ai)
2 + ε3

1(
√

Ai−1)
4 by Lemma 1.3 (1)

=
ε2

ε2
1

ε2
i +

1

ε1

ε4
i−1 by Proposition 1.4.

Next we check that (3) implies Lemma 1.1 (2). It is enough to show
εi+1 = ε2Ai + ε1Bi, by Proposition 1.4. We use induction. The case i = 1 is
clear.

εi+1 =
ε2

ε2
1

ε2
i +

1

ε1

ε4
i−1 by (3)

=
ε2

ε2
1

(ε2Ai−1 + ε1Bi−1)
2 +

1

ε1

ε4
i−1 by induction

=
ε3
2

ε2
1

A2
i−1 + ε2B

2
i−1 +

1

ε1

ε4
i−1

= ε2

(
ε2
2

ε2
1

A2
i−1 + B2

i−1

)
+

1

ε1

ε4
i−1

= ε2Ai +
1

ε1

(ε1

√
Ai−1)

4 by Lemma 1.3 (1) and induction

= ε2Ai + ε1Bi,
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using Lemma 1.3 (1) again.
Lastly, we check the invariants. As a, b are roots of y2 + (ε1/v)y + v, we

have v = ab and ε1/v = a + b. Now, by Lemma 1.1, Λ(QK
ε̄ ) = +1 iff ε0 = ab,

which is v. And Λ(QK
ε̄ ) = −1 iff ε0 = a2 + ab + b2 = v + (ε1/v)2.

Proposition 1.6. Equation (3) of Theorem 1.5 is equivalent to:

εi =
εsi
2

ε`i
1

∑
j∈∆i

ε
5(ti−j)
1 ε3j

2 ,

where `i = 2i−1 − 2,

si =

{
0, if i is odd

1, if i is even,
ti =

{
(2i−1 − 1)/3, if i is odd

(2i−1 − 2)/3, if i is even,

∆3 = {0, 1}, ∆4 = {0, 1, 2} and for i ≥ 5

∆i = (Ai + {0, 1, 2}) ∪ (2Ai−1 + {4, 5})
where

Ai = {0} ∪ {2n1 + 2n2 + · · ·+ 2nr : nj − nj−1 ≥ 2, n1 ≤ i− 3, nr ≥ 3}.
Proof: Assume first that Theorem 1.5 (3) holds. The formulas for ε3

and ε4 can be checked directly. We use induction. Suppose i is odd (the case
of i even is similar). Then

si−1 = 0 si = 1 si+1 = 0

2`i−1 = `i − 2 2`i = `i+1 − 2

2ti−1 = ti + 1 2ti = ti+1.

We have

εi+1 =
ε2

ε2
1

ε2
i +

1

ε1

ε4
i−1

=
ε2

ε2
1

[
1

ε`i
1

∑
j∈∆i

ε
5(ti−j)
i ε3j

2

]2

+
1

ε1


 ε2

ε
`i−1

1

∑
j∈∆i−1

ε
5(ti−1−j)
1 ε3j

2




4

=
ε2

ε2`i+2
1

∑
j∈∆i

ε
5(2ti−2j)
1 ε

3(2j)
2 +

ε4
2

ε2`i−3
1

∑
j∈∆i−1

ε
5(2ti−4j−2)
1 ε

3(4j)
2

=
ε2

ε
`i+1

1


∑

j∈∆i

ε
5(ti+1−2j)
1 ε

3(2j)
2 +

∑
j∈∆i−1

ε
5(ti+1−4j−1)
1 ε

3(4j+1)
2


 .
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Note that there are no terms in common to the two sums. Set

∆i+1 = 2∆i ∪ (4∆i−1 + 1).

Then we have

εi+1 =
ε

si+1

2

ε
`i+1

1

∑
j∈∆i+1

ε
5(ti+1−j)
1 ε3j

2 .

Hence we need only check that ∆i+1 = (Ai+1 + {0, 1, 2}) ∪ (2Ai−1 + {4, 5}).
We do this by induction on i.

Claim Ai+1 = 2Ai ∪ (4Ai−1 + 8). The inclusion ⊃ is easy to check.
Suppose α = 2n1 + · · · 2nr ∈ Ai+1. If nr ≥ 4 then

α = 2(2n1−1 + · · ·+ 2nr−1) ∈ 2Ai.

If nr = 3 then nr−1 ≥ 5 and

α = 4(2n1−2 + · · · 2nr−1−2) + 8 ∈ 4Ai−1 + 8,

proving the Claim.
We have ∆i+1 = 2∆i ∪ (4∆i−1 + 1) so by induction

∆i+1 = (2Ai + {0, 2, 4}) ∪ (4Ai−1 + {8, 10})
∪(4Ai−1 + {1, 5, 9}) ∪ (8Ai−2 + {17, 21}).

Now by the Claim

Ai+1 = 2Ai ∪ (4Ai−1 + 8)

Ai+1 + 2 = (2Ai + 2) ∪ (4Ai−1 + 10)

Ai+1 + 1 = (2Ai + 1) ∪ (4Ai−1 + 9)

= 2[2Ai−1 ∪ (4Ai−2 + 8)] + 1 ∪ (4Ai−1 + 9)

= (4Ai−1 + 1) ∪ (8Ai−2 + 17) ∪ (4Ai−1 + 9)

2Ai + 5 = 2[2Ai−1 ∪ (4Ai−2 + 8)] + 5

= (4Ai−1 + 5) ∪ (8Ai−2 + 21).

Thus ∆i+1 = (Ai+1 + {0, 1, 2}) ∪ (2Ai + {4, 5}).
The converse follows from a simple, but tedious, substitution.

9



Here are the first few εi:

ε3 =
1

ε2
1

(ε3
2 + ε5

1)

ε4 =
ε2

ε6
1

(ε6
2 + ε5

1ε
3
2 + ε10

1 )

ε5 =
1

ε14
1

(ε15
2 + ε5

1ε
12
2 + ε10

1 ε9
2 + ε20

1 ε3
2 + ε25

1 )

ε6 =
ε2

ε30
1

(ε30
2 + ε5

1ε
27
2 + ε10

1 ε24
2 + ε20

1 ε18
2 + ε25

1 ε15
2 + ε40

1 ε6
2 + ε45

1 ε3
2 + ε50

1 ).

The next two ∆i are:

∆7 = {0, 1, 3, 4, 5, 11, 12, 13, 16, 17, 19, 20, 21}
∆8 = {0, 1, 2, 5, 6, 8, 9, 10, 21, 22, 24, 25, 26, 32, 33, 34, 37, 38, 40, 41, 42}.

2 Construction and Examples

Construction: Choose any ε0 ∈ K and ε1 ∈ K∗. Find all v ∈ K∗ such
that y2 + (ε1/v)y + v splits in K. Set ε2 = (ε1v

3 + ε3
1)/v

2. Let εi, for
3 ≤ i ≤ b(k−1)/2c, be given by Corollary 1.6. If k = 2m then set εm = a2m

b,
where a, b are the roots of y2 + (ε1/v)y + v. Take

Rε̄ =
m∑

j=0

εjx
2j

.

Corollary 2.1. The construction gives all Rε̄ such that QK
ε̄ has a codimen-

sion 2 radical.

Proof: This is a re-statement of Theorem 1.5.
We wish to count the number of such Rε̄.

Lemma 2.2. The number S of v ∈ K∗ such that y2 + (ε1/v)y + v splits in
K is

S =





1
2
(2k − 2), if k is odd

1
2
(2k − (−1)m2m+1 − 2), if k = 2m and ε1 ∈ K∗3

1
2
(2k + (−1)m2m − 2), if k = 2m and ε1 /∈ K∗3.

10



Proof: Let q : K → F be q(x) = trK/F (ε−2
1 x3). We first check that

S = N(q)− 1, where N(q) denotes the number of zeros of q in K. Now

v2

ε2
1

(y2 +
ε1

v
y + v) =

(
vy

ε1

)2

+

(
vy

ε1

)
+

v3

ε2
1

.

Hence y2 + (ε1/v)y + v splits in K iff s2 + s + (v3/ε2
1) splits in K iff we have

trK/F (v3/ε2
1) = 0 iff q(v) = 0.

Now we use Equation 1 and Klapper’s classification [7] which says, for
this case,

1. rad q 6= 0 iff ε−2
1 ∈ K∗3 iff ε1 ∈ K∗3, in which case dim rad q = 2.

2. q(rad q) 6= 0 iff k is odd.

3. If ε1 ∈ K∗3 and k = 2m then

Λ(q) =

{
1, if m is odd

−1, if m is even.

If ε1 /∈ K∗3 and k = 2m then

Λ(q) =

{
1, if m is even

−1, if m is odd.

The result now follows.

Theorem 2.3. The number of Rε̄ over K with QK
Rε̄

having a codimension 2
radical is

1
6
q(q − 1)(q − 2) =

(
q

3

)
.

For a fixed ε1, ε2, three have invariant +1, one has invariant −1 and the rest
have invariant 0.

Proof: First note that there are q choices for ε0, q − 1 choices for the
non-zero ε1. We Claim that there are S/3 choices for ε2. Fix ε1 ∈ K∗. For
each v ∈ K∗ such that y2 +(ε1/v)y + v has roots in K, say a(v) and b(v), we
get an ε2(v) via ε2(v) = a(v)4b(v) + a(v)b(v)4.
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Let v1, a(v1), b(v1) and ε2(v1) be one choice. Note a(v1)b(v1) = v1 and
a(v1) + b(v1) = ε1/v. Set v2 = a(v1)(a(v1) + b(v1)). Then

ε1

v2

=
1

a(v1)

ε1

a(v1) + b(v1)
=

v1

a(v1)
= b(v1).

Hence y2 + (ε1/v2)y + v2 has roots a(v2) = a(v1) and b(v2) = a(v1) + b(v1).
So

ε2(v2) = a(v1)
4(a(v1) + b(v1)) + a(v1)(a(v1) + b(v1))

4

= a(v1)
4b(v1) + a(v1)b(v1)

4 = ε2(v1).

Similarly, if v3 = (a(v1) + b(v1))b(v1) then ε2(v3) = ε2(v1) also. Hence there
are at least three v’s giving the same ε2. And we have ε1v

3 + ε3
1 = ε2v

2, by
Lemma 1.2 (2), so there are exactly three v’s giving the same ε2. Thus the
number of ε2 is S/3, proving the Claim. The other εi are determined by
Theorem 1.5.

This shows the number of Rε̄ is q(q − 1)S/3. When k is odd, this is the
desired formula, by Lemma 2.2. Now say k = 2m is even. Then |K∗3| =
(q − 1)/3. So, again using Lemma 2.2, the number of Rε̄ is

q
q − 1

3
· 1

3
(2k−1 − (−1)m2m − 1) + q

2(q − 1)

3
· 1

3
(2k−1 + (−1)m2m−1 − 1)

=
q

9
(2k − 1)(2k + 2k−1 − 3)

=
q

3
(2k − 1)(2k−1 − 1)

=
1

6
q(q − 1)(q − 2).

Lastly, fix ε1 and ε2. The invariant Λ is +1 iff ε0 = v, by Theorem 1.5.
We have previously shown there are three v’s giving the same ε2, so there
are three ε0’s with Λ(QK

ε̄ ) = +1. Again by Theorem 1.5, Λ(QK
ε̄ ) = −1 iff

ε0 = v +(ε1/v)2 = a(v)2 + a(v)b(v)+ b(v)2. The three choices for (a(v), b(v))
are (a, b), (a, a+b), (a+b, b). In each case, a(v)2+a(v)b(v)+b(v)2 is a2+ab+b2.
Thus there is only one ε0 giving an invariant of −1.

Example 2.4. Let K = F26 with primitive element α, a root of x6 + x + 1.
Suppose ε1 = α, a non-cube. A simple computer search will show there are 9
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possible ε2’s, in agreement with by Theorem 2.3. Then ε3 can be computed,
from the exceptional case of the Construction and

Rε̄ = ε0x + ε1x
2 + ε2x

4 + ε3x
8.

The values are (recall that ε3 is only defined modulo F8):

ε2 ε3

α + α2 α + α2 + α3 + α4 + α5

1 + α3 + α5 1 + α + α4 + α5

α2 + α3 + α4 1 + α4 + α5

1 + α4 1 + α
1 + α3 + α4 α + α3 + α4

1 + α2 + α3 + α5 α + α3 + α5

α + α3 + α4 1 + α4 + α5

α3 α2 + α4

α2 α + α4 + α5.

We consider the fourth line, ε1 = α, ε2 = 1 + α4 and ε3 = 1 + α, in more
detail. There are three v’s giving ε2, namely,

1 + α α4 + α5 α + α3 + α4.

Then Λ(QK
ε̄ ) = +1 iff ε0 is any one of these v’s. And Λ(QK

ε̄ ) = −1 iff
ε0 = v + (α/v)2 = 1 + α3 + α5.

In total, there are 41, 664 quadratic forms on K with a codimension 2
radical. Of these, 651 have invariant −1, while 1953 have invariant +1 and
the rest have invariant 0.

Example 2.5. Let K = F27 with primitive element β, a root of x7 +x+1.
Suppose ε1 = 1. Again a simple computer search will show there are 21
possible ε2’s, in agreement with by Theorem 2.3. Then ε3 can be computed
from Theorem 1.5. We list the results, writing (i, j) for ε2 = βi and ε3 = βj.

(21,3) (37,96) (41,24) (42,6) (47,2) (55,58) (59,83)
(61,8) (74,65) (82,48) (84,12) (87,1) (91,29) (93,105)
(94,4) (107,64) (109,78) (110,116) (117,32) (118,39) (122,16).

Example 2.6. Here we start with an ε1 and ε2 and then find fields K that
allow this choice. Let ε1 = 1 and ε2 = γ where γ3 = γ + 1, so that ε2 ∈ F23 .
Then, as x3 + γx2 + 1 is irreducible over F23 we have that v ∈ F29 . In fact,
v = δ7 where δ is a root of x9 + x4 + 1. Now x2 + (1/v)x + v is irreducible
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over F29 . Hence a, b ∈ K = F218 . The sequence of εi’s is periodic with period
9:

1, γ, γ, γ2 + 1, γ + 1, γ, γ2, 1, 0.

Hence, if ε1 = 1 and ε2 = γ, QK
ε̄ has codimension 2 radical iff 18|k and

R =
m∑

i=1

εix
2i

.

Here k = 2m. Note that the top term εm is always 0 (recall that εm is taken
modulo GF (2m)).

3 Maximal Artin-Schreier curves

The Artin-Schreier curve we consider is:

Cε̄ : y2 + y = xRε̄(x).

The number of points in K-projective space on Cε̄ is:

#Cε̄(K) = 2k + Λ(QK
ε̄ )
√

2k+w + 1,

where w = dim rad(QK
ε̄ ). The Hasse-Weil bound is:

#Cε̄(K) ≤ 2k + 2`
√

2k + 1,

where 2` = deg Rε̄. Clearly equality will hold in the Hasse-Weil bound only
if k is even.

Corollary 3.1. Suppose k = 2m and εm ∈ F2m, εm−1 6= 0. Then the number
of points on Cε̄ equals the Hasse-Weil bound iff QK

ε̄ has a radical of codimen-
sion 2 and Λ(QK

ε̄ ) = +1.

Proof: The conditions on εm and εm−1 yield deg Rε̄ = 2m−1, as εm is
taken modulo F2m . Now match the two formulas above.

If εm /∈ F2m then deg Rε̄ = 2mand the number of points on Cε̄ equals
the Hasse-Weil bound only if dim rad(QK

ε̄ ) = k, a vacuous case. There are
examples of Artin-Schreier curves meeting the Hasse-Weil bound with εm ∈
F2m and εm−1 = 0, see [4].

The simplest way to find Rε̄ satisfying the conditions of Corollary 3.1 is
to apply the Construction of Section 2 to L := F2m . Namely, choose ε1 ∈ L
and find v ∈ L such that y2 + (ε1/v)y + v splits in L. Then compute εi as
usual.
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Corollary 3.2. The Construction of Section 2 applied to L yields Rε̄ with
εm ∈ F2m, εm−1 6= 0 and the radical of QK

ε̄ having codimension 2. Taking
ε0 = v gives Λ(QK

ε̄ ) = +1 and so the number of points on Cε̄ equals the
Hasse-Weil bound.

Proof: Let a, b ∈ L = F2m be the roots of y2 + (ε1/v)y + v. Ten εm =
A2m

b ∈ L. If εm−1 = 0 then a2m−1
b = ab2m−1

. Squaring gives a2m
b2 = a2b2m

.
As a, b ∈ L, we get ab2 = a2b and ε1 = 0, a contradiction. So εm−1 6= 0. The
rest follows from Theorem 1.5 and Corollary 3.1.

There are other examples of Rε̄ that satisfy the conditions of Corollary
3.1.

Example 3.3. Suppose k = 6. If ε3 = a8b is in L = F8 then ε3 = ε8
3 = ab8.

So a8b+ab8 = 0. Now a8b+ab8 is the usual formula for ε3 (that is, in all cases
except k = 6) so the formulas of Proposition 1.6 hold. We get ε3

2 + ε5
1 = 0.

Hence ε1 must be a cube.
Conversely, suppose ε1 = η3 for some η ∈ K. Note that if ω is a primitive

cube root of unity in K then ε1 = (ηω)3 also. Now let β be a root of
x3 + x2 + 1; note β ∈ L. Set v = βη2. Then trK/F (v3/ε2

1) = trK/F (β3) = 0 as
β ∈ L. So y2 +(ε1/v)y + v splits in K. Following the construction of Section
2, set

ε2 = ε1(v + (ε1/v)2) = ε1(βη2 + (η/β)2) = η5(β + 1/β2) = η5.

So ε3
2 + ε5

1 = 0, a8b = ab8 and ε3 = a8b ∈ L.
There are three choices for η and so three choices for ε2. Given ε1 and

ε2, there are three choices for ε0 yielding Λ(QK
ε̄ ) = +1, by Theorem 2.3.

Hence when ε1 is a cube there are exactly nine Rε̄ satisfying the conditions
of Corollary 3.1. When ε1 is not a cube there are none. So the number of Rε̄

with ε3 ∈ L, ε2 6= 0, QK
ε̄ having a codimension 2 radical and Λ(QK

ε̄ ) = +1 is

9 · 26 − 1

3
= 3(26 − 1) = 189.

Example 3.4. Let k = 8. Suppose ε4 = a16b ∈ L = F16. As in the previous
example, the usual formula for ε4:

ε4 =
ε2

ε6
1

(ε6
2 + ε5

1ε
3
2 + ε10

1 )

must be 0. So either ε2 = 0 or ε3
2 = ε5

1ω, where ω is a root of x2 + x + 1.
Note that ω ∈ K but ω /∈ K∗3 as 9 does not divide 28 − 1 = 255. Now if
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ε2 = 0 then ε1v
3 + ε3

1 = 0 and ε3
1 is a cube (equivalently, ε1 is a cube, as the

order of ε1 is odd). If ε3
2 = ε5

1ω then ε2
1 is not a cube, as ω is not. We check

the converse.
First say ε1 = η3 for some η ∈ K. We follow the Construction of Section

2. Set v = η2. Then y2 + (ε1/v)y + v has roots ηω, ηω2 and so splits in
K. Then ε2 = ε1(v + (ε1/v)2) = 0. By Proposition 1.6 ε3 = ε11

1 6= 0 and
ε4 = (ηω)16(ηω2) = η17 ∈ F16 as (η17)15 = 1.

Next say ε2
1 is not a cube. Then ε2

1 is in the same coset of K∗3 as either
ω or ω2. We may assume ε2

1ω = µ3, for some µ ∈ K. Now set v = µω2.
Then trK/F (v3/ε2

1) = trK/F (ω) = 0 as ω ∈ F4. So y2 + (ε1/v)y + v splits
in K. Following the Construction, set ε2 = ε1(v + (ε1/v)2) = ε1µ. So
ε3
2 = ε3

1µ
3 = ε5

1ω. Hence ε4 ∈ F16. Lastly,

ε3 =
1

ε2
1

(ε3
2 + ε5

1) =
1

ε2
1

(ε5
1ω + ε5

1) = ε2
1(ω + 1) = ε2

1ω
2 6= 0,

as desired.
Thus for each cube ε1 there is exactly one choice for ε2, namely ε2 = 0.

For each non-cube ε1 there are three choices for ε2, since there are three
choices for µ. And, as before, given ε1, ε2 there are three choices for ε0 to get
Λ(QK

ε̄ ) = +1. Hence the number of Rε̄ with ε4 ∈ F16, ε3 6= 0, QK
ε̄ having a

radical of codimension 2 and Λ(QK
ε̄ ) = +1 is:

3 · 28 − 1

3
+ 9 · 2(28 − 1)

3
= 7(28 − 1) = 1785.

These then are the maximal Artin-Schreier curves over K = F28 .

Additional computations suggest that each case behaves like one of the
two examples above and that the number of Rε̄ that satisfy the conditions
of Corollary 3.1 is: {

3(q − 1), if m is odd

7(q − 1), if m is even.

But we are unable to show this.
Lastly, [9] deserves a comment since it has results that appear similar

to ours. There is, in fact, little overlap. Equation (2) here is a special case
(w = m−2) of Equation (7) in [9]. But the concerns are different. In [9] they
seek only to determine the degree of R(x) while we seek to determine the
coefficients. When the codimension 2 radical case is considered in [9], they
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obtain either no information on the coefficients (Section 4, I) or information
only on the top coefficient (Section 5, I).

[9] also constructs curves that attain the Hasse-Weil bound but they are
fibre products of Artin-Schreier curves, rather than the single curves consid-
ered here. Taking r = 1 in [9] Proposition 5.2 (ii) does prove the existence
of one Artin-Schreier curve attaining the Hasse-Weil bound. In this sec-
tion, we found many maximal Artin-Schreier curves (Corollary 3.2) and have
suggested a method to find all of them.
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