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This paper derives the Burr Type III and Type XII family of distributions in the contexts of univariate 𝐿-moments and the 𝐿-
correlations. Included is the development of a procedure for specifying nonnormal distributions with controlled degrees of 𝐿-skew,
𝐿-kurtosis, and 𝐿-correlations. The procedure can be applied in a variety of settings such as statistical modeling (e.g., forestry,
fracture roughness, life testing, operational risk, etc.) and Monte Carlo or simulation studies. Numerical examples are provided
to demonstrate that 𝐿-moment-based Burr distributions are superior to their conventional moment-based analogs in terms of
estimation and distribution fitting. Evaluation of the proposed procedure also demonstrates that the estimates of𝐿-skew, 𝐿-kurtosis,
and 𝐿-correlation are substantially superior to their conventional product moment-based counterparts of skew, kurtosis, and
Pearson correlations in terms of relative bias and relative efficiency—most notably when heavy-tailed distributions are of concern.

1. Introduction

Burr [1] introduced twelve cumulative distribution functions
(cdfs) with the primary purpose of fitting distributions to
real-world data. Two popular Burr cdfs are referred to as the
Burr Type III and Type XII distributions. The specific forms
of these two cdfs are given as [1, Equations (11), (20)]

𝐹 (𝑥)(Type III) = (1 + 𝑥
𝑐
)
−𝑘
,

𝐹 (𝑥)(Type XII) = 1 − (1 + 𝑥
𝑐
)
−𝑘
,

(1)

where 𝑥 ∈ (0,∞), 𝑐, and 𝑘 are real-valued parameters that
determine the mean, variance, skew, and kurtosis of a
distribution. The parameter 𝑐 is negative for the Type III and
positive for the TypeXII distributions, whereas the parameter
𝑘 is positive for both the distributions [2].

The Burr Type III and Type XII distributions attract
special attention because they include several families of
nonnormal distributions (e.g., the Gamma distribution) with
varying degrees of skew and kurtosis [2–5]. Further, these

distributions have been used in a variety of applied math-
ematics contexts. Some examples include modeling events
associated with forestry [6, 7], fracture roughness [8, 9], life
testing [10, 11], operational risk [12], option market price
distributions [13], meteorology [14], modeling crop prices
[15], software reliability growth [16], reliability analysis [17],
and in the context of Monte Carlo or simulation studies (e.g.,
[2]).

The quantile functions associated with (1) are expressed
as [2, Equations (5), (6)]

𝑞(𝑢)(Type III) = 𝐹
−1

(𝑥) = (𝑢
−1/𝑘

− 1)
1/𝑐

, (2)

𝑞 (𝑢)(Type XII) = 𝐹
−1

(𝑥) = ((1 − 𝑢)
−1/𝑘

− 1)
1/𝑐

, (3)

where𝑢 ∼ 𝑖𝑖𝑑 𝑈(0, 1)with pdf and cdf as 1 and𝑢, respectively.
The shape of a Burr distribution associated with (2) or
(3) is contingent on the values of the shape parameters (𝑐
and 𝑘), which can be determined by simultaneously solving
equations (16) and (17) from [2, p. 2211] for given values of
skew and kurtosis.
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Figure 1: The pdf and cdf of the Burr Type XII distribution with skew (𝛾3) = 3 and kurtosis (𝛾4) = 21. The solved values of 𝑐 and 𝑘 used in
(5) and (1) are 𝑐 = 1.187185 and 𝑘 = 5.199500 which are also associated with the parameters in Tables 1 and 2.

In order for (2) or (3) to produce a valid Burr pdf, the
quantile function 𝑞(𝑢) is required to be a strictly increasing
monotone function [2]. This requirement implies that an
inverse function (𝑞

−1
) exists. As such, the cdf associated with

(2) or (3) can be expressed as 𝐹(𝑞(𝑢)) = 𝐹(𝑢) = 𝑢, and
subsequently differentiating this cdf with respect to 𝑢 will
yield the parametric form of the pdf for 𝑞(𝑢) as 𝑓(𝑞(𝑢)) =

1/𝑞
󸀠
(𝑢). We would also note that the simple closed form

expressions for the pdfs associated with (1) can be given as
[1]

𝑓 (𝑥)(Type III) = −𝑐𝑘𝑥
𝑐−1

(1 + 𝑥
𝑐
)
−(𝑘+1)

, (4)

𝑓 (𝑥)(Type XII) = 𝑐𝑘𝑥
𝑐−1

(1 + 𝑥
𝑐
)
−(𝑘+1)

. (5)

Some of the problems associated with conventional
moment-based estimates are that they can be (a) substantially
biased, (b) highly dispersed, or (c) influenced by outliers
[18, 19] and thus may not be good representatives of the true
parameters. To demonstrate, Figure 1 gives the graphs of the
pdf and cdf associated with Burr Type XII distribution with
skew (𝛾3) = 3 and kurtosis (𝛾4) = 21.These values of skew and
kurtosis have been used in a number of studies [18, 20–22].
Table 1 gives the parameters and sample estimates of skew and
kurtosis for the distribution in Figure 1. Inspection of Table 1
indicates that the bootstrap estimates (𝑔3 and 𝑔4) of skew
and kurtosis (𝛾3 and 𝛾4) are substantially attenuated below
their corresponding parameter values with greater bias and
variance as the order of the estimate increases. Specifically,
for sample size of 𝑛 = 50, the values of the estimates are
only 63.53%, and 22.81% of their corresponding parameters,
respectively. The estimates (𝑔3 and 𝑔4) of skew and kurtosis
(𝛾3 and 𝛾4) in Table 1 were calculated based on Fisher’s 𝑘-
statistics formulae (see, e.g., [23, pages 299-300]), currently
used by most commercial software packages such as SAS,
SPSS, and Minitab, and so forth, for computing the values of
skew and kurtosis (where 𝛾3,4 = 0 for the standard normal
distribution).

Table 1: Conventional moment-based parameters (𝛾3, 𝛾4) of skew
and kurtosis and their estimates (𝑔3, 𝑔4) for the pdf in Figure 1.
Each bootstrapped estimate (Estimate), associated 95% bootstrap
confidence interval (95% Bootstrap C.I.), and the standard error
(St. error) were based on resampling 25,000 statistics. Each statistic
was based on a sample size of 𝑛 = 50.

Parameter Estimate 95% Bootstrap C.I. St. error
𝛾3 = 3.00 𝑔3 = 1.9060 (1.8955, 1.9163) 0.0053
𝛾4 = 21.00 𝑔4 = 4.7900 (4.7199, 4.8525) 0.0338

Another unfavorable quality of conventional moment-
based estimators of skew and kurtosis is that their values
are algebraically bounded by the sample size (𝑛) such that
|𝑔3| ≤ √𝑛 and 𝑔4 ≤ 𝑛 [18]. This constraint implies that if a
researcher wants to simulate non-normal data with kurtosis
𝛾4 = 21 as inTable 1, and drawing a sample of size 𝑛 = 15 from
this population, the largest possible value of the computed
estimate (𝑔4) of kurtosis (𝛾4) is only 15, which is only 71.43%
of the parameter.

Themethod of 𝐿-moments introduced by Hosking [19] is
an attractive alternative to conventional moments and can be
used for describing theoretical probability distributions, fit-
ting distributions to real-world data, estimating parameters,
and testing of hypotheses [18, 19, 24, 25]. In these contexts,
we note that the 𝐿-moment based estimators of 𝐿-skew, 𝐿-
kurtosis, and 𝐿-correlation have been introduced to address
the limitations associated with conventional moment-based
estimators [18, 19, 24–31]. Some qualities of 𝐿-moments that
make them superior to conventional moments are that they
(a) exist for any distribution with finite mean, and their
estimates are (b) nearly unbiased for any sample size and
less affected from sampling variability, (c) more robust in
the presence of outliers in the sample data, and (d) are not
algebraically bounded by the sample size [18, 19, 24, 25].
For example, the estimates (t3 and t4) of 𝐿-skew and 𝐿-
kurtosis (𝜏3 and 𝜏4) in Table 2 are relatively closer to their
respective parameter values with much smaller variance
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Table 2: 𝐿-moment-based parameters (𝜏3, 𝜏4) of 𝐿-skew and 𝐿-
kurtosis and their estimates (t3, t4) for the pdf in Figure 1. Each
bootstrapped estimate (Estimate), associated 95% bootstrap con-
fidence interval (95% Bootstrap C.I.), and the standard error (St.
error) were based on resampling 25,000 statistics. Each statistic was
based on a sample size of 𝑛 = 50.

Parameter Estimate 95% Bootstrap C.I. St. error
𝜏3 = 0.3536 t3 = 0.3455 (0.3445, 0.3465) 0.0005
𝜏4 = 0.2020 t4 = 0.1965 (0.1955, 0.1975) 0.0005

compared to their conventional moment-based counterparts
as in Table 1. Inspection of Table 2 shows that for the sample
size of 𝑛 = 50, the values of the estimates are on average
97.71% and 97.28% of their corresponding parameters.

In view of the above, the main purpose of this study is
to characterize the Burr Type III and Type XII distributions
through the method of 𝐿-moments in order to obviate
the problems associated with conventional moment-based
estimators. Another purpose of this study is to develop an 𝐿-
correlation-based methodology to simulate correlated Burr
Type III and Type XII distributions. Specifically, in Section 2,
a brief introduction to univariate𝐿-moments is provided.The
systems of equations associated with the Type III and Type
XII distributions are subsequently derived for determining
the shape parameters (𝑐 and 𝑘) for user specified values of
𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4). In Section 3, a comparison
between conventional and 𝐿-moment-based Burr Type III
and Type XII distributions is presented in the contexts of esti-
mation and distribution fitting. Numerical examples based
on Monte Carlo simulation are also provided to confirm
the methodology and demonstrate the advantages that 𝐿-
moments have over conventional moments. In Section 4, an
introduction to the coefficient of 𝐿-correlation is provided,
and the methodology for solving for intermediate correla-
tions for specified 𝐿-correlation structure is subsequently
presented. In Section 5, the steps for implementing the
proposed 𝐿-moment procedure are described for simulating
non-normal Burr Type III and Type XII distributions with
controlled skew (𝐿-skew), kurtosis (𝐿-kurtosis), and Pearson
correlations (𝐿-correlations). Numerical examples and the
results of simulation are also provided to confirm the deriva-
tions and compare the new procedure with the conventional
moment-based procedure. In Section 6, the results of the
simulation are discussed.

2. Methodology

2.1. Theoretical and Empirical Definitions of 𝐿-Moments.
𝐿-moments can be expressed as certain linear combi-
nations of probability weighted moments (PWMs). Let
𝑋1, . . . , 𝑋𝑖, . . . , 𝑋𝑛 be identically and independently dis-
tributed random variables each with pdf 𝑓(𝑥), cdf 𝐹(𝑥), and
the quantile function 𝐹

−1
(𝑥), then the PWMs are defined as

[18, Equation (6)]

𝛽𝑟 = ∫𝐹
−1

(𝑥) {𝐹 (𝑥)}
𝑟
𝑓 (𝑥) 𝑑𝑥, (6)

where 𝑟 = 0, 1, 2, 3. The first four 𝐿-moments (𝜆𝑖=1,...,4) asso-
ciated with 𝑋 can be expressed in simplified forms as [25,
pages 20–22]

𝜆1 = 𝛽0,

𝜆2 = 2𝛽1 − 𝛽0,

𝜆3 = 6𝛽2 − 6𝛽1 + 𝛽0,

𝜆4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0,

(7)

where the coefficients associated with 𝛽𝑟=0,...,3 in (7) are
obtained from shifted orthogonal Legendre polynomials and
are computed as in [25, pages 20–22] or in [18, pages 4–5].

The notations 𝜆1 and 𝜆2 denote the location and scale
parameters. Specifically, in the literature of 𝐿-moments, 𝜆1
is referred to as the 𝐿-location parameter which is equal to
the arithmetic mean, and 𝜆2 (>0) is referred to as the 𝐿-
scale parameter and is one-half of Gini’s coefficient of mean
difference [23, pages 47-48]. Dimensionless 𝐿-moment ratios
are defined as the ratios of higher-order 𝐿-moments (i.e.,
𝜆3 and 𝜆4) to 𝜆2. Thus, 𝜏3 = 𝜆3/𝜆2 and 𝜏4 = 𝜆4/𝜆2 are,
respectively, the indices of 𝐿-skew and 𝐿-kurtosis. In general,
the indices of 𝐿-skew and 𝐿-kurtosis are bounded in the
interval−1 < 𝜏3,4 < 1, and as in conventionalmoment theory,
a symmetric distribution has 𝐿-skew equal to zero [18]. The
boundary region for 𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4) for a
continuous distribution is given by the inequality (see, [32])

5𝜏
2
3 − 1

4
< 𝜏4 < 1. (8)

Empirical 𝐿-moments for a sample (of size 𝑛) of real-
world data are expressed as linear combinations of the
unbiased estimators of the PWMs based on sample order
statistics 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑋𝑛:𝑛. Specifically, the unbiased
estimators of the PWMs are given as [19, pages 113-114]

𝑏𝑟 =
1

𝑛

𝑛

∑

𝑖=𝑟+1

(𝑖 − 1) (𝑖 − 2) ⋅ ⋅ ⋅ (𝑖 − 𝑟)

(𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑟)
𝑋𝑖:𝑛, (9)

where 𝑟 = 0, 1, 2, 3 and 𝑏0 is the sample mean. The first four
sample 𝐿-moments (ℓ1, ℓ2, ℓ3, ℓ4) are obtained by substituting
𝑏𝑟 from (9) instead of 𝛽𝑟 in (7). The sample 𝐿-moment ratios
(i.e., 𝐿-skew and 𝐿-kurtosis) are denoted by t3 and t4, where
t3 = ℓ3/ℓ2 and t4 = ℓ4/ℓ2.

2.2. 𝐿-Moments for Burr Type III Distributions. Substituting
𝐹
−1
(𝑥) = (𝑢

−1/𝑘
− 1)
1/𝑐

from (2), 𝐹(𝑥) = 𝑢, and 𝑓(𝑥) = 1 in
(6), the 𝑟th PWM for the Burr Type III distributions is given
by

𝛽𝑟 = ∫

1

0

(𝑢
−1/𝑘

− 1)
1/𝑐

𝑢
𝑟
𝑑𝑢. (10)

Equation (10) can also be expressed as

𝛽𝑟 = ∫

1

0

𝑘(𝑢
1/𝑘

)
(𝑘+𝑘𝑟−1/𝑐)−1

(1 − 𝑢
1/𝑘

)
1/𝑐

(𝑘
−1
𝑢
(1/𝑘)−1

𝑑𝑢) .

(11)
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Let 𝑢1/𝑘 = 𝑥. Then, 𝑘−1𝑢(1/𝑘)−1𝑑𝑢 = 𝑑𝑥. Substituting in (11),
the 𝑟th PWM can be expressed as

𝛽𝑟 = 𝑘∫

1

0

𝑥
(𝑘+𝑘𝑟−1/𝑐)−1

(1 − 𝑥)
(1+1/𝑐)−1

𝑑𝑥. (12)

The integral in (12) is a beta function, 𝐵𝑒𝑡𝑎(𝛼, 𝛽), where 𝛼 =

𝑘 + 𝑘𝑟 − 1/𝑐 and 𝛽 = 1 + 1/𝑐 such that 𝑅𝑒𝑎𝑙(𝛼), 𝑅𝑒𝑎𝑙(𝛽) > 0.
Integrating (12) for 𝛽𝑟=0,1,2,3 and substituting these PWMs

into (7) and simplifying gives the following system of equa-
tions for the Type III distributions:

𝜆1 =
𝑘Γ [𝑘 − 1/𝑐] Γ [1 + 1/𝑐]

Γ [1 + 𝑘]
, (13)

𝜆2 = Γ [1 +
1

𝑐
] (

Γ [2𝑘 − 1/𝑐]

Γ [2𝑘]
−
Γ [𝑘 − 1/𝑐]

Γ [𝑘]
) , (14)

𝜏3 = {Γ [1 + 3𝑘] (6Γ [1 + 𝑘] Γ [2𝑘 −
1

𝑐
]

−Γ [1 + 2𝑘] Γ [𝑘 −
1

𝑐
])

−6Γ [1 + 𝑘] Γ [1 + 2𝑘] Γ [3𝑘 −
1

𝑐
]}

× {Γ [1 + 3𝑘] × (Γ [1 + 2𝑘] Γ [𝑘 −
1

𝑐
]

−2Γ [1 + 𝑘] Γ [2𝑘 −
1

𝑐
])}

−1

,

𝜏4 = {Γ [1 + 4𝑘]×{Γ [1 + 3𝑘]×(Γ [1 + 2𝑘] Γ [𝑘 −
1

𝑐
]

−12Γ [1 + 𝑘] Γ [2𝑘 −
1

𝑐
])

+30Γ [1 + 𝑘] Γ [1 + 2𝑘] Γ [3𝑘 −
1

𝑐
]}

−20Γ [1 + 𝑘] Γ [1 + 2𝑘] Γ [1 + 3𝑘] Γ [4𝑘 −
1

𝑐
]}

×{Γ [1 + 3𝑘]×Γ [1 + 4𝑘]×(Γ [1 + 2𝑘] Γ [𝑘 −
1

𝑐
]

− 2Γ [1+𝑘] Γ[2𝑘 −
1

𝑐
])}

−1

.

(15)

2.3. 𝐿-Moments for the Burr Type XII Distributions. Substi-
tuting 𝐹

−1
(𝑥) = ((1 − 𝑢)

−1/𝑘
− 1)
1/𝑐

from (3), 𝐹(𝑥) = 𝑢, and
𝑓(𝑥) = 1 in (6), the 𝑟th PWM for the Burr Type XII distri-
butions is given by

𝛽𝑟 = ∫

1

0

((1 − 𝑢)
−1/𝑘

− 1)
1/𝑐

𝑢
𝑟
𝑑𝑢. (16)

After some manipulations, (16) can be expressed as

𝛽𝑟 = ∫

1

0

−𝑘𝑢
𝑟
((1 − 𝑢)

1/𝑘
)
(𝑘−1/𝑐)−1

(1 − (1 − 𝑢)
1/𝑘

)
1/𝑐

× (−𝑘
−1
(1 − 𝑢)

(1/𝑘)−1
𝑑𝑢) .

(17)

Let (1 − 𝑢)
1/𝑘

= 𝑥. Then, −𝑘−1(1 − 𝑢)
(1/𝑘)−1

𝑑𝑢 = 𝑑𝑥. Substi-
tuting in (17), the 𝑟th PWM can be rewritten as

𝛽𝑟 = 𝑘∫

1

0

(1 − 𝑥
𝑘
)
𝑟
𝑥
(𝑘−1/𝑐)−1

(1 − 𝑥)
(1+1/𝑐)−1

𝑑𝑥. (18)

Integrating (18) for 𝛽𝑟=0,1,2,3 and substituting these PWMs
into (7) and simplifying gives the following system of equa-
tions for the Type XII distributions:

𝜆1 =
𝑘Γ [𝑘 − 1/𝑐] Γ [1 + 1/𝑐]

Γ [1 + 𝑘]
, (19)

𝜆2 = −Γ [1 +
1

𝑐
] (

Γ [2𝑘 − 1/𝑐]

Γ [2𝑘]
−
Γ [𝑘 − 1/𝑐]

Γ [𝑘]
) , (20)

𝜏3 = {Γ [1 + 3𝑘] (−6Γ [1 + 𝑘] Γ [2𝑘 −
1

𝑐
]

+Γ [1 + 2𝑘] Γ [𝑘 −
1

𝑐
])

+ 6Γ [1 + 𝑘] Γ [1 + 2𝑘] Γ [3𝑘 −
1

𝑐
]}

× {Γ [1 + 3𝑘] × (Γ [1 + 2𝑘] Γ [𝑘 −
1

𝑐
]

−2Γ [1 + 𝑘] Γ [2𝑘 −
1

𝑐
])}

−1

,

𝜏4 = {Γ [𝑘] Γ [1 + 4𝑘]

× {Γ [1 + 3𝑘] × {Γ [1 + 2𝑘] Γ [𝑘 −
1

𝑐
]

−12Γ [1 + 𝑘] Γ [2𝑘 −
1

𝑐
]}

+30Γ [1 + 𝑘] Γ [1 + 2𝑘] Γ [3𝑘 −
1

𝑐
]}

−40Γ [2𝑘] Γ[1 + 𝑘]
2
Γ [1 + 3𝑘] Γ [4𝑘 −

1

𝑐
]}

× {Γ [𝑘] Γ [1 + 3𝑘] × Γ [1 + 4𝑘]

× {Γ [1+2𝑘] Γ [𝑘 −
1

𝑐
] − 2Γ [1 + 𝑘] Γ [2𝑘−

1

𝑐
]}}

−1

.

(21)

Given specified values of 𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4)
the systems of equations (15) and (21) can be simultaneously
solved for real values of 𝑐 and 𝑘. The solved values of 𝑐

and 𝑘 can be substituted in (2) and (3), respectively, for
generating the Burr Type III and Type XII distributions.
Further, the solved values of 𝑐 and 𝑘 can be substituted
in (13)-(14) and (19)-(20), respectively, for computing the
values of 𝐿-mean (𝜆1) and 𝐿-scale (𝜆2) associated with the
Type III and Type XII distributions. In the next section, two
examples are provided to demonstrate the aforementioned
methodology and the advantages that 𝐿-moments have over
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Table 3: Chi-square goodness of fit statistics for the conventional (𝐶)moment- and the 𝐿-moment-(𝐿) based Burr Type XII approximations
for the ankle circumference (𝑛 = 252) data in Figure 3.

Percent Expected Obs. (𝐶) Obs. (𝐿) Ankle circumference (𝐶) Ankle circumference (𝐿)
10 25.2 22 18 <21.4866 <21.3760
20 25.2 15 29 21.4866–21.7890 21.3760–21.8701
30 25.2 29 30 21.7890–22.0747 21.8701–22.2360
40 25.2 18 26 22.0747–22.3687 22.2360–22.5606
50 25.2 30 25 22.3687–22.6888 22.5606–22.8795
60 25.2 27 27 22.6888–23.0571 22.8795–23.2201
70 25.2 30 20 23.0571–23.5107 23.2201–23.6175
80 25.2 29 25 23.5107–24.1310 23.6175–24.1426
90 25.2 33 32 24.1310–25.1858 24.1426–25.0244
100 25.2 19 20 25.1858 or more 25.0244 or more

𝜒
2
= 13.6349 𝜒

2
= 7.6825

𝑝 = 0.0181 𝑝 = 0.1746

Table 4: Conventional moment based parameters of the mean (𝜇), standard deviation (𝜎), skew (𝛾3), and kurtosis (𝛾4) along with their
corresponding values of shape parameters (𝑐 and 𝑘) for the four distributions (dashed curves) in Figure 2 (Panel a).

Distribution 𝜇 𝜎 𝛾3 𝛾4 𝑐 𝑘

1 0.306182 0.362801 4.221159 59.454545 1.097740 4.481719
2 0.139427 0.263634 2.828427 12.0 −5.542062 0.027237
3 0.415523 0.242125 1.139547 2.4 2.025127 5.374401
4 0.937510 0.139248 0.0 1.2 −15.776368 0.540152

conventional moments in the contexts of estimation and dis-
tribution fitting.

3. Comparison of 𝐿-Moments with
Conventional Moments

3.1. Estimation. An example to demonstrate the advantages
of 𝐿-moment-based estimation over conventional moment-
based estimation is provided in Figure 2 and Tables 4–7.
Given in Figure 2 are the pdfs of the 𝐹 distribution (3, 10),
Chi-square (𝑑𝑓 = 1), extreme value (0, 1), and logistic (0, 1)
distributions superimposed, respectively, by the Burr Type
XII, Type III, Type XII, and Type III pdfs (dashed curves)
in both (a) conventional moment- and (b) 𝐿-moment-
based systems. The conventional moment-based parameters
of skew (𝛾3) and kurtosis (𝛾4) associated with these four
distributions, given in Table 4, were computed by using
equations (11)−(13) from [2, page 2211]. The values of shape
parameters (𝑐 and 𝑘) given in Table 4 were determined by
solving equations (16) and (17) from [2, page 2211].The values
of 𝑐 and 𝑘 were used in (4) and (5) to superimpose the
conventional moment-based Burr Type XII, Type III, Type
XII, and Type III distributions as shown in Figure 2(a).

The 𝐿-moment-based parameters of 𝐿-skew (𝜏3) and
𝐿-kurtosis (𝜏4) associated with the four distributions in
Figure 2, given in Table 5, were obtained in three steps as
follows: (a) compute the values of PWMs (𝛽𝑟=0,1,2,3) using
(6), (b) substitute these PWMs into (7) to obtain the values
of the first four 𝐿-moments, and (c) compute the values of
𝜏3 and 𝜏4 using 𝜏3 = 𝜆3/𝜆2 and 𝜏4 = 𝜆4/𝜆2. The values

of shape parameters (𝑐 and 𝑘) given in Table 5 were deter-
mined by solving the systems of equations (15) and (21),
respectively. These values of 𝑐 and 𝑘 were used in (4) and (5)
to superimpose the 𝐿-moment-based Burr Type XII, Type III,
Type XII, and Type III distributions as shown in Figure 2(b).

To superimpose the Type III or Type XII distribution,
the quantile function 𝑞(𝑢) in (2) or (3) was transformed into
(a) (𝑋𝜎 − 𝜇𝑆 + 𝑆𝑞(𝑢))/𝜎, and (b) (ℓ1𝜆2 − 𝜆1ℓ2 + ℓ2𝑞(𝑢))/

𝜆2, respectively, where (𝑋, 𝑆) and (𝜇, 𝜎) are the values of
mean, standard deviation, whereas (ℓ1, ℓ2) and (𝜆1, 𝜆2) are
the values of 𝐿-mean, 𝐿-scale obtained from the original
distribution and the respective Burr Type III or Type XII
approximation, respectively.

The advantages of𝐿-moment-based estimators over those
based on conventional moments can also be demonstrated
in the context of Burr Type III and Type XII distributions
by considering the Monte Carlo simulation results associated
with the indices for the percentage of relative bias (RB%) and
standard error (St. error) reported in Tables 6 and 7.

Specifically, a Fortran [33] algorithm was written to
simulate 25,000 independent samples of sizes 𝑛 = 25 and 𝑛 =

1000, and the conventional moment-based estimates (𝑔3 and
𝑔4) of skew and kurtosis (𝛾3 and 𝛾4) and the 𝐿-moment based
estimates (t3 and t4) of 𝐿-skew and 𝐿-kurtosis (𝜏3 and 𝜏4)
were computed for each of the (2× 25, 000) samples based on
the parameters and the values of 𝑐 and 𝑘 listed in Tables 4 and
5.The estimates (𝑔3 and𝑔4) of 𝛾3 and 𝛾4 were computed based
on Fisher’s 𝑘-statistics formulae [23, pages 47-48], whereas
the estimates (t3 and t4) of 𝜏3 and 𝜏4 were computed using
(7) and (9). Bias-corrected accelerated bootstrapped average
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Table 5: 𝐿-moment-based parameters of 𝐿-mean (𝜆1), 𝐿-scale (𝜆2), 𝐿-skew (𝜏3), and 𝐿-kurtosis (𝜏4) along with their corresponding values
of shape parameters (𝑐 and 𝑘) for the four distributions (dashed curves) in Figure 2 (Panel b).

Distribution 𝜆1 𝜆2 𝜏3 𝜏4 𝑐 𝑘

1 0.441134 0.221816 0.387355 0.233548 1.227122 3.417227
2 0.349660 0.226233 0.464102 0.226497 −2.944030 0.126960
3 0.643787 0.182777 0.169925 0.150375 2.498521 2.913452
4 0.936479 0.085223 0.0 0.166667 −13.875566 0.562179

Table 6: Skew (𝛾3) and kurtosis (𝛾4) results for the conventional moment procedure.

Distribution Parameter Estimate 95% Bootstrap C.I. St. error RB%
𝑛 = 25

1 𝛾3 = 4.2212 𝑔3 = 1.75 1.7397, 1.7597 0.00510 −58.54

𝛾4 = 59.4545 𝑔4 = 3.34 3.2911, 3.3871 0.02430 −94.38

2 𝛾3 = 2.8284 𝑔3 = 2.151 2.1428, 2.1596 0.00429 −23.95

𝛾4 = 12.0 𝑔4 = 4.215 4.1715, 4.2614 0.02306 −64.88

3 𝛾3 = 1.1395 𝑔3 = 0.7929 0.7859, 0.7994 0.00346 −30.42

𝛾4 = 2.4 𝑔4 = 0.5014 0.4786, 0.5220 0.01111 −79.11

4 𝛾3 = 0.0 𝑔3 = −0.051 −0.0585, −0.0430 0.00391 —
𝛾4 = 1.2 𝑔4 = 0.3396 0.3243, 0.3552 0.00791 −71.70

𝑛 = 1000

1 𝛾3 = 4.2212 𝑔3 = 3.606 3.5888, 3.6275 0.00972 −14.57

𝛾4 = 59.4545 𝑔4 = 26.29 25.8657, 26.7366 0.22370 −55.78

2 𝛾3 = 2.8284 𝑔3 = 2.761 2.7548, 2.7681 0.00335 −2.38

𝛾4 = 12.0 𝑔4 = 10.17 10.0615, 10.3107 0.06265 −15.25

3 𝛾3 = 1.1395 𝑔3 = 1.124 1.1219, 1.1266 0.00122 −1.36

𝛾4 = 2.4 𝑔4 = 2.266 2.2451, 2.2861 0.01048 −5.58

4 𝛾3 = 0.0 𝑔3 = −0.0045 −0.0064, −0.0025 0.00101 —
𝛾4 = 1.2 𝑔4 = 1.158 1.1487, 1.1683 0.00498 −3.5

Table 7: 𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4) results for the 𝐿-moment procedure.

Distribution Parameter Estimate 95% Bootstrap C.I. St. error RB%
𝑛 = 25

1 𝜏3 = 0.3874 t3 = 0.3637 0.3621, 0.3652 0.00078 −6.12

𝜏4 = 0.2335 t4 = 0.2149 0.2134, 0.2164 0.00078 −7.97

2 𝜏3 = 0.4641 t3 = 0.4446 0.4431, 0.4461 0.00076 −4.20

𝜏4 = 0.2265 t4 = 0.2024 0.2007, 0.2042 0.00087 −10.64

3 𝜏3 = 0.1699 t3 = 0.1614 0.1601, 0.1627 0.00066 −5.00

𝜏4 = 0.1504 t4 = 0.1472 0.1462, 0.1483 0.00054 −2.13

4 𝜏3 = 0.0 t3 = −0.0019 −0.0033, −0.0005 0.00071 —
𝜏4 = 0.1667 t4 = 0.1653 0.1643, 0.1663 0.00051 −0.84

𝑛 = 1000

1 𝜏3 = 0.3874 t3 = 0.3865 0.3863, 0.3868 0.00014 −0.23

𝜏4 = 0.2335 t4 = 0.2328 0.2325, 0.2331 0.00015 −0.30

2 𝜏3 = 0.4641 t3 = 0.4633 0.4630, 0.4636 0.00015 −0.17

𝜏4 = 0.2265 t4 = 0.2255 0.2251, 0.2258 0.00019 −0.44

3 𝜏3 = 0.1699 t3 = 0.1696 0.1694, 0.1698 0.00010 −0.18

𝜏4 = 0.1504 t4 = 0.1502 0.1501, 0.1504 0.00008 —

4 𝜏3 = 0.0 t3 = −0.0002 −0.0004, 0.00002 0.00011 —
𝜏4 = 0.1667 t4 = 0.1667 0.1665, 0.1668 0.00007 —
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Figure 2: The pdfs (dashed curves) of the four distributions: Distribution 1 := Burr Type XII ≈ 𝐹 distribution (3, 10), Distribution 2 := Burr
Type III ≈ Chi square (𝑑𝑓 = 1), Distribution 3 := Burr Type XII ≈ Extreme Value (0, 1), and Distribution 4 := Burr Type III ≈ Logistic (0, 1)
superimposed by the (a) conventional moment- and (b) 𝐿-moment-based Burr distributions.
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Conventional moment-based Burr Type XII
pdf superimposed on the histogram of ankle
circumference data (𝑛 = 252).

Estimates Shape parameters

𝑋 = 23.102381

𝑆 = 1.694893

𝑔3 = 2.255134

𝑔4 = 11.945194

𝑐 = 1.549059

𝑘 = 4.016368

(a)
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𝐿-moment-based Burr Type XII pdf
superimposed on the histogram of ankle
circumference data (𝑛 = 252).

Estimates Shape parameters
𝑐 = 6.250818

𝑘 = 0.992608

󰪓1 = 23.102381

󰪓2 = 0.849172

𝓉3 = 0.161612

𝓉4 = 0.188653

(b)

Figure 3: Histograms of the ankle circumference data superimposed by (a) conventional moment- and (b) 𝐿-moment-based Burr Type
XII distributions. To superimpose the Burr Type XII distribution (dashed curves), the quantile function 𝑞(𝑢) from (3) was transformed as
(a) (𝑋𝜎 − 𝜇𝑆 + 𝑆𝑞(𝑢))/𝜎, and (b) (ℓ1𝜆2 − 𝜆1ℓ2 + ℓ2𝑞(𝑢))/𝜆2, respectively, where (𝑋, 𝑆) and (𝜇, 𝜎) are the values of mean and standard
deviation, whereas (ℓ1, ℓ2) and (𝜆1, 𝜆2) are the values of 𝐿-mean and 𝐿-scale obtained from the actual data and the Burr Type XII distribution,
respectively.

estimates (Estimate), associated 95% confidence intervals
(95% Bootstrap C.I.), and standard errors (St. error) were
obtained for each type of estimates using 10,000 resamples via
the commercial software package Spotfire S+ [34]. Further,
if a parameter was outside its associated 95% bootstrap C.I.,
then the percentage of relative bias (RB%) was computed for
the estimate as

RB% = 100 ×
(Estimate − Parameter)

Parameter
. (22)

The results in Tables 6 and 7 illustrate that the 𝐿-moment-
based estimators are superior to their conventional moment-
based counterparts in terms of both smaller relative bias
and error. These advantages are most pronounced in the
context of smaller sample sizes and higher order moments.
For example for the Distribution 1, given a sample of size
𝑛 = 25, the conventional moment-based estimates (𝑔3 and
𝑔4) generated in the simulation were, on average, 41.46%
and 5.62% of their corresponding parameters (𝛾3 and 𝛾4). On
the other hand, for the same Distribution 1, the 𝐿-moment-
based estimates (t3 and t4) generated in the simulation study
were, on average, 93.88% and 92.03% of their corresponding
parameters (𝜏3 and 𝜏4). Thus, the relative biases of estimators
based on 𝐿-moments are essentially negligible compared to
those associated with the estimators based on conventional
moments. Also, it can be verified that the standard errors
associated with the estimates t3 and t4 are relatively much

smaller and more stable than the standard errors associated
with the estimates 𝑔3 and 𝑔4.

Inspection of the graphs in Figures 2(a) and 2(b) and the
Monte Carlo simulation results in Tables 6 and 7 indicate that
the 𝐿-moment-based Type III and Type XII pdfs provide a
more accurate approximation of the four distributions than
those based on conventional moment theory.

3.2. Distribution Fitting. Figure 3 shows the conventional
moment- and the 𝐿-moment-based Burr Type XII pdfs
superimposed on the histogram of ankle circumference data
obtained from 252 adult males (http://lib.stat.cmu.edu/data-
sets/bodyfat) as cited in Headrick [35, page 48].

The conventional moment-based estimates (𝑔3 and 𝑔4)
of skew and kurtosis (𝛾3 and 𝛾4) and the 𝐿-moment-based
estimates (t3 and t4) of 𝐿-skew and 𝐿-kurtosis (𝜏3 and 𝜏4)
were computed for the sample of size 𝑛 = 252 participants.
The estimates of 𝛾3 and 𝛾4 were computed based on Fisher’s
𝑘-statistics formulae [23, pages 47-48], whereas the estimates
of 𝜏3 and 𝜏4 were computed using (7) and (9), respectively.
These sample estimates were then used to solve for the values
of shape parameters (𝑐 and 𝑘) using (a) equations (16)−(17)
from [2, page 2211] and (b) (21). The solved values of 𝑐 and 𝑘

were subsequently used in (5) to superimpose the parametric
plots of the Burr Type XII pdfs shown in Figure 3.

Inspection of the two panels in Figure 3 illustrates that
the 𝐿-moment-based Type XII pdf provides a better fit to
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the sample data. The Chi-square goodness of fit statistics
along with their corresponding 𝑝 values given in Table 3 pro-
vide evidence that the conventional moment-based Type XII
distribution does not provide a good fit to the actual data,
whereas the 𝐿-moment-based Type XII distribution fits very
well. The degrees of freedom for the Chi-square goodness of
fit tests were computed as 𝑑𝑓 = 5 = 10 (class intervals) − 4
(estimates of the parameters) − 1 (sample size).

4. 𝐿-Correlations for the Burr Type III
and Type XII Distributions

Let 𝑌𝑗 and 𝑌𝑘 be two random variables with cdfs 𝐹(𝑌𝑗) and
𝐹(𝑌𝑘), respectively. The second 𝐿-moments of 𝑌𝑗 and 𝑌𝑘 can
be defined as [31]

𝜆2 (𝑌𝑗) = 2Cov (𝑌𝑗, 𝐹 (𝑌𝑗)) ,

𝜆2 (𝑌𝑘) = 2Cov (𝑌𝑘, 𝐹 (𝑌𝑘)) .

(23)

The second 𝐿-comoments of 𝑌𝑗 toward 𝑌𝑘 and 𝑌𝑘 toward 𝑌𝑗

are given as

𝜆2 (𝑌𝑗, 𝑌𝑘) = 2Cov (𝑌𝑗, 𝐹 (𝑌𝑘)) ,

𝜆2 (𝑌𝑘, 𝑌𝑗) = 2Cov (𝑌𝑘, 𝐹 (𝑌𝑗)) .

(24)

The 𝐿-correlations of 𝑌𝑗 toward 𝑌𝑘 and 𝑌𝑘 toward 𝑌𝑗 are
subsequently defined as

𝜂𝑗𝑘 =

𝜆2 (𝑌𝑗, 𝑌𝑘)

𝜆2 (𝑌𝑗)

, (25)

𝜂𝑘𝑗 =

𝜆2 (𝑌𝑘, 𝑌𝑗)

𝜆2 (𝑌𝑘)
. (26)

The 𝐿-correlation given in (25) (or, (26)) is bounded in the
interval −1 ≤ 𝜂𝑗𝑘 ≤ 1. A value of 𝜂𝑗𝑘 = 1 (or 𝜂𝑗𝑘 = −1)

implies that 𝑌𝑗 and 𝑌𝑘 have a strictly and monotonically
increasing (or decreasing) relationship. See Serfling and
Xiao [31] for further details on the topics related to the 𝐿-
correlation.

The extension of the Burr Type III and Type XII distri-
butions to multivariate level can be obtained by specifying 𝑇
quantile functions as given in (2) and (3) with a specified 𝐿-
correlation structure. Specifically, let 𝑍1, . . . , 𝑍𝑇 denote stan-
dard normal variables with cdfs and the joint pdf associated
with 𝑍𝑗 and 𝑍𝑘 given by the following expressions:

Φ(𝑍𝑗) = ∫

𝑧𝑗

−∞

(2𝜋)
−1/2 exp{−

V2𝑗

2
}𝑑V𝑗, (27)

Φ(𝑍𝑘) = ∫

𝑧𝑘

−∞

(2𝜋)
−1/2 exp{−

V2𝑘
2
}𝑑V𝑘, (28)

𝑓𝑗𝑘 = (2𝜋(1 − 𝑟
2

𝑗𝑘)
1/2

)

−1

exp {−(2 (1 − 𝑟
2

𝑗𝑘))
−1

× (𝑧
2

𝑗 + 𝑧
2

𝑘 − 2𝑟𝑗𝑘𝑧𝑗𝑧𝑘) } ,

(29)

where 𝑟𝑗𝑘 in (29) is the intermediate correlation (IC) between
𝑍𝑗 and 𝑍𝑘. Using the cdfs in (27) and (28) as zero-one
uniform deviates, that is, Φ(𝑍𝑗), Φ(𝑍𝑘) ∼𝑈(0, 1), the quan-
tile function defined in either (2) or (3) can be ex-pressed as
a function ofΦ(𝑍𝑗), orΦ(𝑍𝑘) (e.g., 𝑞𝑗(Φ(𝑍𝑗)) or 𝑞𝑘(Φ(𝑍𝑘))).
Thus, the 𝐿-correlation of 𝑌𝑗 = 𝑞𝑗(Φ(𝑍𝑗)) toward 𝑌𝑘 =

𝑞𝑘(Φ(𝑍𝑘)) can be determined using (25) with the denomina-
tor standardized to 𝜆2(𝑌𝑗) = 1/√𝜋 for the standard normal
distribution as

𝜂𝑗𝑘 = 2√𝜋∬

∞

−∞

𝑥𝑗 (𝑞𝑗 (Φ (𝑍𝑗)))Φ (𝑧𝑘) 𝑓𝑗𝑘 𝑑𝑧𝑗 𝑑𝑧𝑘.

(30)

The variable 𝑥𝑗(𝑞𝑗(Φ(𝑍𝑗))) in (30) is the standardized quan-
tile function of (2) or (3) such that it has an 𝐿-mean (or
arithmetic mean) of zero and 𝐿-scale equal to that of the
standard normal distribution. That is, the quantile function
𝑌𝑗 = 𝑞𝑗(Φ(𝑍𝑗)) is standardized by a linear transformation as

𝑥𝑗 (𝑞𝑗 (Φ (𝑍𝑗))) = 𝛿 (𝑞𝑗 (Φ (𝑍𝑗)) − 𝜆1) , (31)

where 𝜆1 is the mean from (13) or (19) and 𝛿 is a constant
that scales 𝜆2 in (14) or (20) and in the denominator of
(25) to 1/√𝜋. In particular, 𝛿 for the Type III and Type XII
distributions can be expressed as

𝛿(Type III)

=
−Γ [𝑘] Γ [2𝑘]

√𝜋 {Γ [1 + 1/𝑐] (Γ [2𝑘] Γ [𝑘 − 1/𝑐] − Γ [𝑘] Γ [2𝑘 − 1/𝑐])}
,

(32)

𝛿(Type XII)

=
Γ [𝑘] Γ [2𝑘]

√𝜋 {Γ [1 + 1/𝑐] (Γ [2𝑘] Γ [𝑘 − 1/𝑐] − Γ [𝑘] Γ [2𝑘 − 1/𝑐])}
.

(33)

The next step is to use (30) to solve for the values of the 𝑇(𝑇−

1)/2 ICs (𝑟𝑗𝑘) such that the 𝑇 specified Type III and Type XII
distributions have their specified 𝐿-correlation structure.

Analogously, the 𝐿-correlation of 𝑌𝑘 = 𝑞𝑘(Φ(𝑍𝑘)) toward
𝑌𝑗 = 𝑞𝑗(Φ(𝑍𝑗)) is given as

𝜂𝑘𝑗 = 2√𝜋∬

∞

−∞

𝑥𝑘 (𝑞𝑘 (Φ (𝑍𝑘)))Φ (𝑧𝑗) 𝑓𝑗𝑘𝑑𝑧𝑘 𝑑𝑧𝑗.

(34)

Note that in general, the 𝐿-correlation of 𝑌𝑗 = 𝑞𝑗(Φ(𝑍𝑗))

toward 𝑌𝑘 = 𝑞𝑘(Φ(𝑍𝑘)) in (30) is not equal to the 𝐿-
correlation of 𝑌𝑘 = 𝑞𝑘(Φ(𝑍𝑘)) toward 𝑌𝑗 = 𝑞𝑗(Φ(𝑍𝑗)) in
(34). These 𝐿-correlations are equal only when the values
of shape parameters 𝑐 and 𝑘 associated with 𝑞𝑗(Φ(𝑍𝑗))

and 𝑞𝑘(Φ(𝑍𝑘)) are equal (i.e., when the two distributions
are the same). Provided in Algorithm 1 is a source code
written in Mathematica [36, 37], which shows an example
for computing ICs(𝑟𝑗𝑘) for the 𝐿-correlation procedure. The
steps for simulating correlated Burr Type III and Type XII
distributions with specified values of 𝐿-skew (𝜏3), 𝐿-kurtosis
(𝜏4), and with specified 𝐿-correlation structure are given in
Section 5.
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(∗ Intermediate Correlation ∗)
𝑟12 = 0.784047;
Needs[“MultivariateStatistics`”]
𝑓12 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟12}, {𝑟12, 1}}], {𝑍1, 𝑍2}];
Φ1 = CDF[NormalDistribution[0, 1], 𝑍1];
Φ2 = CDF[NormalDistribution[0, 1], 𝑍2];
(∗ Parameters for dashed curves of Distribution 1 and Distribution 2 in Figure 2 (Panel b) ∗)
𝑐1 = 1.227122;
𝑘1 = 3.417227;
𝜆1 = 0.441134;
𝛿1 = 2.543505;
𝑐2 = −2.944030;
𝑘2 = 0.126960;
(∗ Quantile function from (3) ∗)
𝑦1 = ((1 − Φ1)

(−1/𝑘1)
− 1)

(1/𝑐1)

;
(∗ Standardizing constants 𝜆1 and 𝛿1 were obtained, respectively, from (19) and (33) ∗)
𝑥1 = 𝛿1 ∗ (𝑦1 − 𝜆1);
(∗ Compute the specified 𝐿-correlation ∗)
𝜂12 = 2√𝜋 ∗ NIntegrate[𝑥1 ∗ Φ2 ∗ 𝑓12, {𝑍1, −8, 8}, {𝑍2, −8, 8}, Method → {“MultiDimensionalRule”,
“Generators”→ 9}]
0.80

Algorithm 1: Mathematica source code for computing intermediate correlations for specified 𝐿-correlations.The example is for distribution
𝑗 = 1 toward distribution 𝑘 = 2 (𝜂12). See dashed curves of Distribution 1 and Distribution 2 in Figure 2 (Panel b), specified correlation in
Table 8, and intermediate correlation in Table 10.

5. The Procedure for Monte Carlo Simulation
with an Example

The procedure for simulating Burr Type III and Type XII dis-
tributions with specified 𝐿-moments and 𝐿-correlations can
be summarized in the following six steps.

(1) Specify the 𝐿-moments for 𝑇 transformations of the
form in (2) and (3), that is, 𝑞1(Φ(𝑧1)), . . . , 𝑞𝑇(Φ(𝑧𝑇)),
and obtain the solutions for the shape parameters 𝑐
and 𝑘 by simultaneously solving the systems of equa-
tions (15) and (21) for the specified values of 𝐿-skew
(𝜏3) and 𝐿-kurtosis (𝜏4) for each distribution. Specify
a 𝑇 × 𝑇 matrix of 𝐿-correlations (𝜂𝑗𝑘) for 𝑞𝑗(Φ(𝑧𝑗))

toward 𝑞𝑘(Φ(𝑍𝑘)), where 𝑗 < 𝑘 ∈ {1, 2, . . . , 𝑇}.

(2) Compute the values of intermediate (Pearson) corre-
lations (ICs), 𝑟𝑗𝑘, by substituting the value of specified
𝐿-correlation (𝜂𝑗𝑘) and the solved values of 𝑐 and 𝑘

from Step (1) into the left- and the right-hand sides
of (30), respectively, and then numerically integrating
(30) to solve for 𝑟𝑗𝑘. See Algorithm 1 for an example.
Repeat this step separately for all 𝑇(𝑇 − 1)/2 pairwise
combinations of ICs.

(3) Assemble the ICs computed in Step (2) into a 𝑇 ×

𝑇 matrix and then decompose this matrix using
Cholesky factorization. Note that this step requires
the IC matrix to be positive definite.

(4) Use elements of the matrix resulting from Cholesky
factorization of Step (3) to generate 𝑇 standard nor-
mal variables (𝑍1, . . . , 𝑍𝑇) correlated at the IC levels
as follows:

𝑍1 = 𝑎11𝑉1

𝑍2 = 𝑎12𝑉1 + 𝑎22𝑉2

...

𝑍𝑗 = 𝑎1𝑗𝑉1 + 𝑎2𝑗𝑉2 + ⋅ ⋅ ⋅ + 𝑎𝑖𝑗𝑉𝑖 + ⋅ ⋅ ⋅ + 𝑎𝑗𝑗𝑉𝑗

...

𝑍𝑇 = 𝑎1𝑇𝑉1 + 𝑎2𝑇𝑉2 + ⋅ ⋅ ⋅ + 𝑎𝑖𝑇𝑉𝑖 + ⋅ ⋅ ⋅ + 𝑎𝑗𝑇𝑉𝑗 + ⋅ ⋅ ⋅ + 𝑎𝑇𝑇𝑉𝑇,

(35)
where 𝑉1, . . . , 𝑉𝑇 are independent standard normal
random variables, and where 𝑎𝑖𝑗 is the element in the
𝑖th row and 𝑗th column of the matrix resulting from
Cholesky factorization of Step (3).

(5) Substitute𝑍1, . . . , 𝑍𝑇 from Step (4) into the following
Taylor series-based expansion for computing the cdf,
Φ(𝑍𝑗), of standard normal distribution [38]

Φ(𝑍𝑗)

= (
1

2
) + 𝜙 (𝑍𝑗){𝑍𝑗 +

𝑍
3
𝑗

3
+

𝑍
5
𝑗

(3 ⋅ 5)
+

𝑍
7
𝑗

(3 ⋅ 5 ⋅ 7)
+ ⋅ ⋅ ⋅ } ,

(36)
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Table 8: Specified correlations for the distributions in Figure 2.

1 2 3 4
1 1.0
2 0.80 1.0
3 0.75 0.70 1.0
4 0.60 0.50 0.40 1.0

Table 9: Intermediate correlations for the conventional product
moment-based (Pearson) correlation procedure.

1 2 3 4
1 1.0
2 0.868005 1.0
3 0.823239 0.804802 1.0
4 0.718908 0.646685 0.415208 1.0

where 𝜙(𝑍𝑗) is the pdf of standard normal distribu-
tion and the absolute error associated with (36) is less
than 8 × 10

−16.

(6) Substitute the uniform (0, 1) variables, Φ(𝑍𝑗), gen-
erated in Step (5) into the 𝑇 equations of the form
𝑞𝑗(Φ(𝑧𝑗)) in (2) and (3) to generate the Burr Type
III and Type XII distributions with specified values
of 𝐿-skew (𝜏3), 𝐿-kurtosis (𝜏4), and with specified 𝐿-
correlation structure.

For the purpose of evaluating the proposed method-
ology and demonstrating the steps above, an example is
subsequently provided to compare the 𝐿-correlation-based
procedure with the conventional product moment-based
(Pearson) correlation procedure. Specifically, the distribu-
tions in Figure 2 (dashed curves) are used as a basis for a
comparison using the specified correlation matrix in Table 8
where both strong and moderate correlations are considered
in a single matrix. Let the four distributions in Figure 2 be
𝑌1= 𝑞1(Φ(𝑍1)), 𝑌2 = 𝑞2(Φ(𝑍2)), 𝑌3 = 𝑞3(Φ(𝑍3)), and
𝑌4 = 𝑞4(Φ(𝑍4)), where 𝑌2 and 𝑌4 are the quantile functions
from (2), and 𝑌1 and 𝑌3 are the quantile functions from (3).
The specified values of conventional and 𝐿-moments associ-
ated with these four distributions are given in Tables 4 and 5,
respectively. Presented in Tables 9 and 10 are the intermediate
correlations (ICs) obtained for the conventional product
moment-based (Pearson) correlation and 𝐿-moment-based
𝐿-correlation procedures, respectively, for the distributions
in Figure 2. Provided in Algorithm 2 is a source code written
in Mathematica [36, 37], which shows an example for com-
puting ICs (𝑟𝑗𝑘) for the conventional product moment-based
(Pearson) correlation procedure. See also Headrick et al. [2,
pages 2217–2221] for a detailed methodology for simulating
correlated Burr distributions through the method of Pearson
correlation.

Provided in Tables 11 and 12 are the results of Cholesky
factorization on the IC matrices in Tables 9 and 10, respec-
tively. The elements of matrices in Tables 11 and 12 are used
to generate 𝑍1, . . . , 𝑍4 correlated at the IC levels by making
use of the formulae (35) in Step 4 with 𝑇 = 4. The values of

Table 10: Intermediate correlations for the 𝐿-moment-based 𝐿-
correlation procedure.

1 2 3 4
1 1.0
2 0.784047 1.0
3 0.731921 0.679639 1.0
4 0.579134 0.478463 0.395474 1.0

Table 11: Cholesky decomposition on the intermediate correlations
from Table 9.

𝑎11 = 1.0 𝑎12 = 0.868005 𝑎13 = 0.823239 𝑎14 = 0.718908

𝑎21 = 0.0 𝑎22 = 0.496556 𝑎23 = 0.181704 𝑎24 = 0.045655

𝑎31 = 0.0 𝑎32 = 0.0 𝑎33 = 0.537830 𝑎34 = −0.343828

𝑎41 = 0.0 𝑎42 = 0.0 𝑎43 = 0.0 𝑎44 = 0.602387

Table 12: Cholesky decomposition on the intermediate correlations
from Table 10.

𝑎11 = 1.0 𝑎12 = 0.784047 𝑎13 = 0.731921 𝑎14 = 0.579134

𝑎21 = 0.0 𝑎22 = 0.620701 𝑎23 = 0.170417 𝑎24 = 0.039301

𝑎31 = 0.0 𝑎32 = 0.0 𝑎33 = 0.659734 𝑎34 = −0.053210

𝑎41 = 0.0 𝑎42 = 0.0 𝑎43 = 0.0 𝑎44 = 0.812544

𝑍1, . . . , 𝑍4 are then used in (36) to obtain the Taylor series-
based approximations of the cdfs Φ(𝑍1), Φ(𝑍2), Φ(𝑍3),
and Φ(𝑍4), which are treated as uniform (0, 1) variables.
These uniform variables are used in (2) and (3) to obtain
the quantile functions 𝑞1(Φ(𝑍1)), 𝑞2(Φ(𝑍2)), 𝑞3(Φ(𝑍3)), and
𝑞4(Φ(𝑍4)) to generate the four distributions in Figure 2 that
are correlated at the specified correlation level of Table 8.

For the Monte Carlo simulation, Fortran [33] algorithm
was written for both procedures to generate 25,000 inde-
pendent sample estimates for the specified parameters of (a)
conventional product moment-based (Pearson) correlation
(𝜌𝑗𝑘) and (b) 𝐿-moment-based 𝐿-correlation (𝜂𝑗𝑘) based on
samples of sizes 𝑛 = 25 and 𝑛 = 1000. The estimate for 𝜌𝑗𝑘
was based on the usual formula for the Pearson correlation
statistic. The estimate of 𝜂𝑗𝑘 was computed by substituting
(23) and (24) into (25), where the empirical forms of the cdfs
were used in (23) and (24). The sample estimates 𝜌𝑗𝑘 and
𝜂𝑗𝑘 were both transformed using Fisher’s 𝑧󸀠 transformations.
Bias-corrected accelerated bootstrapped average estimates
(Estimate), 95% bootstrap confidence intervals (95% Boot-
strap C.I.), and standard errors (St. error) were obtained
for the estimates associated with the parameters (𝑧󸀠(𝜌𝑗𝑘) and
𝑧
󸀠
(𝜂𝑗𝑘)

) using 10,000 resamples via the commercial software
package Spotfire S+ [34]. The bootstrap results associated
with the estimates of 𝑧󸀠(𝜌𝑗𝑘) and 𝑧

󸀠
(𝜂𝑗𝑘)

were transformed back to
their original metrics. Further, if a parameter was outside its
associated 95% bootstrap C.I., then the percentage of relative
bias (RB%) was computed for the estimate as in (22). The
results of this simulation are presented in Tables 13 and 14 and
are discussed in Section 6.
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(∗ Intermediate Correlation ∗)
𝑟12 = 0.868005;
Needs[“MultivariateStatistics`”]
𝑓12 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟12}, {𝑟12, 1}}], {𝑍1, 𝑍2}];
Φ1 = CDF[NormalDistribution[0, 1], 𝑍1];
Φ2 = CDF[NormalDistribution[0, 1], 𝑍2];
(∗ Parameters for dashed curves of Distribution 1 and Distribution 2 in Figure 2 (Panel a) ∗)
𝑐1 = 1.097740;
𝑘1 = 4.481719;
𝑐2 = −5.542062;
𝑘2 = 0.027237;
(∗ Quantile function from (3) and (2) ∗)
𝑦1 = ((1 − Φ1)

(−1/𝑘1)
− 1)

(1/𝑐1)

𝑦2 = (Φ2
(−1/𝑘2) − 1)

(1/𝑐2);
(∗ Standardizing constants 𝜇1, 𝜇2 and 𝜎1, 𝜎2 are obtained, respectively, using (14) and (15)
from Headrick et al. [2, page 2211] ∗)
𝑥1 = (𝑦1 − 𝜇1)/𝜎1;
𝑥2 = (𝑦2 − 𝜇2)/𝜎2;
(∗ Compute the specified conventional product moment-based (Pearson) correlation ∗)
𝜌12 = NIntegrate[𝑥1 ∗ 𝑥2 ∗ 𝑓12, {𝑍1, −8, 8}, {𝑍2, −8, 8}, Method → {“MultiDimensionalRule”,
“Generators”→ 9}]
0.80

Algorithm 2: Mathematica source code for computing intermediate correlations for specified conventional product moment-based
(Pearson) correlations.The example is for distribution 𝑗 = 1 and distribution 𝑘 = 2 (𝜌12). See dashed curves of Distribution 1 and Distribution
2 in Figure 2 (Panel a), specified correlation in Table 8 and intermediate correlation in Table 9.

Table 13: Correlation results for the conventional product moment-based (Pearson) correlations.

Parameter Estimate 95% Bootstrap C.I. St. error RB%
𝑛 = 25

𝜌12 = 0.80 0.8252 (0.8239, 0.8266) 0.00220 3.15
𝜌13 = 0.75 0.7910 (0.7899, 0.7922) 0.00155 5.47
𝜌14 = 0.60 0.6467 (0.6452, 0.6481) 0.00124 7.78
𝜌23 = 0.70 0.7125 (0.7110, 0.7141) 0.00161 1.79
𝜌24 = 0.50 0.5167 (0.5148, 0.5185) 0.00132 3.34
𝜌34 = 0.40 0.4117 (0.4094, 0.4137) 0.00131 2.93

𝑛 = 1000

𝜌12 = 0.80 0.8026 (0.8025, 0.8031) 0.00038 0.33
𝜌13 = 0.75 0.7547 (0.7545, 0.7551) 0.00034 0.63
𝜌14 = 0.60 0.6044 (0.6040, 0.6047) 0.00026 0.73
𝜌23 = 0.70 0.7003 (0.7001, 0.7006) 0.00026 0.04
𝜌24 = 0.50 0.5007 (0.5004, 0.5010) 0.00021 0.14
𝜌34 = 0.40 0.4003 (0.4000, 0.4006) 0.00020 —

6. Discussion and Conclusion

One of the advantages that 𝐿-moments have over conven-
tionalmoments can be expressed in the context of estimation.
The 𝐿-moment-based estimators of 𝐿-skew and 𝐿-kurtosis
can be far less biased than the conventional moment-based
estimators of skew and kurtosis when samples are drawn
from the distributions with more severe departures from
normality [18, 25–29, 31]. Inspection of the simulation results
in Tables 6 and 7 clearly indicates that this is the case for
the Burr Type III and Type XII distributions. That is, the

superiority that estimates of 𝐿-moment ratios (𝜏3 and 𝜏4)
have over their corresponding conventional moment-based
estimates of skew and kurtosis (𝛾3 and 𝛾4) is obvious. For
example, for samples of size 𝑛 = 25, the estimates of 𝛾3 and
𝛾4 for Distribution 1 were, on average, 41.46% and 5.62% of
their associated parameters, whereas the estimates of 𝜏3 and
𝜏4 were 93.88% and 92.03% of their associated parameters.
This advantage of 𝐿-moment-based estimates can also be
expressed by comparing their relative standard errors (RSEs),
where RSE = {(St. error/Estimate) × 100}. Comparing Tables
6 and 7, it is evident that the estimates of 𝜏3 and 𝜏4 are more
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Table 14: Correlation results for the 𝐿-moment-based 𝐿-correlation procedure.

Parameter Estimate 95% Bootstrap C.I. St. error RB%
𝑛 = 25

𝜂12 = 0.80 0.8062 (0.8048, 0.8072) 0.00172 0.78
𝜂13 = 0.75 0.7571 (0.7556, 0.7585) 0.00172 0.95
𝜂14 = 0.60 0.6047 (0.6026, 0.6068) 0.00167 0.78
𝜂23 = 0.70 0.7086 (0.7070, 0.7105) 0.00180 1.23
𝜂24 = 0.50 0.5057 (0.5031, 0.5082) 0.00176 1.14
𝜂34 = 0.40 0.4054 (0.4030, 0.4078) 0.00145 1.35

𝑛 = 1000

𝜂12 = 0.80 0.8001 (0.8000, 0.8003) 0.00026 —
𝜂13 = 0.75 0.7502 (0.7500, 0.7504) 0.00026 —
𝜂14 = 0.60 0.6001 (0.5997, 0.6004) 0.00026 —
𝜂23 = 0.70 0.7002 (0.6999, 0.7004) 0.00028 —
𝜂24 = 0.50 0.5002 (0.4998, 0.5006) 0.00028 —
𝜂34 = 0.40 0.4003 (0.3999, 0.4006) 0.00022 —

efficient as their RSEs are considerably smaller than the RSEs
associated with the conventional moment-based estimates of
𝛾3 and 𝛾4. For example, in terms of Distribution 1 in Figure 2,
inspection of Tables 6 and 7 (for 𝑛 = 1000) indicates that RSE
measures of RSE (t3) = 0.036% and RSE (t4) = 0.064% are
considerably smaller than the RSE measures of RSE (𝑔3) =

0.270% and RSE (𝑔4) = 0.851%. This demonstrates that
the estimates of 𝐿-skew and 𝐿-kurtosis have more precision
because they have less variance around their bootstrapped
estimates.

Another advantage of 𝐿-moments can be highlighted in
the context of distribution fitting. Comparison of the four
distributions in Figures 2(a) and 2(b) clearly indicates that
𝐿-moment-based Burr Type III and Type XII distributions
provide a better fit to the theoretical distributions compared
with their conventional moment-based counterparts. This
advantage is most pronounced in the context of the first
two distributions: Distribution 1 and Distribution 2, where
𝐿-moment-based Burr Type XII and Type III in Figure 2(b)
provide a better fit to the𝐹 distribution (3, 10) andChi-square
(𝑑𝑓=1) distributions than their conventional moment-based
counterparts in Figure 2(a). In the context of fitting real-
world data, the𝐿-moment-basedBurrTypeXII in Figure 3(b)
provides a better fit to the ankle circumference data than the
conventional moment-based Burr Type XII in Figure 3(a).

Presented in Tables 13 and 14 are the simulation results of
conventional product moment-based (Pearson) correlations
and 𝐿-moment-based 𝐿-correlations, respectively. Overall
inspection of these tables indicates that the 𝐿-correlation
is superior to Pearson correlation in terms of relative bias.
For example, for 𝑛 = 25, the percentage of relative bias
for the two distributions, Distribution 1 and Distribution 4,
in Figure 2 was 7.78% for the Pearson correlation compared
with only 0.78% for the 𝐿-correlation. It is also noted that
the variability associated with bootstrapped estimates of
𝐿-correlation appears to be more stable than that of the
bootstrapped estimates of Pearson correlation both within
and across different conditions.

In summary, the new 𝐿-moment-based procedure is an
attractive alternative to the more traditional conventional
moment-based procedure in the context of Burr Type III and
Type XII distributions. In particular, the 𝐿-moment-based
procedure has distinct advantages when distributions with
large departures from normality are used. Finally, we note
that Mathematica [36, 37] source codes are available from the
authors for implementing both the conventional moment-
and 𝐿-moment-based procedures.
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