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Abstract

An important objective of science is to find global theories, those that ex-
plain/predict what happens in a wide variety of circumstances. Along the
way, scientists usually encounter local theories which are either discarded or
embedded in a more general theory. Statistical hypothesis tests provide two
tools for this scientific method: (a) Tests for theory significance, regardless of
local/global distinction, and (b) Tests for global-ness versus local-ness. The
present work takes pieces of information from each method and builds some
new tests, with power focused on global theories. The tests answer the ques-
tion: “Is the theory valid and global?”, rather than a subordinate question:
“Is it valid?” or “Is it global?”. The statistics are asymptotically equivalent
to quadratic forms in statistics obtained from standard methods (a) and (b),
and under simplifying assumptions these forms coincide with out-of-sample
and nested-sample model validation statistics. We examine test performance
in simulation, and illustrate with an economic example.

Keywords: Hypothesis test, global, local, parameter change, in-sample, out-
of-sample, nested-sample.
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1. INTRODUCTION

An important objective of science is to find global theories, those that

explain/predict what happens in a wide variety of circumstances. Along the

way, scientists usually encounter local theories which are either discarded or

are embedded in a more general theory, and the frontier of many sciences can

be defined by the most recent efforts to convert/combine local theories into

global ones. For example, in economics the last two decades have seen new

attempts to find a theory that fits both poor and rich countries, those with

capitalism, communism, freedom, repression, etc. These attempts have lead

both to a “new growth theory” and a closer look at the role of institutions

in determining economic outcomes (see Romer 2001 for an overview). In the

natural sciences, the physics community has labored for over a century to

build a global theory of energy, matter and motion. Biology, with its genome

projects, is now able to identify those parts of the genetic code which are

“global” for a broad group of organisms, such as the primates.

The development of global scientific theories requires enormous effort, and

to assist this process statisticians have invented useful testing procedures.

Some of these procedures check the overall significance or explanatory power

of a theory. Others check whether or not a theory is global (rather than local)

in scope, being equally applicable to all parts of the relevant population.

Hence, statistical hypothesis tests provide two tools for the scientific method:

(a) Tests for theory significance, regardless of local/global distinction.

(b) Tests for global-ness versus local-ness.

In principle, significance tests (a) are to be applied only to samples from a

homogeneous population, thereby avoiding the problem of local-ness caused

by population heterogeneity; however, the ultimate aim of scientific theories

is to explain as much behavior as possible, causing frequent application to

rather broad datasets.
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To keep things simple, suppose that a theory applies to a population

composed of just two parts, and that to test the theory we have a sample

of i = 1, 2, ..,m,m+ 1,m+ 2, ..., n observations, with observations 1, 2, ...,m

drawn from the first sub-population, and observations m + 1,m + 2, ..., n

drawn from the second. There are then n1 = m observations in the first sam-

ple, n2 = n−m observations in the second one. Theories that explain/predict

a variable y, given another variable or control x, are often applied via a linear

model (which we use here only as an example):

y = α+ βx+ ε,

with error ε normally distributed N(0, σ2), independent of x. In this setting,

the theory has explanatory power if coefficient value β 6= 0 is the best choice

of β, at least for some part of the population, and a theory is global if there

is a single best choice of β for each and every part of the population. A

standard t test of the hypothesis H0 : β = 0, when applied to the whole

sample i = 1, 2, ..., n, reports on the overall significance of the theory. A two-

sample test for parameter equality, across sub-populations, can be performed

via the augmented regression y = α + βx + γDx + ε, where D is a dummy

variable = 1 for the first sub-population, = 0 otherwise. The test (sometimes

called a Chow test, after Chow 1960) can be based on the t statistic for γ

in this regression. If we want to find out whether the theory is global and

significant, we can use the two tests together somehow. Most commonly, we

can first apply the two-sample test of equality in parameter values, then the

test for parameter significance, and if the result is (“fail to reject”, “reject”)

then the global+significant view is deemed credible. This approach has some

limitations (see below) which partly motivate our proposed new tests.

Abstracting to a more general class of models (such as multivariate lin-

ear models, non-linear models, etc.), suppose that a theory has explanatory

power if, for some p×1 parameter vector θ (and an integer p ≥ 1), the overall
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best choice of θ has some non-zero elements, and that the theory is global if

this choice is the same across sub-populations. In the above example, p = 1

and θ = β. The null hypothesis is H0: θ = 0, meaning that all elements

of θ equal 0. Let U be a non-negative statistic for an upper-tailed test of

significance for θ, such that U has an asymptotic (large-sample) chi square

distribution, with p degrees of freedom, under H0. An example is t2 (with t

a student’s t statistic) or more generally pF , with Fisher’s F statistic. Let

W be a non-negative statistic for an upper-tailed two-sample test of differ-

ences in θ across two (exclusive, exhaustive) sub-populations, distributed chi

square (p degrees of freedom) asymptotically under H0, independent of U .

For example, W could be a squared t statistic for a two-sample (Chow) test.

A joint assessment of significance and global-ness can, if desired, be based

on a “joint” statistic: J = max(U − cU , cW −W ), with cU and cW being the

chosen critical values for the individual upper-tailed U and W tests. This

“joint” test, with rejection rule J > 0, rejects the null only if parameters θ

are significant and intra-population parameter difference is insignificant.

On a practical level the joint test J , if done carefully, has two limitations:

(i) If, as is common, the individual tests U and W are done at several signif-

icance levels (say 10%, 5%, 1%), then there are nine or more versions of the

joint test to be reported, and for each of these the joint significance level must

be determined, (ii) the joint test’s p-value, indicating the threshold level of

significance, is not uniquely defined, and instead depends on the pairing of

significance levels for the U and W tests.

The present work proposes some new tests for global theories, with some

of the virtues of the joint test J , while avoiding the above-mentioned limita-

tions of J . The proposed tests are not intended to replace traditional tests

(symbolized by U , above) of significance, but to give a variation on them use-

ful for some purposes. Also, the proposed tests link the problem of theory

testing to the practise of out-of-sample or nested-sample model validation,
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in a way that adds perspective to both disciplines. A key virtue of J , in

the above example and similar situations, is that J is more likely to attach

significance to parameters θ when their values remain constant across the

population. The test thereby seeks to answer the question: “Is the theory

valid and global?”, rather than a subordinate question: “Is it valid?” or “Is it

global?”. To avoid the noted limitations of J , we propose statistics which are

(asymptotically equivalent to) suitably chosen functions of the information

in the underlying test statistics U and W .

To define the proposed tests we first write U = u′u and W = w′w, for

some p×1 vectors u and w which in large samples are assumed to be mutually

independent and standard normal under H0 (see Assumption 2, Section 2).

In the above example, U = t2 so we can set u = t; similarly we can let w be

a two-sample t statistic. The most basic form of the proposed tests statistics

is a quadratic function of u and w:

G = u′u − a u′w − bw′w, (1)

for some constants a and b, a ≥ 0 and b > 0, which can depend on sample

size but converge to large-sample limits. Equivalently, G = U − bW − au′w.

The proposed G test is upper-tailed, and since we are free to scale G by a

(positive) constant, G effectively includes the more general form G = cu′u−

au′w − bw′w, for constants a, b, c: a ≥ 0, b > 0, c > 0. These restrictions

on a, b, c characterize the proposed tests, while if we relax these restrictions

we obtain some other, known forms of G including G = U , G = W and

G = U + W , the last of these being a test statistic (recently studied by

Rossi 2003) for parameter significance and/or intra-population parameter

differences. Somewhat more generally, we define a class of statistics G∗ for

which:

G∗ = G (1 + op(1)),
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asymptotically equivalent to a G statistic, in large samples.

How do we choose the constants a and b in the proposed test statistic?

The closest analogy to the joint statistic J is G = U−W , for which a = 0 and

b = 1. With statistics U and W having a joint large-sample distribution in

which they are independent chi square (with p degrees of freedom) variables,

we can compute large-sample critical values (= 2.0689, 3.1904, 5.9672 at

significance levels α = 10%, 5%, 1%, when p = 1, see Table 1) for this G (and,

equivalently, G∗). We can, further, find the unique threshold significance level

(asymptotics-based p-value) for G, at which the test just (marginally) rejects

H0. This approach relies on asymptotic theory, via large-sample critical

values, and while exact finite-sample critical values are sometimes preferred,

we leave such exact testing to future work.

To get a broader view of what “good” choices for a and b might look

like, we perform some out-of-sample and in-and-out-of-sample (or “nested”

sample, a concept different from the in-and-out-of-sample approach of Pres-

nell and Boos 2004) model-fitting exercises (detailed in Section 4). In these

exercises, there is a “training” sample that consists of our first sub-sample

(i = 1, 2, ...,m) (which therefore takes on a special status, see below) and

a “validation” sample that consists of either the remaining sub-sample (i =

m + 1,m + 2, ..., n) or the whole sample (i = 1, 2, ..., n). We refer to the

former as out-of-sample validation, and the latter as nested-sample valida-

tion, for obvious reasons. The model is estimated on the training sample

and then applied/fit to the validation sample. The idea here is very sim-

ple: If a theory is valid and global then it should perform reasonably well

when validated on a sample which differs (in part) from the training sample,

whereas if the theory is valid but purely local then performance on the vali-

dation sample should be degraded (due to inconsistent parameter estimates).

So cross-validation tends to penalize purely local theories, moreso than does

in-sample validation.

5



We note that in economics it is common practice to evaluate time se-

ries models based on out-of-sample performance. Some recent papers in-

clude Diebold and Mariano (1995), West (1996), Ashley (1998), McCracken

(1999), Gilbert (2001), Clark and McCracken (2001a,b) and Inoue and Kil-

lian (2003). A reason for this practice is that the economy appears to change

enough over time to cause many popular economic theories to become obso-

lete/incomplete/local at some point (see for example Clements and Hendry

1999), and this intensifies the search (temporally) consistent theories.

Our nested-sample and split-sample model-fitting exercises suggest two

ways to specify (a,b):

a = 0, b =
n

m
− 1. (2)

a = 2

√
m

n−m
, b =

n

m
+ 1. (3)

Here, m/n is the proportion of the total sample comprised of the first (of

two) sub-sample(s). Under (2), the closure of the range of values of (a,b)

is {a = 0, b ≥ 0}, whereas (3) yields a different closure {a = 2√
b−2

, b ≥ 2}.

We can compute G statistics using (2) or (3), and we will refer to these as

the Gnest and Gsplit versions of G, respectively. In the context of some linear

regression models (see Section 5), the test statistic Gsplit coincides (up to a

scalar multiple) with an “out-of-sample F test” proposed independently by

McCracken (1999) and Gilbert (2001), and Inoue and Killian (2003) refer to

this Gsplit as the Gilbert-McCracken test. In the same context, the nested-

sample test statistic Gnest coincides with a “nested-sample F test” proposed

by Gilbert (2001).

We show (Theorem 3) that, under simplifying assumptions, there exist

(G∗) statistics G†
nest and G†

split which are asymptotically equivalent to Gnest

and Gsplit, respectively, such that G†
nest is obtained from a nested-sample

likelihood-based model validation, and G†
split is obtained from split-sample
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validation. To our knowledge the statistics G†
nest and G†

split have not been

proposed before. The tests G have one advantage over their G† counterparts,

in that they can easily be made robust to intra-population differences in

nuisance parameters (e.g. parameters other than θ) such as error variances

σ2.

The training sample (i = 1, 2, ...,m) could instead be specified as the

remaining sub-sample (i = m+ 1,m+ 2, ..., n), and test versions (2) and (3)

permit this by just switching the labelling and element numbering of the two

sub-samples. The choice of training sample influences Gnest and Gsplit (and

G†
nest, G

†
split) via the ratio m/n, except when each sub-sample is equal-sized

(m = n − m). Hence, we typically have two ways of doing the proposed

tests, depending on the training sample; we might choose just one of these

if one sub-sample has some historical or logical precedence (as in Section 6),

but otherwise might combine them somehow or report both (plus Bonferroni

bounds or other descriptors of joint significance, an exercise we leave to future

work).

How does the “canonical” choice (a, b) = (0, 1) fit into the frameworks

(2) and (3)? It fits only into the “nested-sample” framework (2), in the case

of equal sub-sample sizes. We can use this canonical test Gnest even when

sub-sample sizes are unequal, because the asymptotic distribution of G under

H0 is fixed once we specify (a, b), but here the (asymptotic) equivalence to

nested-sample validation (G†
nest) breaks down. Also, test power is affected by

sub-sample sizes, and our (asymptotic-local) power analysis is restricted to

tests with (a, b) specified in terms of actual sample sizes, via (2) or (3).

To summarize the power of the proposed tests, the (large-sample) power

of nested-sample test Gnest is greater in the absence of intra-population pa-

rameter differences than in the presence of it (see Theorem 2). In other words,

the test is more likely to reveal global+valid theories than global+local the-

ories, whereas a standard significance test U (applied to the whole sample
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i = 1, 2, ..., n) is equally likely to reveal valid+global or valid+local theories.

On the other hand, the U test has higher overall power than Gnest, hence

the advantage of Gnest is in discriminating between alternatives (via power

differentials) , rather than overall power. By comparison, for the split-sample

version of Gsplit, power is greater under parameter constancy when m/n is

sufficiently small, but the situation is otherwise mixed.

To further interpret the proposed methods suppose that θ is a list of

(some) parameters for a probability model of a random vector z, and let

U = −2 ln(λ) with λ a full-sample likelihood ratio (LR) for the constrained

model (H0: θ = 0) versus the unconstrained (all θ values) model, each applied

to the whole sample i = 1, 2, ..., n (with the same θ at all i). Then the nested-

sample form (2) of G is a “penalized” LR test statistic with stochastic penalty

−W n−m
m

having an asymptotic (large-sample) expectation ≈ −pn−m
m

under

the null, for asymptotically chi square (with p degrees of freedom) W . The

split-sample form (3) has a more complex interpretation as a modified LR

statistic, with “penalty” term − au′w − bw′w having asymptotic expectation

≈ −pn+m
m

when u and w are independent and standard normal under H0.

By comparison, for constrained and unconstrained models Akaike’s (1973)

Information Criterion (AIC) selects the latter if and only if U − 2p > 0, with

non-stochastic penalty −2p which is equal in expectation, asymptotically, to

the nested-sample test’s penalty whenm = n/3, and to the split-sample test’s

penalty when m = n (an extreme at which cross-validation is infeasible).

In the nested-sample case, the situation m = n/3 yields statistic Gnest =

U −2W , somewhat different than the “canonical” form Gnest = U −W , with

more severe penalty for intra-population parameter differences.

Like the proposed versions of the statistic G, model selection criterion

AIC can be motivated via a “cross-validation” model-fitting exercise (Stone

1977, and for discussion see Efron and Tibshirani 1993, Shao 1996, 1997

and McQuarrie and Tsai 1998); however, while for G the relevant “cross-
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validation” is simple (one training and one validation sample), Stone (1977)

obtains AIC from leave-one-out cross-validation (CV). For linear regression

models Zhang (1993) extends Stone’s (1977) results to obtain equivalence

between AIC and CV in which several observations are left out (see also

Shao 1993). For these models Wei (1992) shows that the Bayes’ information

criterion (BIC) is asymptotically equivalent to a form of cross-validated per-

formance measurement involving a sequence of successively updated training

samples and one-period-ahead validation samples.

The remainder of the paper is as follows. Sections 2 and 3 describe test

distribution and power, and Section 4 connects the tests to cross-validation

methods. Section 5 examines the case of regression models, Section 6 illus-

trates the methods in an economic example, and Section 7 concludes. An

Appendix contains mathematical proofs.

2. DISTRIBUTION

To obtain the asymptotic distribution of proposed statistics under H0,

suppose that the proportion m/n of observations in the first sub-sample

approaches a large-sample limit, as follows:

Assumption 1:
m

n
→ ρ as n→∞, for some ρ in (0, 1).

Next, regarding test statistics U = u′u and W = w′w (for testing θ explana-

tory power and intra-population θ differences, respectively) we have:

Assumption 2: Under H0 : θ = 0, the 2p × 1 vector = (u′, w′)′ converges in

distribution to standard normal.

To justify Assumption 2 consider the common setup (referred to as SETUP

later), with θ̂1 and θ̂2 estimators of θ computed on the first and second

sub-sample, respectively, asymptotically independent normal vectors with
√
n(θ̂1 − θ1)

d→ N(0,M1) and
√
n(θ̂2 − θ2)

d→ N(0,M2), for some invertible
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variance-covariance matrices M1 and M2. Let θ̂ be a full-sample estima-

tor θ̂ ≈ (M̂−1
1 + M̂−1

2 )−1(M̂−1
1 θ̂1 + M̂−1

2 θ̂2) asymptotically, with M̂1 and M̂2

consistent and invertible estimates of M1 and M2, respectively, and with ≈

meaning asymptotic equivalence: X ≈ Y iff X = Y (1 + op(1)). In this case,

θ̂ is an (asymptotically) efficient pooled estimator (as is well known and can

be shown via Stuart, Ord and Arnold 1999, p. 103, for example) of θ, and

for tests U and W let:

U ≈ θ̂′V̂ −1

θ̂
θ̂, W ≈ (θ̂1 − θ̂2)

′V̂ −1

θ̂1−θ̂2
(θ̂1 − θ̂2),

with variance-covariance estimators V̂θ̂ ≈ n−1(M̂−1
1 + M̂−1

2 )−1 and V̂θ̂1−θ̂2 ≈

n−1(M̂1 + M̂2). Note that, under H0, nE θ̂(θ̂1 − θ̂2)
′ → 0p,p, where 0p,p is the

p × p matrix consisting of 0’s. Setting u ≈ V̂
−1/2

θ̂
θ̂ and w ≈ V̂

−1/2

θ̂1−θ̂2
(θ̂1 − θ̂2),

where V̂ −1/2 = (V̂ 1/2)−1 and V̂ 1/2 is the Cholesky root, Assumption 2 follows.

To obtain an analytic expression for asymptotic distributions we can fur-

ther describe G as a quadratic form:

G ≈ (u′, w′)A (u′, w′)′,

with:

A =

 I −a∗

2
I

−a∗

2
I −b∗ I

,

where a∗ and b∗ are the large-n limits of a and b, and I is the p× p identity

matrix. Since (u′, w′)′ is (asymptotically) standard normal we can express

G as a weighted sum of independent chi square variables (as in Scheffe 1959

and Imhof 1961), as follows:

G
d→

q∑
r=1

λrχ
2
hr,r, (4)

where λ1, ..., λq are the distinct eigenvalues (arranged in decreasing order)

of A, hr is the multiplicity of the r-th eigenvalue, and the variables χ2
hr,r
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are mutually independent chi square variables, having respective degrees of

freedom hr. For each eigenvalue λ the eigenvectors turn out to be of the

form: x(1) = (1, 01,p−1, c, 01,p−1)
′ , x(2) = (0, 1, 01,p−1, c, 01,p−2)

′ , · · · , x(p) =

(01,p−1, 1, 01,p−1, c)
′, for some constant c and 01,p−1 the 1 × (p − 1) vector

consisting of 0’s, etc., and setting Ax(k) = λx(k) yields the equations 1 −

(a∗/2)c = λ and −a∗/2− bc = λc, from which we obtain:

λ =
1

2

(
1− b∗ ±

√
(1 + b∗)2 + (a∗)2

)
. (5)

For each λ the associated c = (2/a∗)(1 − λ), and q = 2, h1 = h2 = p. Since

b∗ > 0 we obtain λ1 ≥ 1 > 0 and λ2 < 0, hence the asymptotic distribution

of G has full support (−∞,∞).

For the nested-sample test, λ1 = 1 and λ2 = −1−ρ
ρ

. Consequently, the

asymptotic (cumulative) distribution Fnest(ξ) = P (Gnest ≤ ξ) is decreasing

in ρ for each ξ. As ρ→ 1, F approaches the χ2
p distribution.

For the split-sample test, eigenvalues are:

λ =
1

2

(
−1

ρ
±

√
1

ρ2
+

4

ρ(1− ρ)

)
.

As a function of ρ, the larger eigenvalue (λ1) is increasing, with λ1 ↓ 2 as ρ ↓ 0

and λ1 ↑ ∞ as ρ ↑ 1; λ2 is increasing for ρ < 2/3, equals −3 at ρ = 2/3, and

is decreasing for ρ > 2/3, with λ2 → −∞ as ρ→ 0 or ρ→ 1. Consequently,

the distribution Fsplit(ξ) of Gsplit is decreasing in ρ for ρ < 2/3; however, for ρ

approaching 1, Gsplit is approximately (χ2
p,1 − χ2

p,2)/
√

1− ρ, causing Fsplit(ξ)

to increase in ρ at ξ < 0.

We can use (4) to express the expected value of test G as (λ1 +λ2)p, and

for the nested-sample test this is µnest = p(2ρ−1)
ρ

, while for the split-sample

test it is µsplit = −p
ρ
. For the significance test U , EU = p > µnest > µsplit.

The variance of G is 2p(λ2
1 +λ2

2) (compared to V (U) = 2p), and for Gnest this

is νnest = 2p
ρ2

(ρ2 + (1− ρ)2), while for Gsplit it is νsplit = 2p
ρ2

1+ρ
1−ρ . Consequently,
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V (U) < νnest < νsplit. For large p the distributions of U , Gnest and Gsplit are

approximately normal N(p, 2p), N(µnest, νnest), N(µsplit, νsplit), respectively.

For the (asymptotic) correlations between the proposed tests G and the

tests U and W , using (1) and Assumptions 1 and 2 we obtain corr(G,U) =

(λ2
1 + λ2

2)
−1/2 > 0 and corr(G,W ) = −b(λ2

1 + λ2
2)
−1/2 < 0, under H0. Hence,

for the nested-sample test, as ρ→ 1 the correlations with U and W approach

1 and 0, respectively, and as ρ → 0 the correlations approach 0 and -1. For

the split-sample test: corr(Gsplit, U) is maximized at ρ = 1
2
(
√

5− 1) = 0.6180

(to 4 decimals), and approaches 0 as ρ approaches 0 or 1; corr(Gsplit,W )

approaches 0 as ρ→ 1 and approaches −1 as ρ→ 0.

To compute test distributions we use Imhof (1961, Section 3) to obtain:

P (G ≤ ξ) =
1

2
− 1

π

∫ ∞

−∞

sin
(
p
2
(arctan(λ1u) + arctan(λ2u))− ξu

2

)
u ((1 + λ2

1u
2)(1 + λ2

2u
2))

p/4
du. (6)

To this we apply numerical integration (Mathematica 4.0 NIntegrate tool).

Table 1 reports critical values, to 4 decimal places, for ρ = 1
4
, 1

2
, 3

4
, 4

5
, 5

6
, 6

7
,

p = 1, ..., 10, and significance levels α = 0.10, 0.05, 0.01. We include more

values of ρ near 1 because for cross-validation the estimation sub-sample

is often a large portion of the sample. For p even we check the results

by comparing them to an alternative formula for P (G ≤ ξ), using Imhof

(1961, Section 2) and the Mathematica 4.0 symbolic derivative tool D[·].

Also, we check all results by simulating the distribution (4) via a normal

random number generator. From our previous discussion the nested-sample

test critical values must increase in ρ, as they do in Table 1. For the split-

sample test the critical values must increase for ρ < 2/3, as they do in Table

1 even for ρ ≥ 2/3.
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3. POWER

To describe the asymptotic power of the proposed tests, let Hhom denote

the hypothesis that θ’s value is constant (“homogeneous”) across the popu-

lation, and that θ 6= 0. Also, let Hhet denote the hypothesis that the true θ

value differs (is “heterogeneous”) across the two (exclusive, exhaustive) sub-

populations under study. We will show that the proposed tests of H0 : θ = 0

have different behaviors under asymptotic-local versions of the two alterna-

tives Hhom than Hhet. The nested-sample test Gnest, and its generalization

G∗
nest, has greater local power under Hhom than Hhet, whereas classical sig-

nificance tests have the same power in the two cases. This property of G∗
nest

lets it focus on finding global theories, e.g. non-zero θ values that are con-

stant across the population. By comparison, the split-sample test G∗
split has

a similar property, but to a more limited degree.

To specify a (local/asymptotically-vanishing) version of Hhom, with the

population homogeneous with respect to θ but not necessarily with respect

to other parameters, we have:

Assumption 3: (u′, w′)′ converges in distribution to N((δ′, 0, ..., 0)′, I), for

some p-vector δ 6= 0.

This is a natural modification, for asymptotic-local (Hhom) alternatives, of

Assumption 2. For example, let the local alternative to H0 be that θ = ω/
√
n

for a p-vector ω having some non-zero elements, in which case, in the SETUP

we satisfy Assumption 3 with δ = ((M−1
1 +M−1

2 )1/2)′ ω.

Theorem 1: Let Assumptions 1 through 3 hold, and for Assumption 3 let

δ = γ δ∗ for some constant γ 6= 0 and some p-vector δ∗ 6= 0. Then each of

the following is true of asymptotic test power:

(i) For G∗
nest, power increases in γ (hence is unbiased) and also in ρ

(approaching that of test U).

13



(ii) G∗
split is unbiased for γ sufficiently large, and at each ρ power is

decreasing in ρ when γ is sufficiently large.

(iii) For γ sufficiently large, G∗
nest has greater power than G∗

split.

The fact that the asymptotic-local power of G∗
nest improves as ρ → 1 seems

intuitive because, with G∗
nest ≈ U−((1−ρ)/ρ)W , the “‘penalty” term −((1−

ρ)/ρ)W (which is independent of U and invariant to θ under Assumption 3)

diminishes in importance; however, Theorem 1 relies on the (asymptotic) chi

square distributions of U and W . If, say, for scalar θ and hypothesis θ = 0

a(n upper-tailed test) statistic x has density f(x) = −(x−θ) for x ∈ [θ−1, θ],

f(x) = x − θ for x ∈ [θ, θ + 1], f(x) = 0 otherwise, and y has distribution

P (y = −1/2) = P (y = 1/2) = 1/2, independent of x, then for the sum x+y,

at test size α = 0.5 (hence critical value = 0) the upper-tailed x + y test of

θ = 0 has greater power (=3/4) when θ = 0.5 than does the upper-tailed x

test (power = 5/8), despite the fact that y is “noise” added to x.

The greater power of the nested-sample test, relative to the split-sample

test, can be intuitively understood from an equivalence of G∗
nest to nested-

sample cross-validation (Section 4) which uses more information (for valida-

tion) than does the split-sample scheme. Both methods use less information

than a full-sample scheme, consistent with the fact that the nested- and split-

sample tests have less power than the full-sample test U . We can illustrate

bias in G∗
split, with p = 1, ρ = 0.99, δ = 5, α = 0.9. Asymptotically, under

Assumptions 1 and 3, G∗
split is distributed as (z1 +δ)2−a(z1 +δ)z2−bz2

2 , with

z1, z2 independent standard normal variables, and we compute (via simula-

tion) the rejection rate = 0.68 < α. In the same setting, the rejection rate

for G∗
nest is 1.00 (to 2 decimal places).

To accommodate alternatives exhibiting population heterogeneity, we

have:

Assumption 4: (u′, w′)′ converges in distribution to N(µ, I) with µ = (µ′1, µ
′
2)
′
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and p-vectors µ1, µ2 such that µ2 has some non-zero elements.

This is suited to asymptotic-local heterogeneous (Hhet) alternatives. To

illustrate consider the SETUP, with θ = ωk/
√
n on the k-th sub-sample,

k = 1, 2. Then µ1 = ((M−1
1 +M−1

2 )1/2)′ (M−1
1 +M−1

2 )−1(M−1
1 ω1 +M−1

2 ω2 )

and µ2 = (M1 +M2)
−1/2(ω1 − ω2).

Theorem 2: Let Assumptions 1 and 2 hold, and in the specification of As-

sumption 3 let δ = µ1. Then each of the following holds for asymptotic test

power:

(i) G∗
nest has a lower rejection probability under intra-population

parameter differences (Assumption 4) than under parameter constancy

(Assumption 3).

(ii) For all ρ sufficiently small, G∗
split has a lower rejection probability

under parameter differences than under parameter constancy.

(iii) The full-sample test U has the same power under parameter

differences and parameter constancy.

This theorem formalizes a sense in which G∗ test power is lower in the pres-

ence of parameter change, allowing the test to discriminate between homoge-

neous and heterogeneous alternatives. By comparison, the test U is invariant

to such change because the relevant signal depends on a (weighted) average

of θ values across regimes, but not on regime differences. While the power

drop effect applies broadly to the nested-sample test, for the split-sample

test it is guaranteed only for small ρ; for ρ near 1 parameter change can drop

or raise G∗
split’s power. If, say p = 1, α = 0.1, ρ = 0.9 and µ1 = 5 then local

power at values µ2 = −1, 0, 1 is (computed via Table 1 and simulation of

(z1 + µ1)
2− a(z1 + µ1)(z2 + µ2)− b(z2 + µ2)

2, with z1, z2 independent N(0,1)

) 0.99, 0.95, 0.77, respectively.
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4. CROSS-VALIDATION

To link the G∗ tests to the idea of cross-validated model performance, for

a data sequence of random vectors z1, ..., zn consider the maximization of a

generalized log-likelihood function L(ψ) =
∑n

i=1 g(zi;ψ), for some function

g and r-vector ψ (with r ≥ p) which we can write as ψ = (θ′, ν ′)′, for some

(r − p)× 1 vector ν. If z1, ..., zn are independent and identically distributed

(iid) then we can set g = ln(f), with f a probability mass or density function

for z. For a stationary Markov sequence y0, y1, ..., yn we can let zi = (yi, yi−1),

i = 1, ..., n, and let g = ln(f) with f the conditional density or probability

mass of yi given yi−1. Defining sub-sample index sets S1: {i = 1, ...,m}

and S2: {i = m + 1, ..., n} we have generalized log-likelihoods Lk(ψk) =∑
i∈Sk

g(zi, ψk). The true value of sub-vectors θk of ψk can differ across k,

but for the desired link to cross-validation we suppose that the νk true values

are the same across k.

Suppose that there exists both a unique unconstrained L maximizer ψ̂

and a constrained maximizer ψ̃, with constraint θ = 0. Let ψ̂k and ψ̃k,

k = 1, 2, be the corresponding sub-sample estimators on Sk. To validate the

restriction H0: θ = 0 consider the statistics:

G†
nest = 2

(
L(ψ̂1)− L(ψ̃1)

)
, G†

split = 2
(
1− m

n

)−1 (
L2(ψ̂1)− L2(ψ̃1)

)
, (7)

where G†
nest uses a nested scheme of training and validation samples to assess

H0, and G†
split uses a split-sample scheme. For G†

nest the formula in (7) reduces

to the full-sample likelihood ratio test statistic if we set m = n; for G†
split the

factor (1−m/n)−1 reflects the fact that validation here uses only 100(1−m/n)

percent of the data.

To proceed, let the asymptotic covariance matrices M1 and M2 of sub-

sample estimators θ̂k, k = 1, 2 be equal, up to (sub-)sample size effects, as

follows:
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ρM1 = M = (1− ρ)M2, (8)

for some invertible M . Also, let:

θ̂1 ≈ θ̂ + (1− ρ)
(
θ̂1 − θ̂2

)
, θ̂2 ≈ θ̂ − ρ

(
θ̂1 − θ̂2

)
, (9)

which holds provided that θ̂ ≈ ρ θ̂1 + (1− ρ) θ̂2, this being widely applicable

under (8). Next, under H0 or a local alternative (Assumption 3 or 4), let:

Lk(ψ̂1)− Lk(ψ∗) ≈ a′k(ψ̂1 − ψ∗)− 1

2
(ψ̂1 − ψ∗)′Fk(ψ̂1 − ψ∗), k = 1, 2, (10)

with ψ∗ = (0, ν ′)′, ak =
∑

i∈Sk

∂
∂ψ
g(zi;ψ

∗), and Fk = −
∑

i∈Sk

∂2

∂ψ∂ψ′ g(zi;ψ
∗).

Also, if r > p let:

Lk(ψ̃1)− Lk(ψ∗) ≈ a′kν(ν̃1 − ν)− 1

2
(ν̃1 − ν)′Fkνν(ν̃1 − ν), k = 1, 2, (11)

with akν the lower (r − p) × 1 sub-vector of ak, and Fkνν the lower-right

(r−p)×(r−p) sub-matrix of Fk. Further, with n1 = m and n2 = n−m the two

sub-sample sizes (for sub-samples i = 1, 2, ...,m and i = m+ 1,m+ 2, ..., n),

let:

Fk
nk

p→ F, ψ̂k − ψ∗ ≈ n−1
k F−1ak, n

−1/2
k ak

d→ N(F (ω′k, 01,q)
′, F ), (12)

and if r > p let:
ν̃k − ν ≈ n−1

k F−1
νν akν , (13)

where F is a positive definite matrix with lower-right (r − p)× (r − p) sub-

matrix Fνν , and ω1, ω2 are regime-specific ‘local’ effect p× 1 vectors.

Assumption 5: Let (8, 9, 10, 12) hold, and if r > p let (11) and (13) hold.

Moreover, let a1 and a2 be asymptotically independent random vectors.
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This allows a variety of data designs and models (cross-section, time series,

etc.), and the technical conditions on the likelihood and its derivatives are

standard (see for example Schervish 1995, Ch. 7.3.5). To specify the G∗

tests to which we will compare G†, we start with our quadratic forms Gnest

and Gsplit, such that u = V̂
−1/2

θ̂
θ̂ and w = V̂

−1/2

θ̂1−θ̂2
(θ̂1 − θ̂2), as described

in the SETUP (Section 2), and set V̂θ̂ = n−1(M̂−1
1 + M̂−1

2 )−1 and V̂θ̂1−θ̂2 =

n−1(M̂1+M̂2), where M̂1 and M̂2 are any consistent estimators ofM obtained

from the two sub-samples (such as those obtained from likelihood Hessians

F1 and F2).

Theorem 3: Under Assumptions 1, 2, 5 and either H0 or its alternatives

(Assumption 3 or 4), G∗
nest ≈ G†

nest and G∗
split ≈ G†

split.

Theorem 3 relies on large-sample asymptotics but in some cases there is

an exact finite-sample relationship between the quadratic form G (of G∗) and

the “cross-validating” statistic G†, as in:

Example 1: z1, ..., zn are mutually independent and N(θk, 1) in the k-th sub-

population. With g(z; θ) = − ln(2π)/2−(z−θ)2/2, unconstrained maximum

likelihood estimators (mle’s) θ̂k, k = 1, 2 are the sub-sample averages z̄1 and

z̄2 on S1 and S2, respectively, constrained mle’s = 0, andM = 1 = p = r = F ,

G†
nest =

∑n
i=1 z

2
i − (zi − z̄1)

2 and G†
split = (1 − m/n)−1

∑n
i=m+1 z

2
i − (zi −

z̄1)
2. Expanding squares and simplifying, G†

nest = n(2θ̂1θ̂ − θ̂2
1) and G†

split =

n(2θ̂1θ̂2 − θ̂2
1). Using θ̂1 = θ̂ +

(
1− m

n

) (
θ̂1 − θ̂2

)
and θ̂2 = θ̂ − m

n

(
θ̂1 − θ̂2

)
,

and defining u =
√
nθ̂, w = (1/m + 1/(n − m))−1/2(θ̂1 − θ̂2), we obtain

Gnest = nθ̂2− ((n−m)2/n)(θ̂1− θ̂2)
2= G†

nest and Gsplit= nθ̂2−2mθ̂(θ̂1− θ̂2)−

(n−m2/n)(θ̂1 − θ̂2)
2 =G†

split.

For the Bernoulli, exponential and Poisson (one-parameter) distributions,

asymptotic (but not finite-sample) equivalences in Theorem 3 can be obtained

directly (by evaluating G’s and G†’s, details omitted for brevity). For a two-

parameter distribution consider:
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Example 2: z1, ..., zn are mutually independent and N(θk, σ
2) on the k-th

sub-population. With g(z; θ) = −(1/2)(ln(2π) + ln(σ2) + (z − θ)2/σ2), mle’s

of θ are as in Example 1, r = 2, p = 1, M = σ2 = ν, ν̃1 = m−1
∑m

1 z
2
i ,

ν̂1 = m−1
∑m

1 (zi − z̄1)
2, Hessian matrix F is well-known (see Stuart, Ord

and Arnold 1999, p. 75) and:

G†
nest = n ln

( ∑m
1 z

2
i∑m

1 (zi − z̄1)2

)
+

∑n
1 z

2
i

m−1
∑m

1 z
2
i

−
∑n

1 (zi − z̄1)
2

m−1
∑m

1 (zi − z̄1)2
,

G†
split =

n ln

( ∑m
1 z

2
i∑m

1 (zi − z̄1)2

)
+
(
1− m

n

)−1
( ∑n

m+1 z
2
i

m−1
∑m

1 z
2
i

−
∑n

m+1(zi − z̄1)
2

m−1
∑m

1 (zi − z̄1)2

)
.

We have ln(
∑m

i=1 z
2
i∑m

i=1(zi−z̄1)2
) ≈ (z̄1)

2/σ2 under H0 and local alternatives, and for

the last two quotients in each G† expression we can write their difference as

c/d− e/f = (1/d)(c− e) + e(1/d− 1/f): For G†
nest, (1/d)(c− e) ≈ n(2z̄1z̄ −

z̄2
1)/σ

2, e(1/d − 1/f) ≈ −n(z̄1)
2/σ2, in which case G†

nest ≈ n(2θ̂1θ̂ − θ̂2
1)/σ

2.

Setting u =
√
n/ν̂ θ̂ and w = ((ν̂(1/m+1/(n−m)))−1/2(θ̂1−θ̂2), and applying

(9) we obtain Gnest ≈ G†
nest. Similarly, Gsplit ≈ G†

split.

5. REGRESSION

As Example 2 illustrates, when testing regression coefficients the pro-

posed test statistics Gnest and Gsplit typically differ in finite samples from the

“cross-validating” test statistics G†
nest and G†

split, even under the simplifying

assumptions (Assumption 5) that deliver large-sample equivalence between

the two types of test (G and G†). To more fully illustrate the exact behavior

of the G tests, consider the linear regression model:

yi = θ′xi + γ′vi + εi, i = 1, ..., n, (14)

with non-stochastic p-vectors xi and q-vectors vi, and errors εi iid N(0,σ2).

Then ν = (γ′, σ2)′, and with Z the n × (p + q) matrix with i-th row Zi =
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(x′i, v
′
i), let m−1

∑m
i=1 Z

′
iZi = (n − m)−1

∑n
i=m+1 Z

′
iZi = L for an invertible

matrix L. Let θ̂ be the full-sample ordinary least squares (OLS) estimator,

let V̂θ̂ be the OLS covariance matrix estimator for θ̂, and let V̂θ̂1−θ̂2 = (n/m+

n/(n−m))V̂θ̂. With this regression setup we can readily apply Assumptions

2 through 4 and hence Theorems 1 and 2 regarding the statistics G, and

setting g(zi, ψ) = −(1/2)(ln(2π) + ln(σ2) + (yi − θ′xi − γ′vi)
2/σ2) we can

verify Assumption 5 and hence apply Theorem 3. Further, we have θ̂1 =

θ̂ + (1−m/n)(θ̂1 − θ̂2) and θ̂2 = θ̂ − (m/n)(θ̂1 − θ̂2), and with specification

u = V̂
−1/2

θ̂
θ̂ and w = V̂

−1/2

θ̂1−θ̂2
(θ̂1 − θ̂2) we obtain:

Gnest = σ̂−2

n∑
1

(yi − γ̃′1vi)
2 − (yi − θ̂′1xi − γ̂′1vi)

2, (15)

Gsplit = (1−m/n)−1σ̂−2

n∑
m+1

(yi − γ̃′1vi)
2 − (yi − θ̂′1xi − γ̂′1vi)

2, (16)

with σ̂ the OLS regression standard error. To show (15) and (16) one can

begin in the easy case of orthonormal regressor columns (L = identity ma-

trix), then verify (via straightforward algebra) invariance with respect to

transformations Z → ZJ for invertible (p+ q)× (p+ q) matrices J .

Gilbert (2001) first proposed the “nested-sample F test” statistic given

by formula (15) (upon division by p). McCracken (1999) and Gilbert (2001)

proposed the “split-sample F test” given by (16) (again, upon division by

p). Clark and McCracken (2001a) study some related tests (and see Good

2001, Ch. 10 for some other discussion). By comparison, the F statistic for

testing H0 is F = p−1σ̂−2
∑n

1 ((yi− γ̃′vi)2− (yi− θ̂′xi− γ̂′vi)2) and (excepting

division by p) differs from Gnest only in use of the full sample rather than

a sub-sample for estimation, but differs from Gsplit both in estimation and

validation sample choices.

The finite-sample distribution of the G regression statistics, under H0, is

as follows:
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Theorem 4: Under H0 in the regression model (14), for p× 1 vectors ζ1 and

ζ2, and (n − 2K − L) × 1 vector ζ3, such the elements of ζ1, ζ2, ζ3 are all

mutually independent N(0,1) variables, each of the following holds:

Gnest
d
= (n− p− q)×

2
√

n−m
m

∑p
k=1 Z1kZ2k +

(
1− n−m

m

)∑p
k=1 Z

2
1k∑p

k=1

(√
n−m
n

Z1k −
√

m
n
Z2k

)2

+
∑n−2p−q

k=1 Z2
3k

, (17)

Gsplit
d
=

n− p− q

1− m
n

×
2
√

n−m
m

∑p
k=1 Z1kZ2k − n−m

m

∑p
k=1 Z

2
1k∑p

k=1

(√
n−m
n

Z1k −
√

m
n
Z2k

)2

+
∑n−2p−q

k=1 Z2
3k

. (18)

To interpret these distributions we can compare them to the F distribu-

tion, the latter being that of the variable:

n− p− q

p

∑p
i=1 Z

2
4k∑n−p−q

i=1 Z2
5k

,

where the elements of Z4 and Z5 are all iid N(0, 1). The elements of Z4 are

interpretable as standardized deviations of (full-sample) parameter estimates

from their true values, while the elements of Z5 are interpretable as variables

comprising the remaining degrees of freedom in the data. By comparison,

in (17) and (18), Z1 and Z2 are interpretable as standardized deviations

of parameter estimates from their true values (see Appendix), with Z1 ob-

tained from OLS estimation on (vi, xi, yi, i = 1, ...,m), and Z2 obtained from

(vi, xi, yi, i = m+1, ..., n). The vector Z3 consists of variables comprising the

remaining degrees of freedom in the data, and so the distributions (17) and

(18) are similar to that of the F test, but somewhat more complex. For the

formula (17), if we set m = n then Gnest
d
= pF (and from (15), Gnest = pF ),

but in that case the interpretation of Z2 as a sub-sample estimator breaks

down.

In large samples, Theorem 4 yields:
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Gnest
d
≈ 2

√
1− ρ

ρ

p∑
k=1

Z1kZ2k +

(
1− 1− ρ

ρ

) p∑
k=1

Z2
1k, (19)

and:

Gsplit
d
≈ (1− ρ)−1

(
2

√
1− ρ

ρ

p∑
k=1

Z1kZ2k −
1− ρ

ρ

p∑
k=1

Z2
1k

)
, (20)

under H0. These large-sample distributions are the same as those which

obtain from the results of Section 2, as can be seen by making the substitution

u ≈ ρ1/2Z1 + (1− ρ)1/2Z2, w ≈ (ρ−1/2Z1− (1− ρ)−1/2Z2)/
√
ρ−1 + (1− ρ)−1.

Table 2 reports rejection rates for the G tests, using critical values from

Table 1, and for a full-sample test U (= F test), using 10,000 simulation

rounds. Here p = 1, q = 2, xi and vi2 mutually independent standard normal

sequences, and vi1 = · · · = vn1 = 1, for n = 100 and n = 200. We report

rejection rates under three hypotheses: H0: θ = 0, Hhom: θ = 1
4

and Hhet:

θ equals 0 on the first sub-sample and equals (4(1−m/n))−1 on the second

sub-sample, with m/n = 1/4, 1/2, 3/4. With G statistics asymptotically

equivalent to the corresponding G† statistics (Theorem 3), we do find G†

tests to give similar results, omitted for brevity.

From Table 2, Under the null the F test rejects more frequently than the

other tests (consistent with Theorem 1) except for the nested-sample test

(m/n = 3/4), which performs comparably. For each m/n the nested-sample

test rejects more than the split-sample test does (consistent with Theorem

1), and overall the split-sample tests suffer considerable loss in power, rela-

tive to the full-sample and nested-sample tests. For the nested-sample test,

under the null a higher m/n yields more frequent rejection, while for the

split-sample test there is more frequent rejection at m/n = 1
4
, 1

2
than at 3

4

(also consistent with Theorem 1). Under parameter change, rejection rates of

the proposed tests are lower, compared to results under the null (consistent

with Theorem 2). The F test also rejects less in the presence of parameter

differences, but the effect diminishes in the larger sample (consistent with
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F having the same local power under both alternatives). At higher values

of m/n (= 4/5, ..., 6/7) the situation (omitted, for brevity) is qualitatively

similar except that the split-sample test sometimes has more power in the

presence of intra-population parameter differences than under population ho-

mogeneity, more so for higher m/n. This tendency at higher m/n is reversed

if we switch the sign of θ on the second sub-sample (consistent with the dis-

cussion following Theorem 2, and see Clark and McCracken 2001b for similar

simulation results for other split-sample tests).

6. EXAMPLE

For an example with data consider the U.S. inflation rate yi, given by the

monthly percent change in consumer price index (all urban consumers), and

the (civilian) unemployment rate zi, each seasonally adjusted monthly series

for the period February 1948 - January 2003 (data obtained from the FRED

website, Federal Reserve Bank of St. Louis). A simple dynamic model of

inflation is the regression:

yi = α+ βxi−1 + γyi−1 + εi, i = 2, 3, ..., n. (21)

Let the parameter vector θ of interest be the (scalar) coefficient β. Table 3

reports OLS estimates of the model for the two sub-periods 1948:03-1969:12

and 1970:01-2003:01, as well as various tests of H0: θ = 0 and of θ constancy

over the two sub-periods. For our methods we choose the first sample period

as the “training/estimation” sample (sample size = n1 = 261), and the latter

sample period as the “validation” sample (n2 = 391). Under H0 the partial

correlation (net of lagged y) between inflation yi and the past unemployment

rate xi−1 is zero, whereas various economic theories suggest departures from

H0 (see Romer 2001 for recent review and discussion). In the first sub-period
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the θ estimate is negative, consistent with the idea that low unemployment is

associated with inflationary demand shocks (driving up demand in excess of

the economy’s potential level of output), while in the second sub-period the

θ estimate is positive, consistent with stagflation in which negative supply

shocks (including high oil costs) fuel inflation and reduce profits and jobs.

The proposed G tests, which are designed to reject more frequently when

θ 6= 0 is constant across time than otherwise, show (in Table 3) no significant

evidence against H0 (p-values ≥ 0.97), when using asymptotic critical values

(Section 2). This is reasonable given the highly significant parameter change

(reported via W ), and less significant θ estimate (reported via U). The G

tests are obtained via u = θ̂/sθ̂ and w = (θ̂1 − θ̂2)/sθ̂1−θ̂2 specified in two

ways: (a) weighted least squares (WLS) approach (“weight”), where θ̂ is the

WLS estimator for θ based on OLS θ̂k and standard errors sθ̂k
, k = 1, 2, sθ̂

is the WLS standard error, and s2
θ̂1−θ̂2

= s2
θ̂1

+ s2
θ̂2

; (b) simple OLS approach

(“simple”) with θ̂ the full-sample OLS estimator, sθ̂ its standard error, and

s2
θ̂1−θ̂2

= (n/m+ n/(n−m))s2
θ̂
, in which case G’s are given by (15) and (16).

With the OLS approach, the split-sample G becomes the Gilbert-McCracken

split-sample F statistic, and the nested-sample G becomes Gilbert’s (2001)

nested-sample F statistic.

We also report G† statistics, obtained from split-sample or nested-sample

likelihood evaluation (via Gaussian conditional density g(zi, ψ) as specified

in Section 5). For testing we use the asymptotic critical values (and G-

G† asymptotic equivalence, Theorem 3), and with this approach test results

agree with the G statistics in finding no significant evidence of a stable non-

zero value of θ over time. We note however that our proof of asymptotic

equivalence of G and G† relied on constancy of some nuisance parameters

(second moments). It is easy to show non-equivalence when no such con-

stancy is available. For our inflation model, regression standard errors differ

notably across the two sub-samples, in which case the null (asymptotic) dis-
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tribution of G† may differ substantially from that of G.

To summarize, the proposed methods do not find in the inflation model

a way for the unemployment rate to explain future movements in inflation -

consistently over the historical period. That is, a rather simplistic “Phillips

curve” model like (21) does not appear to provide a global theory of inflation.

Economists, who began noticing this instability of the Phillips curve in the

1970’s, have sought to build global theories (with supply- and demand-driven

inflation sources, see Romer 2001). The proposed methods can likewise be

applied to these more sophisticated models.

7. CONCLUSION

We compute test critical values based on (first-order) asymptotic theory,

but in applications some second-order (Bartlett, etc.) corrections may be use-

ful. Also, while we assume that underlying statistics (u and w) conform to

standard (normal) central limit theory, for some non-stationary data other

limit distributions may apply, and critical values can be adjusted accordingly.

Under simplifying assumptions the proposed tests are (asymptotically) equiv-

alent to methods involving cross-validation, but as in the example in Section

6, the two sorts of statistics (G and G†) can have large numerical differences.

Such discrepancies can arise due to intra-population differences in nuisance

parameters, and it would be interesting to study the issue in more detail.
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APPENDIX

Before proving Theorem 1 we will first establish two Lemmas. Let z1

and z2 be mutually independent standard normal p-vectors. For a p-vector

δ of the form γδ∗ with scalar γ > 0 and p-vector δ∗ having some non-zero

elements define π(γ, b) = P ((z1 + γδ∗)′(z1 + γδ∗) − bz′2z2 > cαb), with b ≥ 0

and cαb such that P (z′1z1 − bz′2z2 > cαb) = α. Let πγ and πb be the partial

derivatives of π.

Lemma 1: Each of the following holds: (i) πγ > 0, and (ii) πb < 0.

Proof: Write π(γ, b) =
∫

(1− Fχ2(λ)(cαb + bv))fχ2(v)dv, with Fχ2(λ) the non-

central chi square cumulative distribution function with non-centrality pa-

rameter λ = δ′δ, and fχ2 the central chi square density, each with p degrees

of freedom. With π(0, b) = α and the fact that Fχ2(λ)(x) is decreasing in λ

at each x (see Johnson and Kotz 1970, p. 135), (i) follows. For (ii) compute:

πb = −
(
∂

∂b
cαb

)∫
fχ2(λ)(cαb + bv)fχ2(v)dv −

∫
vfχ2(λ)(cαb + bv)fχ2(v)dv,

with fχ2(λ) the non-central chi square density. Differentiating (with respect

to b) on both sides of P (z′1z1 − bz′2z2 > cαb) = α we obtain:

∂

∂b
cαb = −

∫
vfχ2(cαb + bv)fχ2(v)dv∫
fχ2(cαb + bv)fχ2(v)dv

,

in which case:

πb =

∫
fχ2(λ)(cαb + bv)fχ2(v)dv∫
fχ2(cαb + bv)fχ2(v)dv

∫
vfχ2(cαb + bv)fχ2(v)dv −

∫
vfχ2(λ)(cαb +

bv)fχ2(v)dv,

so for πb < 0 it suffices that:∫
vfχ2(cαb + bv)fχ2(v)dv∫
fχ2(cαb + bv)fχ2(v)dv

<

∫
vfχ2(λ)(cαb + bv)fχ2(v)dv∫
fχ2(λ)(cαb + bv)fχ2(v)dv

.
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With b > 0, for this it is enough that the ratio r(x) = fχ2(λ)(x)/fχ2(x) is

strictly increasing for all x = cαb + bv > 0, this being a well-known classical

result (regarding the monotone likelihood ratio property of the non-central

chi square, see Karlin and Rubin 1956). �

Let κ(γ, a) = P ((z1 + γδ∗)′(z1 + γδ∗)− a(z1 + γδ∗)′z2 > cαa), with a ≥ 0

and cαa defined such that P (z′1z1 − az′1z2 > cαa) = α.

Lemma 2: Each of the following holds: (i) κ(γ, a) → 1 as γ → ∞, and (ii)

at each a > 0, κ(γ, a) is decreasing in a for all γ sufficiently large.

Proof: As γ → ∞, (z1 + γδ∗)′(z1 + γδ∗) − a(z1 + γδ∗)′z2 ≈ (2γδ∗)′z1 −

(aγδ∗)′z2 +γ2(δ∗)′δ∗
d
= N(λ, (4+a2)λ), with λ = δ′δ and δ = γδ∗ (as earlier).

For (i), as γ → ∞, κ(γ, a) ≈ 1 − FN (x) with standard normal cumulative

distribution FN and x = (cαa − λ)/
√

(4 + a2)λ → −∞, hence κ(γ, a) → 1.

For (ii), for a given a we can once again use κ(γ, a) ≈ 1 − FN (x), and as a

rises incrementally x(< 0) rises, causing κ(γ, a) to fall. �

Proof of Theorem 1: (i) We can write Gnest
d
≈ (z1 + δ)′(z1 + δ) − bz′2z2 and

with z1, z2, b as defined earlier, in which case Lemma 1(i) implies that test

power increases in γ. Lemma 1(ii) implies that power decreases in b, and

with b ≈ (1−ρ)/ρ, power increases in ρ. (ii) Write Gsplit
d
≈ (z1 +δ)′(z1 +δ)−

2
√
ρ/(1− ρ)(z1 + δ)′z2 − (1/ρ + 1)z′2z2. To show that Gnest is unbiased for

all γ sufficiently large, note that here Gnest’s distribution is approximately

that of (z1 + δ)′(z1 + δ) − 2
√
ρ/(1− ρ)(z1 + δ)z2, in which case we apply

Lemma 2(i) with a = 2
√
ρ/(1− ρ), and to show that power increases in ρ

(for γ sufficiently large), we apply Lemma 2(ii). (iii) For large γ, Gnest is

approximately (z1 + δ)′(z1 + δ), and applying Lemma 2(ii), Gnest has greater

power than Gsplit. �

Proof of Theorem 2: (i) Gnest
d
≈ (z1 +µ1)

′(z1 +µ1)−b(z2 +µ2)
′(z2 +µ2) with

z1 and z2 independent standard normal p-vectors. Also, (z2 +µ2)
′(z2 +µ2) is
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non-central chi square with non-centrality parameter λ = µ′2µ2 > 0, and as

noted earlier Fχ2(λ)(x) < Fχ2(x), so with the independence of z1 and z2 we

find P (Gnest > c) is less under Assumption 4 than under Assumption 3, for

each c. (ii) Gsplit
d
≈ (z1 +µ1)

′(z1 +µ1)−a(z1 +µ1)
′(z2 +µ2)− b(z2 +µ2)

′(z2 +

µ2). Let ρ approach 0. Then a ↓ 0 and b ↑ ∞, in which case the term

a(z1 + µ1)
′(z2 + µ2) in the Gsplit asymptotic density has vanishing influence,

while the term b(z2 + µ2)
′(z2 + µ2) has (unboundedly) increasing influence.

We then follow reasoning similar to the proof of (i). (iii) For the test U , the

distribution under either Assumption 3 or 4 is non-central chi square with

non-centrality parameter equal to µ′1µ1, hence U has the same power under

either Assumption. �

Proof of Theorem 3: Using (10) and (12),
∑

i∈S1
g(zi, ψ̂1) − g(zi, ψ

∗) ≈
1
2
n1(ψ̂1 − ψ∗)′F (ψ̂1 − ψ∗) and also, with (11) and (13),

∑
i∈S1

g(zi, ψ̃1) −

g(zi, ψ
∗) ≈ 1

2
n1(ν̃1 − ν)′Fνν(ν̃1 − ν). Hence:∑

i∈S1
g(zi, ψ̂1)− g(zi, ψ̃1) ≈

1
2
n1

(
(ψ̂1 − ψ∗)′F (ψ̂1 − ψ∗)− (ν̃1 − ν)′Fνν(ν̃1 − ν)

)
.

Further, using (12) and (13) we get the simplification
∑

i∈S1
g(zi, ψ̂1) −

g(zi, ψ̃1) = 1
2
n1θ̂

′
1((F

−1)θθ)
−1θ̂1, with (F−1)θθ the upper-right p×p sub-matrix

of F−1. So far the argument generalizes (transparently) the standard ap-

proach to likelihood ratio test asymptotics (as in van der Vaart 1998, Ch.

16). Similarly we obtain
∑

i∈S2
g(zi, ψ̂1) − g(zi; ψ̃1) ≈ n2θ̂

′
1((F

−1)θθ)
−1θ̂2 −

1
2
n2θ̂

′
1((F

−1)θθ)
−1θ̂1. We then apply (9) and the fact that

√
nk(θ̂k − θk)

d→

N(0, (F−1)θθ), k = 1, 2, to obtain Gnest ≈ G†
nest and Gsplit ≈ G†

split. �

Proof of Theorem 4: Let Z1 = V
−1/2

θ̂1
(θ̂1 − θ1) and Z2 = V

−1/2

θ̂2
(θ̂2 − θ2),

with Vθ̂k
the covariance matrix for θ̂k, k = 1, 2. Let e1, ..., en be the residu-

als from (OLS) full-sample regression of y on {x,Dx, v}, with D a dummy

variable = 1 for observations in the first-sub-sample, = 0 otherwise. Then
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(e1, ..., en)
′ = C(y1, ..., yn)

′ with C = In−U(U ′U)−1U ′, where In is the n× n

identity matrix and U is the n× (2p+ q) matrix with i-th row (x′i, Dx
′
i, v

′
i).

With Schur decomposition C = MM ′, M is a full rank n× (n− 2p− q) ma-

trix for which M ′M = In−2p−q. Let Z3 = σ−1M ′(e1, ...., en)
′. With Z1, Z2, Z3

mutually independent standard normal vectors, to obtain the desired numer-

ators and denominators of the posited expressions in Z for G distributions,

we can (a) establish the results in the simple case of orthonormal regressor

second moment matrix, L = I, and then (b) appeal to invariance of the G

distribution with respect to Z. Step (a) yields to straightforward algebra

but our derivation is rather lengthy, hence omitted. For step (b) it suffices

to show that when applying the transformation Z → ZJ , to simple case Z

via some invertible (p+ q)× (p+ q) matrix J , G’s distribution is unaffected.

This is also straightforward algebra (details omitted). �
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TABLE 1: Test Distribution

p α =10 α = 5 α =1 α =10 α =5 α =1 α =10 α =5 α =1

nest, ρ = 1
4 nest, ρ = 1

2 nest, ρ = 3
4

1 1.4969 2.5874 5.3310 2.0689 3.1904 5.9672 2.4301 3.5622 6.3516
2 1.8326 3.2189 6.4378 3.2189 4.6051 7.8240 4.0298 5.4161 8.6350
3 1.7373 3.3851 7.0076 4.0781 5.6607 9.2144 5.3705 6.9374 10.4722
4 1.3801 3.2901 7.2977 4.7946 6.5436 10.3836 6.5895 8.3049 12.1031
5 0.8312 3.0104 7.3992 5.4220 7.3197 11.4165 7.7349 9.5797 13.6097
6 0.1349 2.5869 7.3581 5.9870 8.0208 12.3538 8.8298 10.7910 15.0304
7 -0.6761 2.0466 7.2018 6.5050 8.6656 13.2190 9.8874 11.9552 16.3876
8 -1.5774 1.4093 6.9489 6.9861 9.2658 14.0272 10.9160 13.0827 17.6949
9 -2.5514 0.6902 6.6128 7.4370 9.8297 14.7887 11.9211 14.1807 18.9620
10 -3.5856 -0.0984 6.2038 7.8628 10.3633 15.5112 12.9069 15.2543 20.1956

nest, ρ = 4
5

nest, ρ = 5
6 nest, ρ = 6

7

1 2.4897 3.6237 6.4148 2.5288 3.6626 6.4540 2.5551 3.6898 6.4840
2 4.1589 5.5452 8.7636 4.2405 5.6268 8.8457 4.2969 5.6832 8.9021
3 5.5710 7.1365 10.6694 5.6970 7.2618 10.7938 5.7836 7.3480 10.8794
4 6.8629 8.5755 12.3702 7.0340 8.7452 12.5374 7.1512 8.8616 12.6533
5 8.0822 9.9228 13.9473 8.2989 10.1374 14.1589 8.4470 10.2843 14.3042
6 9.2519 11.2074 15.4393 9.5145 11.4672 15.6953 9.6938 11.6448 15.8707
7 10.3848 12.4455 16.8683 10.6937 12.7508 17.1688 10.9042 12.9594 17.3744
8 11.4892 13.6475 18.2480 11.8446 13.9987 18.5933 12.0865 14.2382 18.8295
9 12.5706 14.8204 19.5879 12.9726 15.2176 19.9782 13.2461 15.4882 20.2450
10 13.6330 15.9692 20.8948 14.0819 16.4125 21.3303 14.3869 16.7144 21.6277

split, ρ = 1
4 split, ρ = 1

2 split, ρ = 3
4

1 1.2767 2.4039 5.2739 1.9490 3.3038 6.7018 3.1172 5.0436 9.8420
2 1.1525 2.6152 6.0108 2.5134 4.2268 8.2064 4.4628 6.8708 12.4620
3 0.4061 2.2312 6.1224 2.5814 4.6008 9.0618 5.2176 8.0060 14.2236
4 -0.8313 1.4571 5.8797 2.3614 4.6758 9.5864 5.6604 8.7892 15.5632
5 -2.4481 0.3647 5.3788 1.9376 4.5454 9.8916 5.8976 9.3440 16.6340
6 -4.3252 -0.9967 4.6668 1.3590 4.2584 10.0332 5.9848 9.7328 17.5116
7 -6.3927 -2.5753 3.7728 0.6590 3.8458 10.0448 5.9568 9.9932 18.2392
8 -8.6069 -4.3277 2.7173 -0.1382 3.3296 9.9484 5.8356 10.1496 18.8464
9 -10.9388 -6.2219 1.5173 -1.0142 2.7262 9.7600 5.6384 10.2196 19.3528
10 -13.3677 -8.2341 0.1883 -1.9558 2.0482 9.4914 5.3772 10.2168 19.7736

split, ρ = 4
5

split, ρ = 5
6 split, ρ = 6

7

1 3.5795 5.7480 11.1470 3.9978 6.3882 12.3360 4.3841 6.9825 13.4379
2 5.1985 7.9045 14.1880 5.8608 8.8404 15.7596 6.4694 9.7041 17.2151
3 6.1710 9.2970 16.2750 7.0230 10.4592 18.1380 7.8022 11.5283 19.8590
4 6.8065 10.3040 17.8960 7.8228 11.6616 20.0082 8.7493 12.9066 21.9555
5 7.2220 11.0635 19.2210 8.3880 12.5970 21.5568 9.4465 13.9930 23.7069
6 7.4780 11.6440 20.3345 8.7840 13.3410 22.8756 9.9652 14.8883 25.2112
7 7.6115 12.0870 21.2845 9.0498 13.9368 24.0186 10.3460 15.6205 26.5279
8 7.6475 12.4190 22.1035 9.2124 14.4150 25.0200 10.6183 16.2274 27.6927
9 7.6025 12.6585 22.8140 9.2898 14.7954 25.9044 10.8003 16.7300 28.7329
10 7.4905 12.8210 23.4315 9.2958 15.0930 26.6892 10.9074 17.1458 29.6674
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TABLE 2: Monte Carlo, Rejection Rates

n = 100 n = 200

test α =10 α =5 α =1 α =10 α =5 α =1

H0 full 0.11 0.05 0.01 0.10 0.05 0.01
nest=1/4 0.12 0.07 0.02 0.12 0.06 0.02
nest=1/2 0.11 0.05 0.01 0.10 0.05 0.01
nest=3/4 0.11 0.05 0.01 0.10 0.05 0.01
split=1/4 0.12 0.07 0.02 0.12 0.07 0.02
split=1/2 0.13 0.06 0.02 0.10 0.05 0.01
split=3/4 0.12 0.06 0.01 0.10 0.05 0.01

Hhom full 0.80 0.70 0.46 0.97 0.94 0.82
nest=1/4 0.63 0.56 0.41 0.87 0.83 0.72
nest=1/2 0.76 0.67 0.45 0.95 0.92 0.80
nest=3/4 0.80 0.70 0.47 0.97 0.94 0.82
split=1/4 0.56 0.51 0.36 0.78 0.75 0.65
split=1/2 0.63 0.56 0.37 0.80 0.77 0.65
split=3/4 0.58 0.48 0.30 0.73 0.68 0.54

Hhet full 0.72 0.61 0.38 0.97 0.94 0.82
nest=1/4 0.41 0.35 0.23 0.44 0.41 0.32
nest=1/2 0.36 0.31 0.19 0.40 0.36 0.26
nest=3/4 0.32 0.25 0.14 0.36 0.31 0.20
split=1/4 0.42 0.37 0.26 0.45 0.43 0.35
split=1/2 0.43 0.38 0.27 0.45 0.42 0.35
split=3/4 0.43 0.39 0.30 0.45 0.42 0.35

TABLE 3: Inflation Dynamics

period α β γ
1948-1969 0.003 -0.038 0.318

(0.001) (0.016) (0.060)
1970-2003 0.001 0.001 0.667

(.001) (0.008) (0.038)

U U W W G G
weight simple weight simple weight simple G†

0.90 2.42 4.75 15.71 nest -6.30 -21.38 -117.81
[0.34] [0.12] [0.03] [0.00] [0.97] [1.00] [1.00]

split -19.17 -42.78 -135.15
[0.98] [1.00] [1.00]

Note: ( ) = standard error, [ ] = asymptotic p-value.
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