
Southern Illinois University Carbondale
OpenSIUC

Articles Department of Electrical and Computer
Engineering

3-2000

Two Rank Order Tests forM-ary Detection
Viswanath Annampedu
Lucent Technologies

Vladimir V. Roganov
Southern Illinois University Carbondale

Ramanarayanan Viswanathan
Southern Illinois University Carbondale, viswa@engr.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_articles
Published in Annampedu, V., Roganov, V.V., & Viswanathan, R. (2000). Two rank order tests for M-
ary detection. IEEE Transactions on Information Theory, 46(2), 585-594. doi: 10.1109/18.825823
©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Articles by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Annampedu, Viswanath, Roganov, Vladimir V. and Viswanathan, Ramanarayanan. "Two Rank Order Tests for M-ary Detection." (Mar
2000).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000 585

Two Rank Order Tests forM -ary Detection
Viswanath Annampedu, Vladimir V. Roganov, and Ramanarayanan Viswanathan, Senior Member, IEEE

Abstract—We consider a general -ary detection problem
where, given groups of samples each, the problem is to
identify which unique group of samples have come from the
signal hypothesis. The optimal likelihood ratio test is unrealizable,
when the joint distribution of samples is not completely
known. In this paper we consider two rank order types of tests
termed as the modified rank test (MRT) and the modified rank
test with row sort (MRTRS). We examine through simulation,
the small sample probability of error performances of MRT and
MRTRS for detecting a signal among contaminants. Numerically
computable closed –form error expressions are derived for some
special cases. Asymptotic (large sample) error rate of MRT is also
derived. The results indicate that MRTRS provides improved
performance over other previously known rank tests.

Index Terms—Asymptotic error, decision fusion, -ary com-
munication, rank tests, signal detection.

I. INTRODUCTION

L ET and de-
note the set of observations such that the samples ,

are all independent and identically distributed
(i.i.d.) with the signal density ,1 whereas the rest of the sam-
ples , and
are i.i.d. with the noise density . It is not known that the

th group of samples are from the signal distribution (hy-
pothesis ) and the problem is to decide, based on the ob-
servations, which unique group of samples have come from

. By arranging the observations in a matrix with rows
and columns, the detection problem can be stated as follows:
identify the unique row of samples that belong to the density

. Rank tests, which are nonparametric in nature, are natural
candidates when the two densities and are stochasti-
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1Typically in a communication problem,f (:) is due to the processing of a
signal plus noise process. For convenience, we callf (:) simply as the signal
density.

cally ordered. In this paper it is assumed that a signal sample is
stochastically larger than a noise sample

for all

where is the CDF of the densiy

The corresponding testing problem under stochastic ordering
of the two samples is characterized as the slippage problem in
statistical literature [1].

In many communication problems, thesamples in a row
are the result of processingdiversity paths or pieces of in-
formation [2]. As a first approximation, it is usually assumed
that all the samples are statistically independent of each other.
The samples arise in different ways corresponding to dif-
ferent situations. For example,could be the number of hops
per symbol in a frequency-hopped multilevel frequency-shift
keying (FH-MFSK) communication system. In a multiuser mo-
bile radio system, an FH-MFSK scheme is used to combat in-
terference on the desired user’s signal from the other users’ sig-
nals (multiple-access interference) [3]. In military applications,
FH-MFSK modulation scheme is used to improve performance
against partial band noise (PBN) jamming and tone jamming
[4]. In mobile-radio environment, where multipath propagation
is present, multiple copies of transmitted signal arrive at the re-
ceiver with different amplitudes and at different times. In IS-95
DS/CDMA systems, a proposed 2D-RAKE receiver, in addition
to exploiting the spatial structure, takes advantage of multipath
signaling to realize a form of time diversity [5]. A recent study
shows that the rank type tests can provide robust performance
for these code-division multiple access (CDMA) systems [6],
[7]. In all these problems, even if the densities of the observa-
tions can be assumed known, the parameters of these densities
are usually unknown, and hence, a likelihood ratio test (LRT)
cannot be implemented. Also, the strengths of different diversity
paths may be different, thereby implying that the signal densi-
ties in different paths are nonidentically distributed. In this paper
we assume the simpler model of the observations mentioned in
the previous paragraph.

A rank-based test for the -ary signal detection problem
can be formulated as follows. A rank matrix is first created
by rank ordering all the observations ,
and and then replacing the samples with
their corresponding ranks. Then a rank sum test (RST) declares
the row with the maximum rank sum as the row corresponding
to the signal hypothesis [1]. A reduced rank sum test (RRST)
rank orders the samples in each column separately into values
of through , and then picks the row with the maximum
rank sum. The reduced ranking is appealing when the densi-
ties of the signal observations corresponding to different diver-
sity paths are nonidentical. For a frequency-hopped multilevel
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frequency-shift keying (FH-MFSK) system, the RST and the
RRST are found to be nearly identical in performance and they
serve as a competing alternative to the parametric receivers [3].
List rank sum diversity combining based on RST was devised in
[8]. In this method, a rank-list value table is to be created based
on the channel condition and the interference threat. In general,
the list table can be chosen only in anad hocmanner. The re-
ceiver picks the row with the maximum list rank sum. A few
other nonparametric tests are also discussed in [8].

In this paper, we consider two specific rank order tests termed
as the modified rank test (MRT) and the modified rank test with
row sort (MRTRS). MRT is a variation of RRST. Let the rank
of in the ordering (reduced rank ordering) of the samples

, be denoted as . A variation of the
RRST is to create a value matrix where the element of the
value matrix is given by

if ,
otherwise,

(1)

The value sums are then computed as

(2)

The MRT then decides as the signal row where
. If , the MRT retains only

the maximum rank of in each column and assigns zero
values to the others. In other words, independently for each
column, the row with the largest rank is decided as the signal
row. Therefore, for , MRT can be thought of as a majority
logic combining (MLC) of the decisions made in each column.
For other values of , MRT can be thought of as combining
decisions, when decisions are presented with confidence
weights. Decision fusion has been discussed extensively in
several recent publications [9]–[11]. Since the value sum of
each row is integer-valued, it is possible that more than one
row may be tied as having the largest value sum. If a tie occurs
among several rows, then the MRT picks at random one of the
tied rows as the signal row.

Modified rank test with row sort is implemented by first
sorting the elements in each row of in increasing order of
values and then applying the MRT procedure to the elements
of the row sorted matrix. That is, if the row sorted matrix
is denoted as , , ,
then is the th largest among , ,
for . The rest of the operations of reduced
ranking, clipping, and summing are carried out exactly as in
MRT, but these are applied to and not to . Thus
MRTRS compares the strongest signal against each of the

strongest noise components, the next strongest signal
against each of the next strongest noise, and so on.
It is certainly difficult to predict whether such comparisons
would yield more accurate identification of the signal than that
provided by comparisons of independent signal and noise
samples, as in MRT. Only a probability of error assessment
provides the definitive answer.

In Section II we discuss finite sample probability of error
performance of MRT and MRTRS for three example

pairs. The first is the result of noncoherent processing of a
Rayleigh fading signal received in additive white Gaussian
noise (AWGN), whereas the next two are based on constant
signal-plus-noise models. The signal and the noise models
for different application areas mentioned earlier differ from
these simpler models because, in the former, multiple-access
interference or jammer interference may be present. Here we
show that the MRTRS with performs very well in all
three example cases. Another aim of this study is to determine
how the choice of the parameteraffects the performances
of MRT and MRTRS. Large sample asymptotic performance
of MRT is evaluated in Section III. An Appendix provides
closed-form probability of error expressions for the special case
of , for MRT and , for MRTRS.
We conclude this paper in Section IV.

II. FINITE SAMPLE PROBABILITY OF ERRORPERFORMANCE

The performances of MRT and MRTRS are evaluated by
finding the probabilities of error in identifying the signal row.
We consider three cases of pairs:

Case i) Exponential

(3)

Case ii) Gaussian

(4)

Case iii) Double Exponential (or Laplace)

(5)

The finite sample performances of MRT and MRTRS are eval-
uated through simulation. Simulation of the required samples
in (3)–(5) is obtained from IMSL random number generation
routines. In each case, the number of runs is sufficiently large to
ensure an error count of 30 or more. Observing an error count of
10 implies that, with a confidence level of 95%, the actual error
is within a factor of of the estimated error [12], [13]. Thus our
error estimates are obtained with an even greater accuracy. In
the Appendix we provide the closed-form probability of error
expressions for the special case of , for MRT
and , for MRTRS. As shown there, the derivations
require some ingenious steps in order to arrive at numerically
computable expressions for the probability of error. Error rates
determined through these analytical derivations are compared
against the results from simulation studies. In all the cases we
have excellent agreement between the simulation and the theo-
retical results.

In Figs. 1–4 we show probabilities of error of various tests for
exponential distribution. The error rates for the normal and the
Laplace are shown in Figs. 5–8 and 9–12, respectively. Observe
that the probability of error is plotted on a logarithmic scale in all
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Fig. 1. Probability of error for exponential distributionL = 3,M = 64.

Fig. 2. Probability of error for exponential distributionL = 5,M = 64.

the figures except in Figs. 3 and 4, where it is on a linear scale.
The parameters for the signal densities under the three cases are
chosen so that the error rates of MRT and MRTRS are in the
easily estimable range (i.e., greater than ). This assures a
reasonable simulation time requirement. In Figs. 1–8, we also
provide the error rates of the LRT for comparison purposes [LRT
is the uniformly most powerful test (UMP) for these two cases].
For exponential and normal cases, the LRT error rates are ob-
tained through standard analytical expressions. For the double
exponential case, no uniformly most powerful test for one-sided
alternative exists. Implementation of a LRT requires a complete
knowledge of the signal density, which is unavailable in many

Fig. 3. Probability of error for exponential distributionL = 3,M = 8.

Fig. 4. Probability of error for exponential distributionL = 5,M = 8.

situations. Even though the error rate of LRT for the double ex-
ponential case is obtainable through simulation studies, we have
not presented it for the simple reason that the LRT is not real-
izable in many situations. The following observations from the
first four tables pertain to the exponential case. The error rate of
the reduced rank sum test (RRST), which is MRT with ,
is about the same as the error rate of the rank sum test (RST). The
MRTRS ( ) performs very well providing about 1/10 of the
error rate of RST at low signal-to-noise ratios ( ).
For , , and high SNR, even a higher reduction of
error rate is achieved (Fig. 2). At high SNR values, the simple
MRT also achieves error rates close to that of MRTRS for low
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Fig. 5. Probability of error for normal distributionL = 3,M = 64.

Fig. 6. Probability of error for normal distributionL = 5,M = 64.

values of . For , gives the smallest probability of
error for both MRT and MRTRS. The error rate of LRT ranges
from 1/6 through 1/30 of the error rate of MRTRS ( ).

In the Gaussian case (Figs. 5–8), the error rate of MRTRS
( ) is closer to that of RST, except for large alphabet sizes
and large [see , , , and

, in Figs. 5 and 6, in which case the error rate
of MRTRS ( ) is about 1/10 and 1/3 of that of RST, re-
spectively]. Hence, the additional row sorting is beneficial only
for large alphabet sizes and high SNR’s. Moreover, the MRTRS
error rate seems relatively insensitive to. The LRT has an error
rate that ranges from about 1/5 of that of RST for low SNR

Fig. 7. Probability of error for normal distributionL = 3,M = 8.

Fig. 8. Probability of error for normal distributionL = 5,M = 8.

to about 1/35 of that of RST for high SNR. The error rates of
RRST (MRT with ) and RST are comparable at low
SNR values. At high SNR’s and , the error rate of RST
is somewhat smaller than that of RRST. At high SNR, the MRT
with shows a considerably higher error rate than RST
or MRTRS. Hence, is not recommended for MRT in the
normal case.

For double exponential distribution, while considering the
variation of error of MRTRS with respect to, MRTRS with

provides the best performance in almost all the cases con-
sidered (Figs. 9–12). As compared to the RST, the error rate is
reduced by a factor ranging from 2 through 5 in low

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 30, 2009 at 15:51 from IEEE Xplore.  Restrictions apply.
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Fig. 9. Probability of error for double exponential distributionL = 3,M =

64.

Fig. 10. Probability of error for double exponential distributionL = 5,M =

64.

and from 5 through 20 for high SNR. When , the row
sorting helps to reduce the error rate of MRT significantly by
more than an order of magnitude.

The above results show the following. The simple MRT is
highly sensitive to the choice of, with the best choice depen-
dent on the distribution, , and . For Gaussian and Laplace
densities, there is a reduction in error asis changed from 1 to
2. Over certain range of values, it is possible that MRT per-
forms better than MRTRS (see exponential and double exponen-
tial Figs. 1, 2, and 9, 10). However, ifis appropriately chosen,

Fig. 11. Probability of error for double exponential distributionL = 3,M =

8.

Fig. 12. Probability of error for double exponential distributionL = 5,M =

8.

then MRTRS does perform well. In fact, MRTRS ( ) pro-
vides robust and very good performance in heavy tail densities
such as exponential or double exponential. Even in the case of
normal, MRTRS ( ) outperforms RST for large alphabet
sizes and high SNR’s. Only for , the performances of the
two are comparable. With regard to the choice of, for MRT,

is near optimal only for the exponential case. For MRTRS,
the choice of provides nearly optimal performance in all
the three cases studied in this paper.

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 30, 2009 at 15:51 from IEEE Xplore.  Restrictions apply.
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III. A SYMPTOTIC PERFORMANCE OFMRT

In this section, we provide a procedure for arriving at an ex-
pression for the probability of error of MRT for very large values
of . The row-sorting operation in MRTRS introduces statistical
dependency among samples, thereby complicating any deriva-
tion for asymptotic performance. Without any loss of generality
assume that the first row of samples ,
come from the signal density . By a multivariate central
limit theorem [14, p. 74], as increases without any bound,

are jointly Gaussian with mean and co-
variances denoted by the following notations:

(6)

If we let , then the conditional density
of , given is also a multi-
variate normal density with mean and covari-
ances given by [15, eq. (8a2.11), p. 522]

th element of

th element of

(7)

Now, the probability of error is given by

(8)

where

(9)

and denotes the standard Gaussian density. Because
of equal correlation among any pair of variables from

, the –fold integral embedded in the
integrand of (8) can be reduced to a single integral involving
a normal CDF and a normal density function [16]. Using this
reduction, and using large, (8) can be approximated in a
straightforward fashion to yield the asymptotic probability of
error

(10)

Fig. 13. Weak signal efficacy of MRT forM = 64.

where

If necessary, a reader can consult [17] for more details on the
derivation of (10).

Now

(11)

The last term on the right-hand side of (11) can be termed as the
signal-to-noise ratio (SNR). Equation (10) shows that the error
approaches zero exponentially with the factor (SNR/2). This re-
sult is similar to the one obtained for the detection of-ary
orthogonal signals in AWGN ([18, eq. (65), p. 264], notice that
the union bound is asymptotically tight). We define the weak
signal asymptotic efficacy of MRT with a specific as

SNR
(12)

where is the weak signal level.
For the weak signal condition (i.e., ), (12)

was computed corresponding to the three cases (3)–(5) (as can
be seen from [17], the calculations are straightforward, but
tedious) and the results are shown in Figs. 13 and 14

. Fig. 13 shows that for the exponential density, RRST
(MRT with ) gives the best performance and that a
similar performance can be achieved at a considerably lower
value of . For the Gaussian case, is monotonic for
values from through , with the best performance achieved
at . Efficacy decreases by a very small amount after

. For the double exponential density, the results show
that the efficacy peaks at such that its peak value
is somewhat larger than the efficacy at . That is, not
retaining all the rank values yields a slightly better performance
than retaining all the rank values. We have computed all
the expressions for efficacy with high numerical accuracy.
Therefore, we are confident that this behavior as a function of

is really exhibited by MRT.
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Fig. 14. Weak signal efficacy of MRT forM = 8.

Fig. 14 shows that for the exponential density, RRST
gives the best performance and that an efficacy comparable to
that of RRST can be achieved at a lowervalue of . For
Gaussian density, increases monotonically up to and
then decreases slightly at . Results for the double expo-
nential density show that RRST achieves the highest efficacy
and that the efficacy at is almost equal to that of RRST.

From the results on the asymptotic performance of MRT, we
can note that, in all the cases that we have considered, there
is a gain in efficacy by going from to . That is,
retaining the first two largest rank values in each column and
then picking the maximum value sum yields a betterthan
the majority logic combining scheme. Results also show that
there is a difference between the small-sample and large-sample
performance. In the cases of exponential and double exponen-
tial, whereas very low values are preferred for small samples,
large values are preferred for large samples. We also computed
the weak signal asymptotic efficacy of the linear detector. The
linear detector obtains the sum of observations in each row and
declares the row corresponding to the largest sum as the signal
row. Using the information that all of the observations are sta-
tistically independent, it can be seen from (12) that the asymp-
totic efficacy of linear detector is , for the three
pairs (3)–(5). It is well known that linear detector is optimal (i.e.,
LRT) for cases i) and ii). Even in these cases the MRT performs
close to the optimal test, for largeand values.

IV. CONCLUSION

In this paper we consider two specific rank order type of
tests termed as the modified rank test (MRT) and the modi-
fied rank test with row sort (MRTRS). By introducing a simple
row-sorting operation in the MRT we obtain the MRTRS. Both
these tests require a choice for the parameterto be made. For
three specific signal and contaminant models, the probability
of error performances of these receivers and that of the tradi-
tional rank sum test are obtained through simulation studies. Nu-
merically computable probability of error expressions for some
special cases allow us to verify the results from the simulation
studies. Whereas with MRT, is near-optimal only for
the exponential case, with MRTRS, it is near-optimal for all the
three cases considered. MRTRS with provides robust

and competitive performance. In heavy tail densities, the per-
formance of MRTRS is significantly better than that of
the rank sum test.

It has been shown recently that both MRT and MRTRS
with perform better than an equal-gain combiner in a
DS-CDMA context [6], [7]. In this case, the RST performs
slightly better than the MRTRS. It will be of interest to evaluate
the performances of rank tests and determine their behavior in
combating partial band jamming noise in FH-MFSK systems
and in other -ary detection problems.

APPENDIX

PROBABILITY OF ERROR OFMRT FOR , AND

MRTRSFOR ,

In this appendix we derive probability of error expressions for
MRT and MRTRS corresponding to the special case of .
Our aim is to derive analytically tractable and computationally
feasible expressions for the error probabilities. It seems im-
possible to arrive at a general expression for arbitraryand

. While evaluating MRTRS, it is realized that the computa-
tional complexity limits our consideration to the case of
. Without any loss of generality it is assumed that the first

row contains the signal samples. Therefore, the MRT (MRTRS)
makes an error in decision if it chooses any row other than the
first row as the signal row. Consider a tie eventthat cor-
responds to the situation of noise rows and the signal row
having the largest value sum. The probability of correct deci-
sion of MRT (MRTRS) under this situation is then given by

. Such tie events are taken into consideration
while deriving the probability of error expression. It is assumed
in the following that and that is odd.

A. MRT

When , only one of the elements in any column of
the value matrix is , whereas the rest of the elements in that
column assume zero value. The correct decision event consists
of two components, namely, the nontie and the tie situations.
In the former case, the signal row gets maximum value of
in or more columns, any other row gets a value ofin less
than columns, where . Let the corresponding
probability be denoted as

Signal row value sum

all other row value sums (A.1)

In the latter case, the signal row gets maximum value in

columns, no other row gets maximum value in more than
columns, and exactly other rows have their maximum in
columns. The corresponding probability is denoted as

Signal row value sum

exactly other rows have value sum

rest of the rows have value sum

(A.2)
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The probability of correct decision and the probability of error
of MRT are given by

(A.3)

(A.4)

The probability that the signal sample is the largest among
the combined ordering of noise samples and the signal
sample in the th column is given by

(A.5)

where is the CDF corresponding to the density .

because the noise samples are i.i.d.
i) :
Using the definition of it can be easily seen that

(A.6)

A tie situation occurs when, in a particular column, the signal
sample has maximum rank and the maximum ranks in other
columns occur in different noise rows. Hence

(A.7)

ii) :

(A.8)

A tie event can happen in two ways, i) as in case and
ii) when, in two columns, the signal samples have maximum
ranks and in exactly two out of the three remaining columns, a
particular noise row has the maximum ranks. Hence,

(A.9)

B. MRTRS

Let . As in MRT, the correct decision event has two
components, the nontie and the tie situations. The probability
of correct decision is given by

(A.10)

where the first probability on the right-hand side corresponds to
the nontie event and the second one corresponds to the tie event.
The nontie is a union of two events specified by ( is
maximum among , ) and ( is maximum
in any two out of three columns, ). Let us denote the
probability of the above first event as and the probabilities

corresponding to three distinct subsets of the second event as
, , . Hence

(A.11)

The tie event is the union of three mutually exclusive events
specified as ( , exactly two noise rows have their
value sums equal , all other noise rows have their value sums
equal ). By denoting the corresponding probabilities as ,

, , we have

(A.12)

Using standard procedures involving random variables, we can
obtain expressions for various probabilities appearing in (A.11)
and (A.12). Procedures for obtaining some of these are dis-
cussed below. The expressions for the rest are obtained through
similar steps.

Let

(A.13)

(A.14)

where

elsewhere
(A.15)

(A.16)

(A.17)

Next

(A.18)

(A.19)
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otherwise
(A.20)

(A.21)

Similar expressions can be derived for and . Next, an
expression for is derived

is max in st column,

th column max not in st row

is max in st column, max in

2nd and 3rd column both inth row

(A.22)

where

is max in st column,

is max in th column (A.23)

(A.24)

By denoting the first probability on the right-hand side of the
above expression as , we get

(A.25)

where

(A.26)

(A.27)

In order to derive an expression for , we define new variables

(A.28)

(A.29)

where the sixfold integral is carried out over the region

and

(A.30)

Equation (A.29) can be simplified because the three inner inte-
grals can be evaluated analytically. Hence

(A.31)

where

(A.32)

Equations such as (A.14), (A.19), (A.25), and (A.31) can be nu-
merically integrated using routines such as the IMSL (Interna-
tional Mathematical and Statistical Library) routines. By pro-
ceeding along similar lines we can get expressions forand

.
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