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Two Rank Order Tests fal/-ary Detection

Viswanath Annampedu, Vladimir V. Roganov, and Ramanarayanan Viswan&baior Member, IEEE

Abstract—\We consider a general M-ary detection problem cally ordered. In this paper it is assumed that a signal sample is

where, given M groups of L samples each, the problem is to stochastically larger than a noise sample
identify which unique group of L samples have come from the

signal hypothesis. The optimal likelihood ratio test is unrealizable, fy (z) < Fo(z), forall z,

when the joint distribution of AL samples is not completely - i . )

known. In this paper we consider two rank order types of tests whereF;(z) is the CDF of the densiy;(z), ¢ = 0, 1.
termed as the modified rank test (MRT) and the modified rank ] ) ] )
test with row sort (MRTRS). We examine through simulation, The corresponding testing problem under stochastic ordering
the small sample probability of error performances of MRT and  of the two samples is characterized as the slippage problem in
MRTRS for detecting a signal among contaminants. Numerically - statistical literature [1].

computable closed —form error expressions are derived for some . bl tHe les i
special cases. Asymptotic (large sample) error rate of MRT is also In many communlcatlc_)n p_ro e_ms, samp_es Ina r_ow
derived. The results indicate that MRTRS provides improved are the result of processirgdiversity paths ot pieces of in-

performance over other previously known rank tests. formation [2]. As a first approximation, it is usually assumed
Index Terms—Asymptotic error, decision fusion, M-ary com- that all theL samplgs are statistically independent of gach oth.er.
munication, rank tests, signal detection. The L samples arise in different ways corresponding to dif-
ferent situations. For examplé&, could be the number of hops
per symbol in a frequency-hopped multilevel frequency-shift
keying (FH-MFSK) communication system. In a multiuser mo-
bile radio system, an FH-MFSK scheme is used to combat in-
) ) terference on the desired user’s signal from the other users’ sig-
ET{Xij, ¢ =1,2,---,Mandj = 1,2, ---, L} de- pai5 multiple-access interference) [3]. In military applications,
L note the set of observations such that the sampies,  FH.MFSK modulation scheme is used to improve performance
J= 1, 2_, e L} are aIImdependentand|dent|callydlstnbute%gamst partial band noise (PBN) jamming and tone jamming
(i.i.d.) with the signal density, (.),' whereas the rest of the sam4} ' |n mobile-radio environment, where multipath propagation
ples{X;,j =1,2,---, Landi = 1,2, ---, M(i # k)} igpresent, multiple copies of transmitted signal arrive at the re-
are i.i.d. with the noise densitfy(.). It is not known that the cejver with different amplitudes and at different times. In 1S-95
kth group of L, samples are from the signal distribution (hyps/cpma systems, a proposed 2D-RAKE receiver, in addition

pothesisH;) and the problem is to decide, based on the Ol eypioiting the spatial structure, takes advantage of multipath

servations, which unique group éfsamples have come fromgjgnling to realize a form of time diversity [5]. A recent study
f1(.). By arranging the observations in a matrix with rows a5 that the rank type tests can provide robust performance
gndp c:olumns3 the detection problem can be stated as follov'\egr these code-division multiple access (CDMA) systems [6],
identify the unique row of samples that belong to the densiy |, 4 these problems, even if the densities of the observa-
f1(.). Rank tests, which are nonparametric in nature, are natuiighs can be assumed known, the parameters of these densities
candidates when the two densitigg.) and fo(.) are stochasti- 416 ysyally unknown, and hence, a likelihood ratio test (LRT)

cannot be implemented. Also, the strengths of different diversity
paths may be different, thereby implying that the signal densi-

. . . _tiesindifferent paths are nonidentically distributed. In this paper
Manuscript received October 9, 1998; revised October 14, 1999. This work

was supported by BMDO/IST and managed by the Office of Naval Researéff aSsume the simpler model of the observations mentioned in
under Contract NO0014-97-1-0917. The material in this paper was presentethi® previous paragraph.
partat the Conference on Information Sciences and Systems, The Johns Hopking rank-based test for th@/-ary signal detection problem

University, Baltimore, MD, March 19-21, 1997. be f lated foll A K ix is fi d
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mation. rank orders the samples in each column separately into values
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_ _ o _ , rank sum. The reduced ranking is appealing when the densi-

Typically in a communication probleny; (.) is due to the processing of a .. fthe si | ob . di diff di

signal plus noise process. For convenience, wedll) simply as the signal €S Of the signal observations corresponding to different diver-

density. sity paths are nonidentical. For a frequency-hopped multilevel
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frequency-shift keying (FH-MFSK) system, the RST and thgairs. The first is the result of noncoherent processing of a
RRST are found to be nearly identical in performance and thBayleigh fading signal received in additive white Gaussian
serve as a competing alternative to the parametric receivers [8lise (AWGN), whereas the next two are based on constant
List rank sum diversity combining based on RST was devisedsignal-plus-noise models. The signal and the noise models
[8]. In this method, a rank-list value table is to be created bastmt different application areas mentioned earlier differ from
on the channel condition and the interference threat. In genethgse simpler models because, in the former, multiple-access
the list table can be chosen only in ad hocmanner. The re- interference or jammer interference may be present. Here we
ceiver picks the row with the maximum list rank sum. A fewshow that the MRTRS witlp = 1 performs very well in all
other nonparametric tests are also discussed in [8]. three example cases. Another aim of this study is to determine
In this paper, we consider two specific rank order tests termbadw the choice of the parametgraffects the performances
as the modified rank test (MRT) and the modified rank test withf MRT and MRTRS. Large sample asymptotic performance
row sort (MRTRS). MRT is a variation of RRST. Let the ranlof MRT is evaluated in Section IIl. An Appendix provides
of {x;;} in the ordering (reduced rank ordering) of the sampledosed-form probability of error expressions for the special case
{z:;,4=1,2,---, M} be denoted as;;. A variation of the ofp =1, L = 3, 5 for MRT andp = 1, L = 3 for MRTRS.
RRST is to create a value matrix where fligj) element of the We conclude this paper in Section IV.
value matrix is given by

ver — 4 Tid> ifri; > M—p+1,
* 0, otherwise,

Il. FINITE SAMPLE PROBABILITY OF ERRORPERFORMANCE

1<p<M. () The performances of MRT and MRTRS are evaluated by

finding the probabilities of error in identifying the signal row.
The value sums are then computed as We consider three cases@f;, fo) pairs:

L Casei) Exponential
i = ij - 2
i ;UJ @ f@)=xe 2>0,A<1
folz) =e™7, x> 0. 3)

The MRT then decides! as the signal row where
| = argmax;c(y, ..., my si- If p = 1, the MRT retains only  Caseii) Gaussian

the maximum rank ofd/ in each column and assigns zero 1

values to the others. In other words, independently for each filz) = (@01 g5

column, the row with the largest rank is decided as the signal V2r

row. Therefore, fop = 1, MRT can be thought of as a majority Jo(z) = b e (@*/2) (4)
logic combining (MLC) of the decisions made in each column. V2

For other values op, MRT can be thought of as combining Caseiii) Double Exponential (or Laplace)
decisions, when decisions are presented with confidence

weights. Decision fusion has been discussed extensively in fi(=) zle—lw—0|7 6> 0
several recent publications [9]-[11]. Since the value sum of %
each row is integer-valued, it is possible that more than one folz) = e 17!, (5)

row may be tied as having the largest value sum. If a tie occurs 2
among several rows, then the MRT picks at random one of tfibe finite sample performances of MRT and MRTRS are eval-
tied rows as the signal row. uated through simulation. Simulation of the required samples
Modified rank test with row sort is implemented by firstin (3)—(5) is obtained from IMSL random number generation
sorting the elements in each row{f;; } in increasing order of routines. In each case, the number of runs is sufficiently large to
values and then applying the MRT procedure to the elememtssure an error count of 30 or more. Observing an error count of
of the row sorted matrix. That is, if the row sorted matriXd0 implies that, with a confidence level of 95%, the actual error
is denoted agy,;, ¢ = 1,2,---, M, j = 1,2,---, L}, iswithin afactor of2 of the estimated error [12], [13]. Thus our
then y;; is the jth largest amondx,, & = 1,2, ---, L}, error estimates are obtained with an even greater accuracy. In
fori = 1,2, ---, M. The rest of the operations of reducedhe Appendix we provide the closed-form probability of error
ranking, clipping, and summing are carried out exactly as expressions for the special casepof 1, L = 3, 5 for MRT
MRT, but these are applied t0y;; } and not to{z;;}. Thus andp =1, L = 3 for MRTRS. As shown there, the derivations
MRTRS compares the strongest signal against each of tleguire some ingenious steps in order to arrive at numerically
M — 1 strongest noise components, the next strongest signamputable expressions for the probability of error. Error rates
against each of thé/ — 1 next strongest noise, and so ondetermined through these analytical derivations are compared
It is certainly difficult to predict whether such comparisonsgainst the results from simulation studies. In all the cases we
would yield more accurate identification of the signal than th&iave excellent agreement between the simulation and the theo-
provided by L comparisons of independent signal and noisetical results.
samples, as in MRT. Only a probability of error assessmentin Figs. 1-4 we show probabilities of error of various tests for
provides the definitive answer. exponential distribution. The error rates for the normal and the
In Section 1l we discuss finite sample probability of errotaplace are shown in Figs. 5-8 and 9-12, respectively. Observe
performance of MRT and MRTRS for three exampfg, fo) thatthe probability of error is plotted on a logarithmic scale in all

Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on May 30, 2009 at 15:51 from IEEE Xplore. Restrictions apply.



ANNAMPEDU et al: TWO RANK ORDER TESTS FORV/-ARY DETECTION

Probability of Error

10

Fig. 1.

-1

10

Probability of Error

—_
o

10

Fig. 2.

the figures except in Figs. 3 and 4, where it is on a linear scatgtuations. Even though the error rate of LRT for the double ex-
The parameters for the signal densities under the three casegarential case is obtainable through simulation studies, we have
chosen so that the error rates of MRT and MRTRS are in thet presented it for the simple reason that the LRT is not real-
easily estimable range (i.e., greater tH&T®). This assures a izable in many situations. The following observations from the
reasonable simulation time requirement. In Figs. 1-8, we alfist four tables pertain to the exponential case. The error rate of
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provide the error rates of the LRT for comparison purposes [LRfie reduced rank sum test (RRST), which is MRT witlk M,

is the uniformly most powerful test (UMP) for these two casesiks about the same as the error rate of the rank sum test (RST). The
For exponential and normal cases, the LRT error rates are &BRTRS (p = 1) performs very well providing about 1/10 of the

tained through standard analytical expressions. For the doubteor rate of RST at low signal-to-noise rati@&NR = 1/A—1).

exponential case, no uniformly most powerful test for one-sidéwr M = 64, L = 5, and high SNR, even a higher reduction of
alternative exists. Implementation of a LRT requires a completeror rate is achieved (Fig. 2). At high SNR values, the simple
knowledge of the signal density, which is unavailable in manyRT also achieves error rates close to that of MRTRS for low
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Fig. 6. Probability of error for normal distributioh = 5, M = G4. Fig. 8. Probability of error for normal distributich = 5, A1 = 8.

values ofp. For M = 8, p = 1 gives the smallest probability of to about 1/35 of that of RST for high SNR. The error rates of
error for both MRT and MRTRS. The error rate of LRT rangeRRST (MRT withp = A) and RST are comparable at low
from 1/6 through 1/30 of the error rate of MRTRB=£ 1). SNR values. At high SNR’s andif = §, the error rate of RST

In the Gaussian case (Figs. 5-8), the error rate of MRTRSsomewhat smaller than that of RRST. At high SNR, the MRT
(p = 1) is closer to that of RST, except for large alphabet sizegth p = 1 shows a considerably higher error rate than RST
and largeSNR (=6?) [seeM = 64, L = 3, SNR = 16, and or MRTRS. Hencep = 1 is not recommended for MRT in the
L = 5,SNR = 9in Figs. 5 and 6, in which case the error rat@ormal case.
of MRTRS (p = 1) is about 1/10 and 1/3 of that of RST, re- For double exponential distribution, while considering the
spectively]. Hence, the additional row sorting is beneficial onlyariation of error of MRTRS with respect g MRTRS with
for large alphabet sizes and high SNR’s. Moreover, the MRTRS= 1 provides the best performance in almost all the cases con-
error rate seems relatively insensitivestd’ he LRT has an error sidered (Figs. 9-12). As compared to the RST, the error rate is
rate that ranges from about 1/5 of that of RST for low SNReduced by a factor ranging from 2 through 5 in IBNR (=6?)
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sorting helps to reduce the error rate of MRT significantly bthen MRTRS does perform well. In fact, MRTRS € 1) pro-
more than an order of magnitude.

vides robust and very good performance in heavy tail densities
The above results show the following. The simple MRT isuch as exponential or double exponential. Even in the case of

highly sensitive to the choice @f with the best choice depen-normal, MRTRS $ = 1) outperforms RST for large alphabet
dent on the distribution)/, and L. For Gaussian and Laplacesizes and high SNR’s. Only fdv/ = &, the performances of the
densities, there is a reduction in errorgis changed from 1 to two are comparable. With regard to the choicenpfor MRT,

2. Over certain range of values, it is possible that MRT per-p = 1is near optimal only for the exponential case. For MRTRS,

forms better than MRTRS (see exponential and double exponéme choice ofp = 1 provides nearly optimal performance in all
tial Figs. 1, 2, and 9, 10). However jifis appropriately chosen, the three cases studied in this paper.
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lll. A sSYMPTOTIC PERFORMANCE OFMRT 5.00E-01 |
In this section, we provide a procedure for arriving at an ex- M=64
pression for the probability of error of MRT for very large values 4.00E-01 N R
of L. The row-sorting operation in MRTRS introduces statistical / -
dependency among samples, thereby complicating any deriva- §‘ 3.00E-01 r '
tion for asymptotic performance. Without any loss of generality Qg’ /
assume that the first row of samplés,;, j = 1,2, ---, L} = 2.00E-01 |- T
come from the signal densitfi (.). By a multivariate central . ~ Exponential
limit theorem [14, p. 74], aL increases without any bound, 1.OOE-01 |7/ Gaussian
S;, i =1,2,---, M are jointly Gaussian with mean and co- i /\\Laplace
variances denoted by the following notations: 0.00E+00 — S
1 8 15 22 29 36 43 50 57 64
E(Sl) =g
E(S;) = mo, i=2,3 -, M d
0521 = 052 Fig. 13. Weak signal efficacy of MRT fat/ = 64.
0527_:03, 1=2,3 -, M
COV(Sl, Sz) = pP10000s, i=2, 3, Tty M where
COV (S;, S;) = poas, i# 7, (i, ) €(2,3,---, M). o= —s ™o, = OS5~ P19

o —
(6) VAR gov/1 = pio
If necessary, a reader can consult [17] for more details on the

If we let S = (S5; — ms)/os, then the conditional density derivation of (10)

of {Sf, ¢ = 2,3,---, M} given S} = s is also a multi- Now
variate normal densitW,,_1 (%, %) with mean and covari-
ances given by [15, eq. (8a2.11), p. 522] a _ (ms —m,)?
PR (1+m32) (0% +02—2p19000s)
o LG L)) (11)
(1, i)th element o} = X%, = 072 (Var(Sy — 52))
i=1,2,---,M—-1 The last term on the right-hand side of (11) can be termed as the
* *2 % signal-to-noise ratio (SNR). Equation (10) shows that the error

(¢, j)th element ob.? = X0, = 0.7 py, ; : _
approaches zero exponentially with the factor (SNR/2). This re-

i#Fje(L, 2, - M-1). (7) sult is similar to the one obtained for the detectionidtary
orthogonal signals in AWGN ([18, eq. (65), p. 264], notice that

Now, the probability of erro’(e) is given by ; - \ - i
the union bound is asymptotically tight). We define the weak

Ple)=1-P(c) signal asymptotic efficacy, of MRT with a specificp as
:1_/ p<52;*7’l<:<h75%;:”c<h7 _ SNR 12)
—0o ¢ 0. p = 2Le2
. LM :mc < h|Sf= 3> ¢(s)ds  wheree is the weak signal level.
e For the weak signal condition (i.efy() — fo()), (12)

®)  was computed corresponding to the three cases (3)—(5) (as can
be seen from [17], the calculations are straightforward, but

where . -
. tedious) and the results are shown in Figs(18=64) and 14

B ST M ) (M =8). Fig. 13 shows that for the exponential density, RRST

a; (MRT with p = M) gives the best performance and that a

and ¢() denotes the standard Gaussian density. Becaidilar performance can be aghieved ata conside_rably lower
of equal correlation among any pair of variables fronfa ue ofp = 20. For the Gaussian casg, is monotonic forp

(S5, S, ---, §%,), the(M — 1)—fold integral embedded in the Values froml through60, with the best performance achieved

integrand of (8) can be reduced to a single integral involvin%tp = 60. Efficacy decreases by a very small amount after

a normal CDF and a normal density function [16]. Using thi€ — 60. Fo_r the double exponential density, _the results show
that the efficacy peaks at = 34 such that its peak value

reduction, and using largé, (8) can be approximated in a. . .
ueh using largé, (8) bproxi ! somewhat larger than the efficacymat= M. That is, not

traightf d fashion to yield th toti bability of SO . .
straightiorward fashion fo yie © asymprotic probabiiity Oretalmng all the rank values yields a slightly better performance

error than retaining all the rank values. We have computed all

(M —1) 1 o <_ G ) (10) the expressions for efficacy with high numerical accuracy.

NeT c2 P 2(1+m3) Therefore, we are confident that this behavior as a function of
(1+m37) p is really exhibited by MRT.

Pe) =
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3.50E-01 and competitive performance. In heavy tail densities, the per-
s , 7 T -7 formance of MRTRSp = 1) is significantly better than that of
3.00E-01 - v the rank sum test.
250E-01 - / It has been shown recently that both MRT and MRTRS
§ / with p = 1 perform better than an equal-gain combiner in a
é_’ 2.00E-01 t DS-CDMA context [6], [7]. In this case, the RST performs
m slightly better than the MRTRS. It will be of interest to evaluate
1.50E-01 A 2T N N vnmane : the performances of rank tests and determine their behavior in
1.00E-01 Gaussian combating partial band jamming noise in FH-MFSK systems
\Laplace and in otherM -ary detection problems.
5.00E-02 : ' : :
1 2 3 4 5 6 7 8 APPENDIX
PROBABILITY OF ERROR OFMRT FORp = 1, L = 3, 5 AND
P MRTRSFORp = 1, L = 3
Fig. 14. Weak signal efficacy of MRT fak/ = 8. In this appendix we derive probability of error expressions for

MRT and MRTRS corresponding to the special casg ef 1.

Fig. 14 shows that for the exponential density, RREE 8) Our aim is to derive analytically tractable and computationally
gives the best performance and that an efficacy comparabld@asible expressions for the error probabilities. It seems im-
that of RRST can be achieved at a lowewnalue of 3. For Possible to arrive at a general expression for arbitgarnd
Gaussian density;, increases monotonically up o= 7 and L. While evaluating MRTRS, it is realized that the computa-
then decreases S||ght|y at= 8. Results for the double expo-tiona| complexity limits our consideration to the caselof=
nential density show that RRST achieves the highest efficagy Without any loss of generality it is assumed that the first
and that the efficacy at = 5 is almost equal to that of RRST. 0w contains the signal samples. Therefore, the MRT (MRTRS)

From the results on the asymptotic performance of MRT, wgakes an error in decision if it chooses any row other than the
can note that, in all the cases that we have considered, thiigt row as the signal row. Consider a tie evettthat cor-
is a gain in efficacy by going fronp = 1 to p = 2. Thatis, responds to the situation e noise rows and the signal row
retaining the first two largest rank values in each column afving the largest value sum. The probability of correct deci-
then picking the maximum value sum yields a betjgithan Sion of MRT (MRTRS) under this situation is then given by
the majority logic combining scheme. Results also show th&(4)/(m + 1). Such tie events are taken into consideration
there is a difference between the small-sample and large-sangféle deriving the probability of error expression. It is assumed
performance. In the cases of exponential and double exponiéhthe following thatd/ > L and thatL is odd.
tial, whereas very low values are preferred for small samples
largep values are preferred for large samples. We also compuéd MRT
the weak signal asymptotic efficacy of the linear detector. TheWhenp = 1, only one of the elements in any column of
linear detector obtains the sum of observations in each row ahe value matrix is\/, whereas the rest of the elements in that
declares the row corresponding to the largest sum as the sigrellmn assume zero value. The correct decision event consists
row. Using the information that all of the observations are staf two components, namely, the nontie and the tie situations.
tistically independent, it can be seen from (12) that the asymip-the former case, the signal row gets maximum valuéfof
totic efficacy of linear detector i8.25, for the three(f;, fo) in{ or more columns, any other row gets a valueMfin less
pairs (3)—(5). Itis well known that linear detector is optimal (i.ethan! columns, wheré > (M + 1)/2. Let the corresponding
LRT) for cases i) and ii). Even in these cases the MRT performsobability be denoted as

close to the optimal test, for largeand M values. P = Z P(Signal row value sur M,

IV, CONCLUSION ! all other row value sums M1). (A.1)
In this paper we consider two specific rank order type f the latter case, the signal row gets maximum value in
tests termed as the modified rank test (MRT) and the modi- L1 -1
fied rank test with row sort (MRTRS). By introducing a simple k= <— — i) i € {1, 2, .-, —}
row-sorting operation in the MRT we obtain the MRTRS. Both
these tests require a choice for the parameterbe made. For columns, no other row gets maximum value in more t#an
three specific signal and contaminant models, the probabil@@!umns, and exactly: other rows have their maximum i
of error performances of these receivers and that of the trag@/umns. The corresponding probability is denoted as
tional rank sum test are obtained through simulation studies. I\}y
merically computable probability of error expressions for some?
special cases allow us to verify the results from the simulation exactlym other rows have value susMFk
studies. Whereas with MR = 1 is near-optimal only for ’
the exponential case, with MRTRS, it is near-optimal for all the rest of the rows have value sun\/ k).

three cases considered. MRTRS with= 1 provides robust (A.2)

1 .
=Y —— P(Signal row value surs MF,
k rnm+1
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The probability of correct decision and the probability of errazorresponding to three distinct subsets of the second event as

of MRT are given by Pz, P 55, Pyq7. HENCe
P. =P, + P (A.3) P.i = Piog + Plyz + Pz + Poar. (A.11)
P =1-F. (A.4)  The tie event is the union of three mutually exclusive events

g 3 . .
. . . specified a J;_, (V1; = M, exactly two noise rows have their
The probability that the signal samplfy; is the largest among value sums ejqulei\ll, ;;\II other noise rows have their value sums

the com'binedbordering (Q'M R 1) noise samples and the Sign‘"‘lﬁzquaIO). By denoting the corresponding probabilitiesas-,
sample in the/th column is given by Por, Por, We have

_ an o [T e 1
q= PRy =M)= / Fy 7 (@) fu(z) de, P.o= §(P1T + Por + Psr). (A.12)

j=1,2,---, L (A5 . . . .
J e (A-5) Using standard procedures involving random variables, we can

whereFy(.) is the CDF corresponding to the densfiy.). obtain expressions for various probabilities appearing in (A.11)
1—gq and (A.12). Procedures for obtaining some of these are dis-
PRy = M) = (M —1) k=23, M cussed below. The expressions for the rest are obtained through

because the noise samples are i.i.d. similar steps.

i — a- Let

)L =3:

Using the definition of; it can be easily seen that Z; =max(Yij, i = 2,3, ---, M), j=1,2,3

3
Pi=¢+ <2> (1 —q). (A.6) (A.13)
Prag = P(Y11 > 71, Y12 > Za, Y13 > Z3)

A tie situation occurs when, in a particular column, the signal oo pULz pUL2
sample has maximum ramd and the maximum ranks in other = /_Oo /_Oo /_Oo Fz,, 25, z,(v11, Y12, 13)

columns occur in different noise rows. Hence

P = % <<i‘>q <J\1/[_—q1>2(M_ 1)(M — 2)) . (A7) where

II) L =5 fY117Y127Y13 (y117 Y12, y13)

5 5 5 5 _ I 3Yi(yin) fr(yi2) fr(via)s Y11 < Y12 < Y13
Py =q¢+ <4) (1-q) + <3) P(l—q)?+ <2> o, elsewhere
(A.15)

Sy vie, vis (11, Y2, ths) dyin dyre dins (AL14)

M-1
A tie event can happen in two ways, i) asliin= 3 case and 3
ii) when, in two columns, the signal samples have maximum’z, . z,, z,(z1, #2, z3)=F ﬂ ﬂ Y <z
ranks and in exactly two out of the three remaining columns, a j=1i=
particular noise row has the maximum ranks. Hence,

(O o) [ty

=1
=PM (Yo <21, Yos <22, Yoz <23)

g <ﬂ> (M —1)(M —2)(M —3). (A.8)

3
1 S\ (3\ »( 1—¢q —
+3 <<2> <2)q <M_ 1) (M—l)(M—2)>. =I5 vl (71, 22, 23) (A.16)
(A-9) Iy, Yys, Yoy (€1, €2, €3)
3 s
3! . —
B. MRTRS => 3 RTEEs e FJ(e1)(Fo(ea) — Foler))?
Let L = 3. As in MRT, the correct decision event has two ~ s=2 r=1 "~ ' s ’
components, the nontie and the tie situations. The probability - (Fo(e3) — Fo(2))°7°, &1 <e2 <e3. (A.17)
of correct decision is given by N
ext
P.=P.+Po (A.10)

) . ) ) Pz =P(Y1 > Z1, Y12 > Za, Y13 < Z3)
where the first probability on the right-hand side corresponds to —P(Yi > 21, Yis > Zs) — P
— 11 1, £12 2) — 4123

the nontie event and the second one corresponds to the tie event.

The nontie is a union of two events specified B, v1x is = P12OO— be (A.18)
maximum among;x, j = 1, 2, ---, M) and ¢ is maximum Py = / / Fry. 7 (i1, yi2)

in any two out of three columng,= 1, 2, 3). Let us denote the —ood oo T

probability of the above first event d%,; and the probabilities Sy, v (U1, v12) dyin dyge (A.19)
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Tvin, vie (W11, v12) In order to derive an expression fBg; , we define new variables
— 31— Fi(y) fi(yin) fi(yiz), yu < Y12 R; =max (Yy;, i =3, 4, -+, M), j=1,2 3 (A28)
0, otherwise
(A.20)

Py = /FRI7RZ7R3 (y11, Y22, Y23)

Fz 7,(21, 22)
"y, Yiz, vis (11, W12, 113)

3 s
3! )
= [Z > s =13 S)gFO (1) * f¥ar, Yoo, v (Y215 Y22, Y23)
=2 r=1
= M—1 - dyo1 dy13 dy12 dy23 dy2 dy11 (A.29)
(Fo(z2 — 1)) (1= Fo(22))*® , #1 <z2. where the sixfold integral is carried out over the region
(A.21) —o0o <Y1 < Y11, Y12 < Y13 < Y23, Y11 < Y2 < Y22,
. . . Y22 < Y23 < 00, Y11 <Y2 <00, —00 <Y1 <00
Similar expressions can be derived 8,5 and F,,7. Next, an
expression foP, 7 is derived and
3 FR, Ro, R, (71, 72, T3)
Py =P | Y1, is max inist column, ﬂ <§: 25: 31 Frrs)
=2 = K] o\t _ 1 0 1
= = rl(s = )I(3 = s)!
M-2
jth column max not inst row o s
¢ - (Fo(ra) = Fo(r1)) ™" (Fo(rs) = Fo(r2))® ) :
M <712 < T3. (A.30)
-P U Y7, is max inlst column, max in

Equation (A.29) can be simplified because the three inner inte-

j=2
grals can be evaluated analytically. Hence

2nd and 3rd column both ifth row RO el e
Py = FRry, Ry, Rs (Y11, Y22, Y33)
—o0 Y Y11 Y Y2

=P3z3— (M —1)Pn (A.22) -1 fo(yes) fo(y2z) fo(yir) dyas dyeo dyr11 (A.31)
where where
. . 2 I =36Fp(y11) {F1(2123)(F1(y22) - Fi(yu))
Py = P | Y11 is max inlst column, ﬂ Yo,
=2 ) n I (yu) } . (A32)
2 2
is max injth column (A-23)  Equations such as (A.14), (A.19), (A.25), and (A.31) can be nu-

merically integrated using routines such as the IMSL (Interna-
tional Mathematical and Statistical Library) routines. By pro-
P53 =P(Y11 > Z1, Y12 < Z2, Y13 < Z3) ceeding along similar lines we can get expressionserand

=P(Y11 > Z1) — Pi1o — P13+ Pro3. (A.24) Par.

By denoting the first probability on the right-hand side of the A
above expression &3, we get CKNOWLEDGMENT
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where

Fyis (11) =3(1 — Fu(y1)? fi(ynn) (A.26)
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