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ABSTRACT: Spatial interdependence, the interdependence of outcomes across units, is theoretically and 
substantively ubiquitous and central across the social sciences. The empirical clustering or correlation of 
outcomes on some dimension(s), spatial association, is also obvious in most contexts. However, outcomes may 
exhibit spatial association for three distinct reasons. First, units may be responding similarly to similar 
exposure to similar exogenous internal/domestic or external/foreign stimuli (common exposure); second, units’ 
responses may depend on others’ responses (contagion). A third possibility arises when the putative outcome 
affects the variable along which clustering occurs (selection: e.g., homophily). Severe empirical difficulties 
confront the accurate estimation and distinction of these alternative sources of spatial association. After brief 
review of our previous work on specification, estimation, testing, and interpretation of the spatial and 
spatiotemporal autoregressive (SAR and STAR) models, which reflect interdependence directly and so can 
address Galton’s Problem of distinguishing common exposure from contagion as alternative substantive 
sources of observed spatial association, this paper extends those analyses, proposing to apply the 
multiparametric spatiotemporal autoregressive (m-STAR) model as a simple approach to estimating jointly 
the pattern of connectivity and the strength of contagion by that pattern, including the case where 
connectivity is endogenous to the dependent variable (i.e., selection). As before, we stress substantively-
theoretically guided (i.e., structural) specifications that can support analyses of estimated spatiotemporal 
responses to stochastic or covariate shocks and that can distinguish the possible sources of spatial association, 
now three: common exposure, contagion, and selection. In addition to discussing estimation of m-STAR 
models, this paper compares the approach to extant longitudinal-network strategies [this work still pending as 
yet], and suggests how to calculate, interpret, and present the dynamic, endogenous coevolution of network 
structure and of contagion and common-exposure effects that emerges from such a system of nonlinear 
endogenous equations. We illustrate this approach to dynamic, endogenous interdependence—which parallels 
models of network and behavior coevolution in the dynamic or longitudinal networks literature—with an 
empirical application attempting to disentangle the roles of economic interdependence, correlated external and 
internal stimuli, and EU membership in shaping labor-market policies in recent years. 
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I. INTRODUCTION: The Substantive and Theoretical Ubiquity and Centrality of Spatial 
Interdependence, Its Mechanisms, and a General Theoretical Model 

Social-scientific interest in and applications of spatial-econometric modeling have 

burgeoned lately, due partly to advances in theory that imply interdependence and in 

methodology to address it; partly to global substantive developments that have raised 

perceptions and attention to interconnectivity, at all levels, from micro/personal to 

macro/international; and partly to advances in technology for obtaining and working with 

spatial data. This is a welcome development because the dependence of outcomes in some 

units on outcomes in others, spatial interdependence, is substantively ubiquitous and 

theoretically central across the political and other social sciences. 

Perhaps the most-extensive classical and current political-science interest in spatial 

interdependence, dating from the 1950s and still booming, surrounds intergovernmental 

diffusion of policies among U.S. States.1 Similar policy-diffusion research has emerged more-

recently in comparative studies, but the closer parallel in classical and current comparative 

and international politics research regards institutional/regime diffusion, which dates at 

least to Dahl’s (1971) Polyarchy and is much invigorated since the fall of the Soviet Union 

and Starr’s (1991) “Democratic Dominoes” and Huntington’s (1991) Third Wave. 

The topical range of substantively important spatial-interdependence extends well 

beyond such inter-governmental diffusion, however, spanning all of political science. Inside 

democratic legislatures, representatives’ votes depend on others’ (expected) votes, and, in 

electoral studies, citizens’ votes, election outcomes, or candidate qualities, strategies, or 

contributions in some contests depend on those in others. In micro-behavioral work, too, 

much of the longstanding and recently surging interest in contextual/neighborhood effects 

surrounds effects on respondents’ behaviors or opinions of aggregates of others’ (e.g., those 

of his/her community or social network). Contagion or diffusion in ideology, or social-

movements, or national identity have also been explored. In comparative and international 

political economy, too, interdependence is often substantively large and central. Many 

stress cross-national diffusion as a force behind recent economic liberalizations, for instance. 

More broadly, globalization, i.e., international economic integration, arguably today’s most-

                                                 
1 The ensuing list of topics and disciplines corresponds to literature searches for applied work under contagion, 
spatial interdependence, or network dependence. A web appendix provides, among other things, full citation to 
these (many) works, with some (little) annotation, topically organized in the order presented here in the text: 
www.umich.edu/~franzese/Publications.html. 
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notable (and indisputably most-noted) political-economic phenomenon, implies strategic 

and nonstrategic interdependence of domestic politics, policymakers, and policies. Likewise, 

the probability and outcomes of coups, riots, civil wars, and revolutions in one unit depend 

on those in others. Terrorist origins and targets also manifest spatial patterns. Simply put, 

the interdependence of states’ actions defines the subfield of international relations. 

In fact, interdependence of outcomes across units could serve as reasonable definition of 

social science more generally and broadly. Interdependence is indeed studied prominently in 

geographical and environmental sciences, in regional, urban, and real-estate economics, in 

medicine, public health, epidemiology, and criminology, and, in its related guise as network-

dependence, in medicine, health, and epidemiology again, in education, and, of course, in 

social-network analysis. Topics include, to name just a few, interdependence in technology, 

marketing, and firm strategies; in macroeconomic performance; in microeconomic utilities; 

in violence and crime; and network dependence in obesity, fertility, birthweight, child 

development and poverty; in marriage; in right-wing extremism; in (sub)national identity; 

in women’s ordainment; and in academic citations, placements, and co-authoring. 

In short, as Tobler’s Law (1970) aptly sums: “Everything is related to everything else, 

but near things are more related than distant things.” Furthermore, as Beck et al.’s (2006) 

pithy title reminds in corollary: “Space is more than Geography.” I.e., the substantive 

content of the proximity in Tobler’s Law, and so the pathways along which interdependence 

between units may operate, extend well beyond physical distance, contact, and contiguity 

(as the examples above attest). Long literatures in sociology, regional science, geography, 

have elaborated from those disciplinary perspectives the multifarious mechanisms by which 

contagion may arise. Simmons et al. (2005, 2006) offer a list for international relations–

coercion, competition, learning, and emulation–that has been influential in political science.2 

In fact, strategic interdependence arises any time some unit(s)’s actions affect the 

marginal utility of other(s)’s actions.3 Given such externalities, i’s utility depends on both 

its choice/outcome and that of j. In environmental policy, for instance, domestic welfare (or 

                                                 
2 For fuller, closer match to prior traditions, add cooperation and externality to competition, merge learning 
and emulation, and add relocation diffusion—direct movement of some parts of units i into other units j, such 
as by human migration or disease contagion (Haegerstrand 1970). 
3 Manski (2000) shows such externalities could arise in formal microeconomic models from interactions, 
expectations, or preferences. Akerlof (1997), Glaeser et al. (2000, 2003), Brock & Durlauf (2001), e.g., provide 
further examples and reviews. Non-strategic interdependence could arise even without such externalities.  
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net political-economic benefits to policymakers) in each country will depend on the policies 

of both countries due to environmental spillovers (e.g., of pollution) and economic spillovers 

(e.g., in regulatory costs). Optimizing behavior will yield best-response functions of i’s 

optimal policies as a function of j’s and vice versa. In this framework, moreover, positive 

externalities create free-rider incentives, which induce policies to move in opposite 

directions (i.e., as strategic substitutes), confer late-mover advantages, and make war-of-

attrition (strategic delay or inaction) dynamics likely. Conversely, negative externalities 

create strategic complementarity, with policies moving in the same direction, yielding early-

mover advantages and competitive races (to the bottom, top, or elsewhere). 

Formally, following Brueckner (2003), consider two states (i,j), each with welfare (or 

indirect utility, V) that, due to externalities, depends on domestic and foreign policy (pi,pj): 

 ( , ) ; ( , )i i j j
i j j i

V V p p V V p p≡ ≡  (1). 

As i chooses pi to maximize its welfare, this affects j’s optimal policy-choice, and vice versa. 

We can express such strategic interdependence between i and j as best-response functions, 

giving i’s optimal policy, pi
*, as a function of j’s policy: 

 
i j

* *
p p

=Argmax ( , ) ( ) ; =Argmax ( , ) ( )i j
i i j j j j i i

p V p p R p p V p p R p≡ ≡  (2). 

The signs of the response-function slopes determine whether competitive-race or free-rider 

dynamics occur; they depend on these ratios of second cross-partials: 

 
**

/ ; /
i j i i j i j j

ji i j ji
p p p p p p p p

j i

pp
V V V V

p p

∂∂
= − = −

∂ ∂
 (3). 

If governments are maximizing, the denominators are negative, so, if , 0
i j

i j
p p

V > , policies are 

strategic complements: reaction-functions slope upward. If , 0
i j

i j
p p

V < , reaction functions slope 

downward: policies are strategic substitutes. If , 0
i j

i j
p p

V = , best-response functions are flat: 

strategic interdependence does not materialize. Interestingly, negative externalities induce 

strategic-complement policy-interdependence (i.e., positive feedback), and positive 

externalities induce strategic-substitute (i.e., negative) interdependence. 

In our empirical application: active-labor-market (ALM) policies, assuming effectiveness, 

have positive employment externalities and diminishing returns, so free-rider dynamics 

should arise. Such strategic contexts also create first-mover disadvantages—those spending 

earlier bear larger portions of the costs of reducing unemployment—and so potential for 

war-of-attrition dynamics that would delay action and push equilibrium ALM spending of i 
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and j lower still. Do cross-border positive employment externalities of ALM policies exist; 

and, if so, are they sufficiently strong to induce fiscal free-riding in ALM policy? Labor-

market outcomes and policies exhibit obvious spatiotemporal patterns within and across the 

developed democracies, and among European Union member-states especially. We have 

shown elsewhere (Franzese & Hays 2006c) that EU member-states’ ALM policies exhibit 

significant interdependence along borders, a pattern possibly indicative of appreciable cross-

border spillovers in labor-market outcomes inducing strategic interdependence among these 

political economies in labor-market policies. However, these countries also faced common or 

very similar exogenous-external conditions and internal trends, which would likewise tend 

to generate spatial patterns in the domestic policy-responses, even without interdependence. 

Moreover, EU membership itself likely entails both some common external stimuli and some 

strategic interdependencies relevant to labor-market policy. Finally, labor-market policies 

themselves may shape the patterns of economic exchange by which some of the policy 

interdependencies arise. I.e., the policies of interest may also shape the patterns of 

connectivity by which foreign labor-market policies affect domestic ones, a complex sort of 

endogeneity known as selection in the dynamic-networks literature. 

In summary, spatial interdependence is theoretically and substantively ubiquitous and 

central across the social sciences, and ALM policy is likely no exception. The empirical 

clustering or correlation of outcomes on some dimension(s), spatial association, is also 

obvious in most contexts, including ALM policy. However, outcomes may exhibit spatial 

association for three distinct reasons. First, units may respond similarly to similar exposure 

to similar exogenous internal/domestic or external/foreign stimuli (common exposure); 

second, units’ responses may depend on others’ responses (contagion). We may find states’ 

adoptions of some ALM policy-stance, for example, to cluster geographically or along other 

dimensions of proximity, e.g., bilateral trade-volume, because states that are proximate on 

that dimension experience similar exogenous domestic or foreign political-economic stimuli 

or because each state’s ALM-policy decisions depend on what ALM policies other states 

proximate in this way implement. A third possibility arises when the putative outcome 

affects the variable along which clustering occurs (selection). States ALM policies might 

also cluster according to some variable on which we observe their proximity (bilateral trade 

volume) because their ALM policies affect that variable (here: spur trade between them). 

Franzese & Hays discussed elsewhere (2003, 2004ab, 2006abc, 2007abcd, 2008abc) the 
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severe empirical-methodological challenges in estimating interdependence and contagion 

distinctly and well (a.k.a, Galton’s Problem4). Section II of this paper briefly reviews that 

work on specification, estimation, testing, and interpretation of spatial and spatiotemporal 

autoregressive (SAR and STAR) models, which reflect interdependence directly and which 

therefore are capable of distinguishing common exposure from contagion as alternative 

substantive sources of observed spatial association. There we showed that the relative and 

absolute accuracy and power with which the empirical-model specification reflects the 

patterns of interdependence on the hand and the exogenous internal and external stimuli on 

the other are of first-order importance in drawing such distinctions. This leads naturally to 

the extensions offered in Section III, where we propose applying the multiparametric 

spatiotemporal autoregressive (m-STAR) model as a simple means of estimating the pattern 

of connectivity jointly with the strength of contagion by that pattern, including the case 

where connectivity is endogenous to the dependent variable (i.e., selection; e.g., homophily). 

We again emphasize substantively-theoretically guided (i.e., structural) specifications that 

can support analyses of estimated spatiotemporal responses to stochastic or covariate 

shocks and that can distinguish the possible sources of spatial association, now three: 

common exposure, contagion, and selection. As before, these processes will typically look 

much alike empirically, so the relative omission or inadequacy in the empirical model and 

estimates of any one part will bias inferences in favor of others similar to it. Accordingly, 

valid inferences regarding any generally require empirical modeling that specifies and 

estimates all three processes well. Section IV offers some simulation evidence of the superior 

small-sample performance of full-information spatial maximum-likelihood (S-ML) estimates 

of m-STAR models in these contexts to that of a naïve estimator applying least-squares to 

a linear regression including multiple spatial-lags and to that of a blind estimator that 

applies least-squares omitting spatial lags. Section V illustrates this approach to dynamic, 

endogenous interdependence—which parallels models of network/behavior coevolution in the 

dynamic or longitudinal networks literature—with an empirical application attempting to 

disentangle the roles of economic interdependence, correlated external and internal stimuli, 

and EU membership in shaping labor-market policies in recent years, emphasizing 

interpretation and presentation of the estimated coevolutionary spatiotemporal dynamics. 

II. SPATIAL & SPATIOTEMPORAL MODELS OF INTERDEPENDENCE: Specification, Estimation, 
                                                 
4 The web appendix contains, inter alia, brief intellectual-historical background to the label. 



Page 6 of 40 

Interpretation, Presentation 

To reflect interdependence across units of outcomes directly, empirical models should 

specify outcomes in units i and j as affecting each other. We suggested elsewhere (2004a, 

2006a, 2007bc, 2008ab) the following such generic model of modern, open-economy, context-

conditional political-economy, for example: 

 ( )β β β
, 1it ij jt i t d it s t sd it t it

j i

y w y yρ φ ε−
≠

′ ′ ′= + + + + +∑ d s d s  (4).5 

yjt is the outcome in another (j≠i) unit, which in some manner (given by ρwij) directly 

affects the outcome in unit i. The wij reflect the relative connectivity from j to i, and ρ 

reflects the overall strength of dependence of the outcome in i on the outcomes in the other 

(j≠i) units, as weighted by wij. Substantively for ALM-policy interdependence, e.g., the wij, 

could gauge the sizes, trade, geographic contiguity, or EU comembership of i’s and j’s 

political economies. The other right-hand-side factors reflect the non-interdependence 

components: unit-level/domestic factors dit (e.g., election-year indicators, government 

partisanship), exogenous-external/contextual factors sit (e.g., technology, oil prices; merely 

for contrast, assume these common across units: st), and context-conditional factors 
it t

d s  

(i.e., the interactions of the former with the latter). The εit are i.i.d. stochastic terms.6 

Distinguishing spatial (or network) interdependence from non-dependence sources of 

spatial association is the essence of Galton’s Problem. A third potential source of spatial 

correlation, to be introduced later, is that the relative connectivity from j to i, that is, the 

wij, may depend on the outcome(s) in i (and/or j). As we summarize below (from Franzese 

& Hays 2003, 2004ab, 2006b, 2007abcd, 2008abc), obtaining good (unbiased, consistent, and 

efficient) parameter and certainty estimates in such models is not straightforward.7 The first 

and prime consideration in weighing these alternatives and estimating the role of the 

corresponding aspects of (4) are the theoretical and empirical precision and explanatory 

power, relatively and absolutely, of the spatial and non-interdependence parts of the model. 

To elaborate: the relative and absolute accuracy and power with which the spatial weights, 

                                                 
5 The  here indicates element-by-element multiplication (i.e., Hadamard product). The model is merely 
heuristic, intended to encompass common classes of argument in C&IPE. 
6 One could also allow further spatial error-correlation and address it by FGLS or PCSE, or in the likelihood, 
but optimal will be to model interdependence and correlation in the first moment insofar as possible. 
7 Some might suggest starting with nonspatial models and adding spatial aspects as data demand, but tests 
that can distinguish interdependence from other potential sources of residual spatial-correlation in non-spatial 
models are weak (Anselin 2006; Franzese & Hays 2008b; Hendry 2006; but cf. Florax et al. 2003, 2006). 
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wij, reflect and offer leverage upon the interdependence mechanisms actually operating and 

with which the exogenous domestic, external, and/or context-conditional parts reflect and 

gain leverage upon the alternatives are crucial to the attempt to distinguish and evaluate 

their strength empirically. The two mechanisms produce similar effects, so inadequacies or 

omissions in specifying the one tend, intuitively, to induce overestimates of the other’s role. 

Secondarily,8 even with the interdependence and the alternative common-shock 

mechanisms modeled perfectly, the spatial-lag regressor(s) will be endogenous (i.e., covary 

with ε), so estimates of ρ will suffer simultaneity biases. Furthermore, as with the primary 

concern of relative omitted-variable or misspecification bias, these simultaneity biases in 

estimated strength of interdependence (usually overestimation) generally induce biases in 

the opposite direction (underestimation) regarding the role of common shocks. Therefore, 

researchers who emphasize unit-level/domestic, exogenous-external, or context-conditional 

processes to the exclusion or relative neglect of interdependence will tend to get empirical 

results biased toward the former and against the latter sorts of explanations. Conversely, 

researchers stressing interdependence to the relative neglect of domestic/unit or exogenous-

contextual considerations or who fail to account sufficiently the endogeneity of spatial lags 

will tend to suffer the opposite biases: underestimating the role of exogenous domestic, 

external, or context-conditional factors and overestimating that of interdependence. 

Most empirical studies in comparative and international political economy (C&IPE) 

where interdependence may arise, especially those in the policy diffusion, globalization, tax-

competition, and policy-autonomy literatures, analyze time-series cross-sections (TSCS). In 

such contexts, employing spatial and temporal lags to specify both temporal and spatial 

dependence directly in a spatiotemporal autoregressive (STAR) model is often desirable:9 

 β ερ φ= + + +y Wy My X  (5). 

The dependent variable, y, is an NT%1 vector of cross sections stacked by periods (i.e., the 

N first-period observations, the next N, up through N in period T).10 ρ is the previously 

                                                 
8 Simulations (Franzese & Hays 2004a, 2006b, 2007cd) show the omitted-variable/misspecification biases of 
omission/relative-neglect of interdependence typically far exceed the simultaneity biases of failing to redress 
adequately the spatial-lag endogeneity, although the latter grow appreciable as interdependence strengthens. 
9 Anselin (2002, 2006) distinguishes spatial statistics and spatial econometrics in methodological approach as 
the former being more data-driven and tending toward treating spatial correlation as nuisance and the latter 
wedded more to theoretically structured models of interdependence. The web appendix offers fuller discussion 
of this subtle but key distinction. In these terms, our approach is a decidedly spatial-econometric one. 
10 Nonrectangular or missing data are manageable, but rectangularity is assumed here for expository ease. 
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described spatial-autoregressive coefficient, and WNT is an NT%NT block-diagonal spatial-

weighting matrix.11 Each of the T N%N weights matrices, t
NW , on the block-diagonal have 

elements wij(t) reflecting the relative connectivity from unit j to i that period.12 Thus, for 

each observation, yit, the spatial lag, Wy, gives a weighted sum of the yjt, with weights wij(t) 

being direct and straightforward reflection of the dependence of each unit i’s outcome on 

others’. M is an NT%NT matrix with ones on the minor diagonal, i.e., at coordinates 

(N+1,1), (N+2,2), …, (NT,NT-1), and zeros elsewhere. My is thus a standard (first-order) 

temporal-lag;13  is its coefficient. X contains NT observations on k independent variables; β 

is its k%1 vector of coefficients, and  is an NT%1 vector of i.i.d. stochastic components.14 

Franzese & Hays (2004a, 2006b, 2007cd, 2008b) explored analytically and by simulation 

the properties of four estimators for such models: non-spatial least-squares (i.e., regression 

omitting the spatial component as is common in most extant research: OLS), spatial OLS 

(i.e., OLS estimation of models like (5), common in diffusion studies and becoming so in 

globalization/tax-competition ones: S-OLS), instrumental variables (e.g., spatial 2SLS or S-

2SLS), and spatial maximum-likelihood (S-ML). Both OLS and spatial OLS produce biased 

and inconsistent estimates, OLS due to the omitted-variable bias and spatial OLS because 

the spatial lag is endogenous and so induces simultaneity bias. We can view these biases as 

reflecting the terms of Galton’s Problem. On one hand, by omitting the spatial lag that 

would reflect the interdependence, OLS coefficient-estimates will suffer omitted-variable 

biases—familiarly: Fβ, where F is the matrix of coefficients obtained by regressing the 

omitted on the included variables and β is the vector of (true) coefficients on the omitted 

variables.15 In this case, the omitted-variable bias (OVB) is: 

 ( ) 1

OLS OLS 1 1 1 1
ˆ ˆOVB ,  where φ ρ

−′ ′⎡ ⎤ ⎡ ⎤′ ′= × ≡⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦Q Q Q Wy Q X Myβ  (6). 

OLS
ˆ 0ρ ≡ , of course, which is biased by –ρ. Thus, insofar as the spatial lag covaries with the 

non-spatial regressors—which is (i) highly likely if domestic conditions correlate spatially, 

                                                 
11 WNT is block-diagonal assuming no cross-temporal spatial interdependence. Non-zero off-diagonal blocks are 
possible and manageable, but perhaps unlikely controlling for time lags and contemporaneous spatial-lags. 
12 If the pattern of connectivity is time-invariant, then WNT can be expressed as the Kronecker product of a 
T%T identity matrix and the constant N%N weights-matrix, IT1WN. 
13 Higher-order time-dynamics would simply add further properly configured weights matrices. 
14 Again, alternative distributions of  are possible but add complication without illumination. 
15 Estimates of limited- or qualitative-dependent-variable models, like logit or probit, which exclude relevant 
spatial lags will suffer analogous omitted-variable biases. 
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(ii) certain for exactly common exogenous-external shocks, and (iii), given non-zero spatial 

correlation from any source, certain for the time lag also—OLS will overestimate domestic, 

exogenous-external, or context-conditional effects, including the temporal adjustment-rate, 

while ignoring interdependence. On the other hand, including spatial lags in models for OLS 

estimation raises inherent endogeneity biases. Spatial lag, Wy, covaries with the residual, , 

making S-OLS estimates inconsistent, because it is a weighted average of outcomes in other 

units and so places some observations’ left-hand sides on the right-hand sides of others: 

textbook simultaneity. In simplest terms by example: Germany causes France, but France 

also causes Germany. These asymptotic simultaneity biases (SB) are: 

 ( ) 1ˆ ˆˆSB , where ρ φ
−′⎡ ⎤ ⎡ ⎤′ ′= ≡⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦Q Q Q Q Wy My Xβ ε  (7). 

In the case where X contains just one exogenous explanator, x, these biases are: 

 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

ε
ε
ε

Cov , Var Varˆ
1ˆSB Cov , Cov , Var , where plim

ˆ Cov , Cov , Var
n

ρ

φ

β

⎡ ⎤⎡ ⎤ × ×⎢ ⎥⎢ ⎥ ⎛ ⎞′⎢ ⎥⎢ ⎥ ⎟⎜ ⎟= − × × = ⎜⎢ ⎥⎢ ⎥ ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎢ ⎥
− × ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Wy My x
Q Q

Wy Wy My x

Wy Wy x My

Ψ
Ψ

 (8). 

With positive interdependence and positive covariance of the spatial-lag with the exogenous 

regressors, a likely common case, one overestimates the interdependence-strength, ρ̂ , and 

correspondingly underestimates temporal dependence, φ̂ , and exogenous effects, β̂ . 

In sum, Galton’s Problem implies that empirical analyses that ignore substantively 

appreciable interdependence will also thereby tend to overestimate the importance of non-

spatial factors, with the effect of factors that correlate spatially the most, in pattern most 

similar to W, being most overestimated. On the other hand, simple controls for spatial-lag 

processes (or studying them qualitatively) will suffer simultaneity biases, usually in the 

opposite direction, exaggerating interdependence and understating unit-level/domestic, 

exogeneous-external, and context-conditional effects. Again, those factors that correlate 

most with the interdependence pattern will have the most severe induced deflation biases. 

These conclusions hold as a matter of degree as well; insofar as the non-spatial components 

of the model are inadequately specified and measured relative to interdependence aspects, 

the latter will be privileged and the former disadvantaged, and vice versa. Accurate and 

powerful specification of W is therefore of crucial empirical, theoretical, and substantive 

importance, obviously for those interested in interdependence, but also for those primarily 

interested in domestic/unit-level, exogenous-external/contextual, or context-conditional 
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factors. Conversely, optimal specification of the unit-level/domestic, contextual/exogenous-

external, and context-conditional non-spatial components is of equally crucial importance to 

those interested in gauging the importance of interdependence. 

Our simulations (Franzese & Hays 2004a, 2006b, 2007cd) showed the omitted-variable 

biases of OLS are almost always worse and often far, far worse than S-OLS’ simultaneity 

biases. In fact, S-OLS may perform adequately for mild interdependence strengths 

( .25
j ij
wρΣ ), although standard-error accuracy can be problematic, and in a manner for 

which PCSE (Beck & Katz 1995, 1996) will not compensate. S-OLS’ simultaneity biases 

grow sizable as interdependence strengthens, however, rendering use of a consistent 

estimator, such as S-2SLS or S-ML, highly advisable. Choosing which consistent estimator 

seems of secondary importance in bias, efficiency, and standard-error-accuracy terms. Since 

S-ML proved close to weakly dominant,16 we introduce only it here. 17,18 

The conditional likelihood function for the spatiotemporal-lag model,19 which assumes 

the first observations non-stochastic, is a straightforward extension of the standard spatial-

lag likelihood function, which in turn adds only one mathematically and conceptually small 

complication to the likelihood function for the standard linear-normal model (OLS). To see 

this, start by rewriting the spatial-lag model with the stochastic component on the left: 

 ( )ρ ρ= + + ⇒ = − − ≡ −y Wy X I W y X Ay Xβ ε ε β β  (9), 

where X now includes My, the time-lag of y, as its first column, and β includes  as its first 

                                                 
16 See Franzese & Hays (2007b, 2008b) regarding S-ML estimation; they correct some misleading conclusions 
from our earlier work on S-ML, stemming from a coding error. (An error in LeSage’s original code called the 
wrong element of the estimated variance-covariance matrix as standard errors of the spatial-lag coefficient.) 
The instrumental-variables (IV), two-stage-least-squares (2SLS), generalized-method-of-moments (GMM) 
family of estimators relies on the spatial structure of the data to instrument for the endogenous spatial lag. 
Assuming no cross-spatial endogeneity (our term for y’s in some units causing x’s in others), WX are ideal 
instruments by construction. Cross-spatial endogeneity may seem unlikely, until one realizes that vertical ties 
yi to yj (interdependence) and horizontal ties from yj to xj (typical simultaneity) combine to give the offending 
diagonals from yi to xj. However, S-GMM should improve upon S-2SLS primary weakness in efficiency, so it 
may compare more favorably to S-ML. Estimation by instrumentation may also prove more robust in some 
ways—e.g., to non-normal distributional issues—than S-ML. We have not yet explored these possibilities. 
17 Initially, we used J.P. LeSage’s MatLabTM code to estimate our spatial models, having found third-party 
contributed StataTM code for spatial analysis untrustworthy and/or extremely computer-time intensive. We 
have since written MatLabTM code to implement all, and StataTM code to implement many, of our suggestions. 
For code, plus ExcelTM spreadsheets useful as templates for interpretation and presentation: 
https://netfiles.uiuc.edu/jchays/www/page.html and http://www.umich.edu/~franzese/Publications.html. 
18 Franzese & Hays (2008d), Hays & Kachi (2008), and Hays (2009) introduce for political science empirical 
models of spatial interdependence in limited and qualitative dependent-variables. 
19 Derivation of likelihoods for spatiotemporal-lag models is due to Elhorst (2001, 2003, 2005). 
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row.20 Assuming i.i.d. normality, the likelihood function for ε is the typical linear-normal: 

 
2

2 2

1
( ) exp

2 2

NT

L
σ π σ

⎛ ⎞ ⎛ ⎞′⎟ ⎟⎜ ⎜⎟ ⎟= −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

ε εε  (10), 

which will produce a likelihood in terms of y as follows: 

 ( ) ( )
2

2 2

1 1
( ) | | exp

2 2

NT

L
σ π σ

⎛ ⎞ ⎛ ⎞′⎟ ⎟⎜ ⎜⎟ ⎟= − − −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
y A Ay X Ay Xβ β  (11). 

This resembles the typical linear-normal likelihood, except the transformation from ε to y is 

not by the usual factor, 1, but by |A|=|I-ρW|.21 Written in (N%1) vector notation, the 

spatiotemporal-model conditional-likelihood is mostly conveniently separable into parts: 

 
( ) ( ) ( )

( )
1 2 1

2

, ,..., 2
2

1 1
Log 1 log 2 1 log

2 2
where .

t t

T

t t
t

t N N t N t t

f N T Tπσ
σ

φ ρ
−

=

′= − − + − −

= − − −

∑y y y y
A

I I y W y X

ε ε

ε β
 (12). 

The unconditional (exact) likelihood function, which retains the first time-period 

observations as non-predetermined, is more complex (Elhorst 2005): 

 

( )
1

1 1 1

2 2

2 2 21 1
,..., 2 2 1

2 1 11 1
1 12 22

1 1 1 1
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t
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T

t t N Nt
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πσ ρω φ
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φ ρ

− − −

=
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=

= − × + Σ − − + −

′ ′′ ′ ′ ′ ′− Σ − − − −
′= − − −

y y A

A I A A A A A A A I

I I y W y x

ε ε ε ε
ε β

 (13). 

With large T, the first observation contributes little to the total likelihood, so the simpler 

conditional likelihood can serve adequately. 

One easy way to ease or even erase the simultaneity problem with S-OLS is to lag 

temporally the spatial lag (Beck et al. 2006). Insofar as time-lagging the spatial lag renders 

it pre-determined—i.e., to the extent interdependence does not incur instantaneously, where 

instantaneous means within an observation period, as measured, given the model—S-OLS’ 

bias disappears asymptotically. Formally, the STAR model with time-lagged spatial-lag is: 

 
1 1t t t t t

η φ− −= + + +y Wy y X β ε  (14). 

Elhorst (2001:126-30) derives the unconditional log-likelihood for this model as: 

 ( ) 2
1

1

2

2 21 1 1
,..., 2 2 21 2

1 11
1 12

Log log(2 ) log 1 ( )

( ) ( ) ( )
t

N T

i t ti t
f NT

σ

σ

πσ φ ηω
−

= =
− −

′= − × + Σ − + − Σ

′ ′′− − − −
y y

I B I BB I B

ε ε

ε ε
 (15), 

                                                 
20 N.b., although Wy complicates the conditional likelihood in terms of y (see note 21), My does not. 
21 This difference complicates estimation somewhat in that the determinant |A| involves ρ, and so requires 
recalculation at each iteration of the likelihood-maximization routine.  
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where 
1 1 1 1

( )
N

φ η= − + −y W y Xε β , 
1 1t t N t t t

η φ− −= − − −y W y y Xε β , and 
N N

φ η= +B I W . 

Note that the second and fourth terms in (15) bias OLS estimation of (14). Asymptotically 

(T→∞), the contribution of these terms to the likelihood and so this bias goes to zero. In 

sum, if T is large, if spatial-interdependence processes operate only with a time lag and not 

within an observational period, if observational periodization matches that of the actual 

spatiotemporal dynamics, and if spatiotemporal dynamics are modeled well enough for these 

conditions not to become violated through measurement error or misspecification leaving 

some time-lagged interdependence to bleed into the contemporaneous, OLS with a time-

lagged spatial-lag on the RHS is an effective estimation strategy. However, even in this best 

case, OLS with time-lagged spatial-lags only yields unbiased estimates if first observations 

is non-stochastic (i.e., with initial conditions fixed across repeated samples). 

Testing for remaining temporal and spatial correlation in OLS residuals is possible and, 

especially advisable if applying OLS to the time-lagged spatiotemporal-lag model. Standard 

Lagrange-multiplier (LM) tests for remaining temporal correlation remain valid. Following 

Anselin (1996), Franzese & Hays (2008b) describe several LM tests of spatial correlation 

that retain validity when applied to OLS estimated residuals from models containing spatial 

and temporal lags.22 E.g., a standard one-directional test against spatial-lag alternative is: 

 ( )2 1
2 2 2

1

ˆˆ ˆ ˆ/ , where 
ˆ ˆ( ) ( )( ) and tr[( ) ]

LM G R

G R
ρ ε ε εσ σ σ

−

−

⎡ ⎤′= +⎢ ⎥⎣ ⎦
′ ′ ′ ′= − = +

Wy

WX I X(X X) X WX W W W

ε
β β

 (16), 

and Anselin’s (1996) robust one-directional test against spatial-lag alternative is  

 ( )2* 1 2 2 2ˆ ˆ ˆˆ ˆ ˆ/ /LM Gρ ε ε εσ σ σ− ′ ′= −Wy Wε ε ε  (17). 

Lastly, regarding stationarity, the conditions and issues arising in spatiotemporally 

dynamic models are reminiscent of those in the more familiar solely time-dynamic models. 

Let ω be an eigenvalue of W; then the spatiotemporal process is covariance stationary if:  

 ( ) 1 max

min

1 ,  if 0
1,   or, equivalently, if   

1 ,  if 0

φ ρω ρ
φ ρ

φ ρω ρ

−
⎧⎪ < − ≥⎪⎪− < ⎨⎪ < − <⎪⎪⎩

I W  (18). 

For instance, with positive temporal and spatial dependence and W row-standardized, the 

ωmax=1, so stationarity familiarly requires φ+ρ<1. 

Interpretation of effects in empirical models with spatiotemporal interdependence, as in 

any model beyond the strictly linear additive-separable, involves more than simply eyeing 
                                                 
22 Be sure to note the corrections posted here: http://www.umich.edu/~franzese/Publications.html. 
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coefficient estimates. With spatiotemporal, as with solely temporal, dynamics, coefficients 

on regressors give only the pre-dynamic impetuses to the outcome associated with changes 

of those regressors. I.e., coefficients represent only the (often inherently unobservable) pre-

interdependence impetus to outcomes from each regressor. Calculation of spatiotemporal 

multipliers allows expression of the estimated dependent-variable responses across all units 

to shocks to covariates or to the error terms in any unit(s), accounting the spatiotemporal 

dynamics. These multipliers also afford estimation of the long-run, steady-state, or 

equilibrium23 effect of permanent shocks.24 We apply the delta method to derive analytically 

the approximate estimated asymptotic variance-covariance (standard errors) for these 

response-path or long-run-effect estimates; standard errors can also be simulated of course. 

One calculates the cumulative, steady-state spatiotemporal effects most conveniently 

working with the STAR model in (N%1) vector form: 

 
1t t t t t

ρ φ −= + + +y Wy y X β ε  (19). 

Set yt-1 equal to yt fix exogenous RHS terms, X and/or , to their hypothetical permanent 

post-shock levels, and solve for the long-run steady-state level of y (assuming stationarity):25 
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−

⎡ ⎤= + + + = + + + = − − +⎢ ⎥⎣ ⎦
⎡ ⎤− − −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥= + ≡ × +⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎢ ⎥⎣ ⎦

y Wy y X W I y X I W I X

X S X

β ε β ε β ε

β ε β ε
(20). 

Decomposing t=δ+υt with δ fixed and υt stochastic is conceptually useful in considering 

the responses across units to counterfactual shocks to outcomes in others. To offer standard 

errors for these estimates by the delta method,26 first denote the ith column of S as si and its 

estimate as 
î

s . The steady-state spatiotemporal equilibrium responses to a one-unit increase 

in the ith element of δ are then si, with asymptotic approximate variance-covariance matrix:  

                                                 
23 We use the terms long-run, steady-state, and equilibrium effects loosely, interchangeably, to refer to the 
estimated asymptotic level of outcomes y following a hypothetical permanent shock. 
24 Anselin (2003) and Franzese & Hays (2006b,2007cd, 2008bcd) discuss these multipliers more fully. 
25 In the case of time-variant WN, one must also fix wij(t) to some desired set of values. 
26 We have used only first-order approximations. Higher orders would presumably yield greater accuracy; 
simulation (e.g., parametric bootstrapping) may also be advantageous. 
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 ( ) ( )ˆ ˆˆˆ
ˆ ˆ
i i

i

′⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

s s
V s V θ

θ θ
 (21). 

Here, ˆ ˆρ̂ φ ′⎡ ⎤≡ ⎢ ⎥⎣ ⎦θ , ˆ ˆ ˆ
ˆ ˆˆ
i i i

ρ φ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎢ ⎥ ⎢ ⎥≡⎢ ⎥ ⎢ ⎥∂∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

s s s

θ
, and the vectors ˆ

ˆ
i

ρ
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φ

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

s  are the ith columns of 

ˆ ˆSWS  and of ˆˆSS . Similarly, the steady-state spatiotemporal responses to a one-unit increase 

in explanatory variable k in unit i are siβk, with delta-method standard-errors of 
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with ˆ ˆ ˆˆ
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k

β SS , respectively. 

One can find the spatiotemporal response path of the N%1 vector of unit outcomes, yt, 

to exogenous right-hand-side terms, X and , by rearranging (19) to isolate yt on the left: 

 { } { }1

1 1t N N t t t t t t
ρ φ φ

−

− −
⎡ ⎤= − + + = + +⎢ ⎥⎣ ⎦y I W y X S y Xβ ε β ε  (23). 

This formula gives response-paths of all units to hypothetical shocks to X or  in any 

unit(s) {j}, including shocks in {i} itself/themselves, by setting (Xtβ+ t) to the value(s) 

reflecting that hypothetical in row(s) {j}. For the marginal spatiotemporal effects (non-

cumulative) or to plot the over-time path of responses to a permanent change in some x 

(cumulative), and their standard errors, working with the NT%NT matrix is easier. Redefine 

S in (20) as Sh[INT-ρW-φM]-1 and follow the steps just given. We calculate estimated 

responses like these in presenting our empirical application below. 

III. The Multiparametric Spatiotemporal (m-STAR) Model 

As noted above, model specifications that omit spatial lags assume zero interdependence 

by construction; as we have shown analytically and by simulation, these omitted-variable 

biases tend to inflate the estimated effects of non-interdependence model-components. For 

instance, most extant globalization studies, having neglected spatial lags, likely 

overestimated the effects of domestic and exogenous-external factors while effectively 

preventing globalization-induced interdependence from manifesting empirically. Conversely, 

standard regression estimates of models with spatial lags suffer simultaneity biases. Such 

models have grown more common recently among researchers interested in interdependence 
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and have long been the norm in studies of policy-diffusion and microbehavioral contextual 

effects. Although our previous analyses have shown that inclusion of spatial lags in simple 

regression models is a vast improvement over non-spatial estimation strategies, these 

simultaneity biases will tend to have inflated estimated interdependence strength at the 

expense of domestic/unit-level, exogenous-external, and context-conditional factors. The 

spatial-ML approach just described effectively redresses these simultaneity issues. 

Above all, most crucial to proper estimation, distinction, and weighing of the strengths 

of interdependence and other possible sources of spatial or network association are the 

relative and absolute accuracy and power with which the patterns of interconnectivity and 

the non-interdependence aspects of the model are specified. Accordingly, strategies to 

estimate W within models in which unobserved patterns of interconnections among units 

affect their choices/outcomes have long interested spatial econometricians greatly, although 

progress has been modest. For network analysts, contrarily, estimation of the processes 

generating ties in the observed network, as opposed to the effects on this unit’s choices or 

outcomes of others’ actions as weighted by the network, is typically the dependent variable 

of the study. Network models usually take the characteristics of units, including their 

actions or behaviors, as given, exogenous explanators of what ties, typically exclusively 

binary ties, will form between actors. From the network-analytic perspective, spatial-

econometric attempts to parameterize and, ultimately, to endogenize wij within models of 

interdependent unit outcomes mirror network-analytic attempts to model the coevolution of 

behavior and network. Interdependence in typical C&IPE contexts may raise additional 

challenges, however, in that relative connectivity is often of degree rather than binary and, 

more dauntingly, that the effective connectivity may not be directly observed. Rather, quite 

commonly, one might observe only some covariates theorized to relate to the effective 

connection. In the context of interdependent ALM-policymaking, for instance, many of the 

theorized connections arise through inherently unobservable economic competition in labor, 

capital, or goods markets. We observe only trade or capital flows or other symptoms of or 

contributors to competition.27 In the network-analysis tradition, Leenders (1995, 1997) and 

Snijders and colleagues (1997, 2001, 2005, 2007ab) have advanced furthest on this crucial 

                                                 
27 Both these distinctions may reflect simplifying assumptions typical of applied network analysis more than 
any underlying substance of social networks. Ties in friendship networks, e.g., are in truth more of degree 
than binary, and we often may not observe that even as directly as by survey response gauging said closeness. 



Page 16 of 40 

next task in empirical modeling of networks-cum-interdependence. We briefly review their 

approaches next, but then suggest another possible inroad, a much simpler, yet perhaps 

productive, approach: adapting the m-STAR model to the purpose. 

In Leenders’ (1995, 1997), “actors…shape their networks and, simultaneously, are 

influenced by the structure of the network.” He terms contagion the effects of networks on 

actors’ attributes, understood broadly to mean characteristics, actions, beliefs, policies, etc. 

More exactly, these are the effects of others’ (alters’) attributes on one’s own (ego’s), where 

network structure determines which alters matter and how much. Leenders terms selection 

the reverse process, in which actors’ attributes shape the network. In his selection model, 

the equivalent of wij arise by a continuous-time Markov process—to be observed at discrete-

time intervals in a dataset—where an arc (i.e., a binary tie) from j to i forms, wij=1, or 

dissolves, wij=0, at rates, λ0ij and λ1ij, given by some observable attribute(s) of i and/or j: 

 0 0 0 1 1 1   ;   ij ij ij ijd dλ λ ν λ λ ν= + = +  (24), 

with dij a measure of similarity of actors i and j. Leenders’ contagion is a spatial-lag model: 

 β ερ= + +y Wy X  (25), 

which could extend to the standard spatiotemporal model, (5), straightforwardly. Leenders 

(1997) integrates these contagion and selection models thus. First, let At be the N%N matrix 

of current realizations of (24), yt be the N%1 vector of attributes for the actors, and Xt the 

N%k matrix of exogenous explanators thereof. Leenders (1997:172) expresses Wt as the 

function Wt=W(At), which could be a very useful extension toward the parameterized 

modeling of unobserved and potentially continuous degrees of connection as a function of 

observed binary arcs (modeled by (24)), but the function as currently implemented is just 

the identity. The model is then identified for estimation of λ, ν, , and β from Wt and yt 

observed at discrete intervals t={1…T} by time lags and the assumption that temporal 

implies causal precedence and that the first observation is fixed and given (raising all the 

issues noted above in those regards). The combined model is then:28 

 
1 , , , , 1 2 1

( , )   ;   | |    ;   
t t t ij t ij t i t j t t t t t t t

f w d y y y ρ ρ− −= ≡ = − = + + +W W y W y y X β ε  (26) 

He then generates W0, y0, {εt}, and {Xt} randomly, and assesses by simulation the biases 

entailed in estimating from data collected at intervals of increasing length (measured in 

                                                 
28 Leenders (1997:173-4) actually converts (25) to a temporally dynamic model like (5) by what amounts to an 
error-correction model, with equilibrium y being another, constant parameter to be estimated, μ, interpreted 
as a societal norm for y. We have simplified to a first-order time-lag to enhance comparability in exposition. 
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numbers of simulation periods) and in erroneously estimating only the selection process, 

(24), or only the contagion process that is the last expression of (26). The text leaves 

unclear the exact experiments and estimation procedures, so we can interpret his results 

only uncertainly. He seems to find, first, that increasing granularity in the periodicity of 

observation generally causes attenuation bias in estimates of the selection-model parameters 

and inflation bias in estimates of the contagion-model parameters; second, that estimated 

contagion is greatly inflated when selection is unmodeled but present; and third, that 

estimated selection is mildly inflated when contagion is present but unmodeled. 

Snijders’ and colleagues’29 approach is more elaborate. In Steglich et al. (2007), they 

emphasize as do we that the challenge for disentangling the sources of network association 

(a.k.a., spatial correlation) is threefold. One must distinguish influence or contagion (a.k.a., 

interdependence), from selection (e.g., homophily), from social contexts (i.e., exogenous 

internal and/or external conditions) because any omissions or inadequacies in modeling 

those distinct sources of network or spatial correlation will bias conclusions in favor of the 

included or better-modeled mechanisms. Then, they also stress three fundamental issues 

confronting such attempts: observations in discrete time-intervals of continuous-time 

processes, the need to control for alternative mechanisms and pathways by which observed 

networks and outcomes may have arisen, and the network dependence of the actors which 

precludes estimation by common statistical techniques, most of which assume independence. 

To surmount these issues in distinguishing these alternative mechanisms, they model the 

coevolution of networks and behavior thus. N actors are connected as given by an observed, 

binary, endogenous, and time-variant connectivity matrix, x, with elements xij(t)—in our 

notation, WN, with elements wij(t). The vector of N observed, binary behaviors, z, at time t 

has elements zi(t)—in our notation, y(t), with elements yi(t). Further exogenous explanators 

may exist at unit or dyadic level, vi(t) or wij(t)—in our notation, the components of X. 

Actors have opportunities to make changes in their network connections, switching on or 

off one tie or none, at fixed rate in continuous time, net
iλ , according to an exponential 

hazard-rate model. The model may further parameterize λ, but the paper’s implementation 

assumed the rate constant across all ij and t. Likewise, opportunities to switch the behavior 

on or off or do nothing occur at continuous-time rate beh
iλ .30 

                                                 
29 We follow Snijders et al. (1997) and Steglich et al. (2006, 2007) most specifically. 
30 Since observation occurs at discrete intervals, the degrees of freedom to vary these continuous-time rates 



Page 18 of 40 

When the opportunity to change network ties arrives for some i, s/he chooses to change 

the status of any one of his/her N-1 ties, turning it on or off, or leaving all ties unchanged. 

S/he makes this choice by comparing the values of some objective function of this form: 

 { }( , , ) ( , , ) ( , , , ) ( , , )net net net net net
i i h h ih
f ′ ′ ′ ′+ = × +∑x x z x x z s i x x z x x zε β ε  (27), 

where x' is an alternative network under consideration, which can differ from the existing 

network, x, only by changing at most one element of (only) row i.31 ( )net
hs ⋅  is some statistic, 

i.e., some function of the data, x, x', z, that reflects the substantively/theoretically derived 

objectives of the actors with regard to the network, x, and behaviors, z. The net
hβ  to be 

estimated are the relative weights of these objectives. Assuming the ( , , )net
i ′ε x x z  extreme-

value distributed, independently across actors (see note 31) and over time, produces the 

multinomial-logit model of categorical choice. Similarly, when an opportunity to change 

behavior arrives, actor i compares the value of her/his objective function under each of the 

three possible actions: increment or decrement by one or leave unchanged. Formally, i 

compares z to ′z  given x, and under analogous assumptions of i.i.d. extreme-value 

stochastic components, the multinomial logit again emerges.32 

As in Leenders’ approach, identification derives from debarring any literal simultaneity 

in outcomes or networks and assuming that temporal precedence implies causal precedence, 

and in particular conditioning on the first observation.33 Given all this, estimation occurs by 

                                                                                                                                                             
render the assumption of exclusively single actors making single, unit-valued changes in their network 
connections or behavior essentially inconsequential. As greater frequency and/or magnitude of changes are 
observed, estimates of these occurrence rates at this unobserved instantaneous level simply rise to compensate. 
This does not, however relax the strong assumption of conditional independence of these actors’ choices. 
31 The Steglich et al. (2007:21) exposition actually omits the stochastic component from the right-hand side of 
(27), and seems to carry this omission into the simulation-model implementation and the associated “method 
of moments” estimation. We suspect this is highly consequential because it suppresses the dependence across 
units or dyads of their multinomial choices (see note 33) regarding which if any xij to switch on or off. 
32 Given the binary behavior and the model set-up, we see only two possible choices: change the behavior’s on 
or off status or leave it unchanged. In this case, the multinomial logit seems to reduce to the simple logit. 
33 Some identification problems persist with the current implementations, notwithstanding these strong 
assumptions. For one, assuming independent multinomial decisions for the endogenous behaviors and network 
ties and of opportunities for action effectively undoes some of the allowance for dependence in those choices, 
although it yields the great advantage of seeming to allow estimating standard multinomial logit (and 
exponential hazard-rate) models for those components of the system. That evasion aside, though, another 
issue is that included among the unit or dyadic explanators are various measures of network structure or 
units’ places therein. These are functions of the ties between actors (and possibly also their behaviors), i.e., of 
the outcomes of the multinomial choices of the actors regarding the connections. In latent-variable models like 
the multinomial logit, however, one cannot include the actual outcomes on the right-hand side, however 
lagged or transformed by some network-structure measurement-function. Only the latent variable or the 
estimated probabilities can enter those functions. (The problem is that the actual outcomes indirectly enter 
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simulating the sequences of policies z and of networks x and searching over possible values 

of the model parameters, λ  and β , to minimize some distance function from the observed 

sequences of x and z to the simulated sequences. Snijders et al. (1997, 2007) label this as an 

application of ‘the method of moments” and an example of a ‘third-generation problem’ in 

applied statistics (citing Gouriéroux & Monfort 1996 on the latter); one could also think of 

it as a calibration exercise. Standard errors could derive from jackknife or bootstrapped 

resampling (Snijders & Borgatti 1999) if explicit likelihoods or sufficient-statistic moment-

equations are unavailable for standard analytic formulae.34 

For C&IPE, some features of extant network-coevolution approaches, for all the 

valuable advances they offer, are not ideal as currently implemented. First, relative 

connectivity between units and many behaviors or attributes of interest as dependent 

variables in C&IPE are less likely to be binary or ordinal as current coevolution models 

require.35 In the canonical globalization-and-tax-competition context, for instance, the 

outcomes of interest are tax rates, and many sources of interdependence will derive from 

the strength of economic competition. Second, in C&IPE contexts, strengths of relative 

connectivity are often unobserved, or even unobservable, directly. Continuing the example, 

we can observe only some covariates, like geographic contiguity and proximity or trade and 

capital flows, theorized to relate to the unobserved strength of economic competition. Thus, 

we would have no data for the left-hand side of the selection models in extant network-

coevolution approaches. We could estimate the network and its determinants only by 

estimating their impact on actors’ behavior given some spatial-econometric model of how 

the network matters for that behavior and how some observed covariates relate to network 

                                                                                                                                                             
the right-hand side to predict their own probabilities: see Heckman 1978.) The presence of a stochastic 
component exhibiting dependence across units, moreover, would render the multinomial logits N-dimensional 
optimization exercises rather than the standard unidimensional. We, however, have no further progress on 
those problems to offer here, beyond some conjectures we make in the conclusion, nor do we know of any 
other scholarship that has made greater progress on these issues in this behavior and network coevolution 
context. (Spatial econometricians have made considerable progress on this multidimensional optimization issue 
of interdependent latent-variable models, but entirely outside the co-evolution context to our knowledge.) 
34 The work we read indicated that these explicit likelihoods or proofs of the moment-equations sufficiency 
were not known, but, at least as of SIENA 3.17a (8 April 2008), estimated variance-covariance of the 
estimated parameters derive from the appropriate analytic calculations for moments or likelihood estimation. 
35 We suspect that Snijders et al.’s SIENA actually requires only discrete, not necessarily ordinal, behaviors. 
The limit seems the sensibility of conceiving an option to increment, leave unchanged, or decrement the 
behavior by one. If so, rounding or rescaling continuous behaviors to render them discrete should suffice. 
Unbounded behaviors would actually simplify by removing need to alter actors’ choice problem at the bounds. 
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ties. Third, temporal precedence often will not suffice to assure causal precedence, as these 

models assume, for the many possible reasons reviewed above in the context of the time-

lagged spatial-lag model. For one, interdependence often operates literally simultaneously in 

C&IPE. Most political-economy relations are strategic and, in strategic interactions, the 

effect of alters on ego is instantaneous or based in expectations. The interdependence of tax 

policies across units, for instance, arises from policymakers’ simultaneous strategic play of a 

game in which the optimal policies of each actor depend on the current or expected-future 

policies of others. For another, simultaneous means within an observational period, and 

many C&IPE contexts have high frequency behavior and/or network changes relative to 

much lower observation periodicity. Furthermore, time lagging will suffice to eliminate 

simultaneity only if and insofar as these and other conditions discussed above apply. 

Finally, conditioning on the first observation loses least information and suffers least small-

sample bias with long T, which does not frequently obtain in C&IPE.36 

As Leenders (1997:165) underscores, most research on network/spatial dependence 

either studies the formation of networks (selection), taking actors’ attributes and behaviors 

as fixed and given, or the effects on behaviors of networks/interdependence (contagion), 

taking the pattern of connectivity as fixed and given. Spatial econometricians have worked 

primarily in the latter mode, whereas network analysts have worked mostly in the former, 

although both are eager to combine the two. Other differences in tendency appear to us. 

Spatial econometricians tend primarily to conceive network effects as the effects of alters’ 

actions on ego’s via their connections, whereas network analysts tend to stress the effects of 

network structure and ego’s position in it on actions, but this difference in core question—

what explains networks vs. how interdependence affects outcomes—seems to us the most 

crucial. Among network analysts, Snijders and colleagues’ coevolution model represents the 

greatest advances, to our knowledge, toward this combining of contagion and selection. 

We approach coevolution from a spatial-econometric vantage and so start with the 

spatiotemporal-lag model, (5), and expand its specification to allow estimation of W, the 

matrix of relative connectivity, modeling the wij as a parameterized function of covariates 

observable at unit, dyadic, or exogenous-external level. This model of the wij corresponds to 

the model of selection from the network-analytic view. E.g., the sociologists’ homophily (like 

seeking/mimicking like), if it stems from fixed or exogenous characteristics of ego and alter, 
                                                 
36 These obviously are general concerns, not necessarily restricted to C&IPE. 
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parallels a model from the spatial-econometric perspective of wij as a function of xi and xj. If 

we consider some function of the vector of behaviors of interest, y, among these explanators 

of W, this parallels a stronger form of selection, raising higher statistical hurdles, in which 

network ties and actors’ behaviors are jointly endogenous. Endogenous homophily would 

have wij some inverse-distance function of yi and yj, for example. Thus, the spatiotemporal-

lag model with estimated, endogenous spatial-weights integrates contagion and selection in 

the spatial-econometric analogue to the network co-evolution model. 

Consider m-STAR, a spatiotemporal-lag model with multiple spatial-weights matrices: 
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Notice that we can also write (28) in scalar notation as: 
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 (29). 

As the middle line of (29) perhaps best clarifies, the term in parentheses is a parameterized 

(linear-additive) model of weights on yj≠i in affecting yi. The r
ij

w  are the covariates offered to 

explain the pattern of interdependence, and r their coefficients to estimate. Thus, we can 

conceive the m-STAR model as a STAR model with the estimated W, i.e., the estimated 

network, being a weighted sum of observed explanators of connectivity, ˆ
r̂ rr

W Wρ= ∑ . If, 

furthermore, any Wr has functions of y as elements, then W and y are jointly endogenous, 

and (29) is a network-behavior coevolution model. 

Without considerable further complication, the sorts of models of W, i.e., of networks, 

expressible in this form are limited to those with continuous wij strengths of ties. If we 

expected truly binary connectivity, one would need to transform the term in parentheses to 

binary outcomes, say, by applying the log-odds function and a decision rule to convert 

probabilities to one. (This is not so great a limitation if one believes, as we tend to do, that 

connectivity is a degree, measured at best with error.) Other non linear-additive models of 

wij would also entail complications but seem manageable. Then, too, the costs in estimation 

complexity of enriching the model of connectivity by adding covariates is high compared to 
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adding unit, dyad, or exogenous-external covariate x in Xβ (but perhaps not compared to 

extant network-coevolution models). The approach has some major advantages too though, 

notably among them that fully developed likelihoods for the m-STAR model exist, at least 

in the exogenous-Wr case, both the simpler likelihood conditional on the first observation 

and the unconditional one better-suited for instantaneous interdependence or small T. 

Thus, we can apply all the apparatus for estimation, all the analytically or simulation-

derived intuitions about biases, efficiency, and sensitivity, and all the procedures for 

calculating, interpreting, and presenting spatiotemporally dynamic effects for the spatial-

econometric models discussed above. On the other side, we can interpret and present the 

estimated network, Ŵ , conversely, with all standard network-analytic tools. 

The conditional likelihood for m-STAR extends that of (11) for STAR intuitively: 
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Written for (N%1) vectors y, the likelihood is conveniently separable as follows, highlighting 

the conditionality on the first observation (which is not apparent in (30)): 
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 (31). 

The unconditional (exact) likelihood extends the more complex (13) analogously. Luckily, T 

is large enough in our application that the more compact conditional likelihood is adequate. 

In either case, the estimated variance of ˆ
ij

W  is: 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
ˆ1 2 1 2

ˆ ˆ ˆˆ Var( )  ...  ...i j i j i j i j i j i j i j
r r R R

r

ρ ′⎡ ⎤ ⎡ ⎤= ⇒ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑W W W W W W W W WρΩ  (32), 

where ˆ
ˆ
ρΩ  is from minus the inverse of the Hessian of the likelihood in the usual fashion. 

Coevolution models, i.e., models where (network) connectivity, W, is some function of 

(behavior) y, present larger challenges. Our simple stratagem for a first cut is to apply the 

poor man’s exogeneity: we lag temporally the y in this function explaining W and assume 

the conditions required for that identification approach to hold sufficiently. As noted above, 

this does not address the problem of true or effective simultaneity, which seems likely in 

C&IPE contexts at least. Therefore, we are also currently exploring a two-step estimation 

procedure. First, apply spatial-GMM to obtain consistent estimates of the endogenous wij 
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and their estimated variance-covariance by instrumentation. Then, draw the Ŵ  to insert in 

the likelihood, conditional (30) or the unconditional extension of (13), from this estimated 

multivariate distribution. Maximize these q likelihoods, each time with new draws from that 

first-stage S-GMM instrumentedŴ . The average of the q second-stage S-ML estimates 

provide point estimates of parameters, and the estimated variance-covariance of those 

parameter-estimates is the average of the estimated variance-covariance matrices from each 

iteration plus (1+q) times the sample variance-covariance in the point estimates across 

iterations (as, e.g., in King et al. 2001 multiple imputation). This estimator should inherent 

nice properties from S-GMM and S-ML as far as we can intuit, although we have neither 

analytic nor simulation demonstration of properties yet.37 Assessment of the estimator and 

direct comparison to network-coevolution approaches would then be essential next steps. 

IV. Monte Carlo Simulation of S-ML vs. S-OLS vs. OLS Estimation of m-STAR Models 

Before illustrating the estimation, testing, and interpretation of our m-STAR model of 

network-behavior coevolution, we will demonstrate that, in fact, the S-ML estimators just 

described are needed and outperform simpler least-squares estimators. Analytically, the 

omitted-variable biases of the blind OLS estimator remain as before: Fβ. The simultaneity 

asymptotic biases (inconsistencies) of the naïve S-OLS estimator, which simply inserts the 

multiple spatial lags into a least-squares regression, are also analogous to (8) as follows: 
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The intuitions remain as before: simultaneity biases generally increase in ρ, and they induce 

biases in generally opposite directions for other covariates’ coefficient-estimates. 

To demonstrate that an estimator is inconsistent, however, does not demonstrate that 

                                                 
37 Neither do we as-yet have adequately functioning proof of concept, in fact. 
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these inconsistencies are practically large or that they outweigh other potential deficiencies 

of consistent estimators. Accordingly, we conduct some simple Monte Carlo simulations to 

explore the small-sample performance of these estimators, specifically the magnitudes of 

their biases, inefficiency, and standard-error inaccuracy. 

Table 1. Estimator Comparison for m-STAR Model: S-OLS vs. S-ML 
ESTIMATOR RESULT β0=1 β1=1 ρ1=.3 ρ2=.3 

Average Estimate .38 / .24 .96 / .97 .47 / .47 .27 / .29 
Standard Deviation .33 / .24 .07 / .05 .19 / .15 .21 / .16 

Root Mean-Squared-Error .71 / .80 .08 / .06 .25 / .22 .21 / .16 
Average Std-Err Estimate .37 / .28 .06 / .05 .15 / .11 .17 / .13 

S-OLS 

Overconfidence .92 / .87 1.06 / 1.02 1.29 / 1.35 1.21 / 1.27 
Average Estimate 1.09 / 1.05 1.00 / 1.00 .31 / .31 .27 / .28 

Standard Deviation .33 / .24 .07 / .05 .12 / .09 .14 / .11 
Root Mean-Squared-Error .34 / .24 .07 / .05 .12 / .09 .14 / .11 
Average Std-Err Estimate .31 / .23 .06 / .05 .12 / .09 .14 / .11 

S-ML 

Overconfidence 1.05 / 1.05 1.03 / 1.00 .98 / 1.01 .98 / 1.01 
Monte Carlo (1000 Trials) Results for y=ρ1W1y+ ρ2W2y+Xβ+ε, with 

W1=rook adjacency, W2=queen adjacency (row normalized); β0=β1=1, ρ0=ρ1=.3; and N=225/450. 

The results in Table 1 are easily interpreted using the analytical results in (33). The 

covariance of the queen spatial-lag (all eight adjacent squares on a grid) and ε is much less 

than that of the rook lag (only the four horizontally and vertically adjacent) and ε. With 

row-standardization and eight connections the strength of the interdependence/endogeneity 

is diluted in the former case. Consequently, the coefficient on rook-lag is overestimated, and 

the coefficients on queen-lag W2y and on x0 (which is especially correlated with W1y)38 are 

(badly) underestimated. The S-ML estimator also dominates impressively in efficiency and 

standard-error accuracy, especially for those two estimates 
1̂
ρ  and 

0
β̂ . 

Next, Table 2 similarly evaluates the blind OLS, naïve S-OLS, and S-ML estimators for 

our m-STAR coevolution model. The S-ML estimator again outperforms the inconsistent 

OLS alternatives. Notice that, with x drawn independently, appreciable correlation of the 

regressors with the spatial lags concentrates in the time-lag; thus, omitted-variable biases of 

blind OLS are not severe for β and concentrate at a noticeable 20% in φ. Notice also that 

with endogenous Ly being time-lagged in the estimator and in truth, and L being |yi-yj| and 

so not terribly (linear) correlated with yi, the simultaneity biases of S-OLS concentrate in ρ 

at a sizable +33% but, x being drawn independently, induce little bias in β̂ . The efficiency 

                                                 
38 The simulations drew ε from N(1,1), making the nonzero aspect of Z'Wy concentrate in the constant, x0. 
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(RMSE) and standard-error accuracy gains are more uniform and obvious. 

Table 2. Estimator Comparison for m-STAR Coevolution Model: OLS v. S-OLS v. S-ML
ESTIMATOR RESULT φ=.3 β=1 ρ=.3 γ=.3 

Average Estimate .36 1.04 — — 
Standard Deviation .07 .05 — — 

Root Mean-Squared-Error .09 .06 — — 
Average Std-Err Estimate .03 .05 — — 

OLS 

Overconfidence 2.07 .97 — — 
Average Estimate .28 .99 .41 .25 

Standard Deviation .03 .05 .06 .08 
Root Mean-Squared-Error .04 .05 .129 .10 
Average Std-Err Estimate .03 .04 .05 .08 

S-OLS 

Overconfidence 1.02 1.05 1.19 1.01 
Average Estimate .29 1.00 .31 .27 

Standard Deviation .03 .05 .05 .08 
Root Mean-Squared-Error .03 .05 .05 .09 
Average Std-Err Estimate .03 .04 .04 .07 

S-ML 

Overconfidence 1.02 1.04 1.11 1.10 
Monte Carlo (1000 Trials) Results for yt=ρWyt+γLyt-1+φyt-1+βxt+εt, with 

W=48 contiguous US-state adjacency pattern (row-stdzd); ρ=.3, γ=.3, φ=.3, β=1; and N=48, T=10. 

In sum, even in simulations rather favorably designed for the blind or naïve estimators, 

the S-ML estimator is clearly dominant for all estimates and estimate-properties. 

V. Empirical Illustration 

To illustrate application of the S-ML estimated m-STAR approach to endogenous 

network-behavior coevolution (with identification from temporal lagging assumed), we 

extend our previous ALM-policy analysis (Franzese & Hays 2006c). One extension is of the 

sample to include observations on both EU and non-EU countries.39 This allows distinction 

of co-membership interdependence among EU member states from global interdependence.  

The OECD ALM-program dataset gives expenditures by five categories: labor-market 

training, public employment-services and administration, subsidized employment, youth 

measures, and disability measures. Figure 1 plots the temporal variation in OECD average 

spending by type. Subsidized employment and labor-market training are the two largest 

components over the entire sample period, accounting for 26.9% and 26.7% the total. 

                                                 
39 Annual 1980-2003 data for 21 OECD countries, 14 being EU members: Australia, Austria, Belgium, 
Canada, Denmark, Germany, Greece, Finland, France, Ireland, Italy, Japan, New Zealand, Netherlands, 
Norway, Portugal, Spain, Sweden, Switzerland, the U.K., and the U.S. 
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Figure 1: Disaggregated Active Labor Market Expenditures in the OECD, 1980-2003 
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Table 3 gives the programmatic breakdown in ALM expenditures by country, revealing 

great variation across the sample. The big spenders per capita were Sweden and Denmark 

($360.88 and $287.20 (2000, PPP$)); the U.S. and Greece spent least ($43.72 and $34.97). 

The table also reveals some spatial clustering on geographic, cultural, institutional-structure 

dimensions: e.g., all four Scandinavian countries spent much more than the OECD average; 

Portugal and Spain averaged within $1 per capita of each other over these 23 years; and 

Australia and New Zealand, Canada and the U.S. spent well below the OECD average. 

What explains these patterns: strategic policy interdependence, similar exogenous-external 

conditions, correlated domestic factors, or some selection process among countries grouped 

on these dimensions? Which dimensions? 
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Table 3. Disaggregated Active Labor Market Expenditures per Capita (2000 PPP$) 
 AUS AUT BEL CAN DEN FIN FRA DEU GRE IRE ITA 

28.85 33.06 41.35 38.44 20.48 22.47 25.98 46.59 10.77 32.36 0 Employment 
services&admin (37.54) (29.68) (15.69) (39.1) (7.13) (10.46) (14.39) (19.12) (30.8) (15.19) (0) 

10.05 41.58 43.99 46.18 117.32 67 49.74 71.61 7.84 43.26 7.14 Labor-market 
training (13.08) (37.32) (16.69) (46.98) (40.85) (31.19) (27.56) (29.38) (22.41) (20.3) (8.02) 

8.36 4.63 3.41 3.92 24.57 17.65 42.47 12.83 6.8 37.11 31.47 Youth 
measures (10.88) (4.16) (1.29) (3.99) (8.55) (8.22) (23.53) (5.26) (19.45) (17.42) (35.38) 

21.51 18.62 146.9 7.07 69.26 87.79 49.75 65.7 8.28 87.35 24.68 Subsidized 
employment (27.98) (16.71) (55.73) (7.19) (24.12) (40.87) (27.56) (26.96) (23.67) (41) (27.74) 

8.08 13.51 27.94 2.7 55.58 19.12 12.56 46.95 1.28 13 0 Measures for 
disabled (10.52) (12.13) (10.6) (2.75) (19.35) (8.9) (6.96) (19.27) (3.67) (6.1) (0) 

Total ALMP 76.87 111.41 263.61 98.3 287.2 214.81 180.51 243.72 34.97 213.08 88.97 
 JPN NTH NWZ NOR PRT ESP SWE CHE GBR USA OECD 

47.65 24.48 17.46 33.36 14.93 12.97 44.98 20.81 36.4 12.1 26.76 Employment 
services&admin (68.44) (11.58) (15.85) (15.91) (17.04) (14.69) (12.46) (22.57) (37.71) (27.67) (17.34) 

7.48 48.72 39.62 36.28 26.47 19.23 101.86 17.01 15.5 13.48 41.12 Labor-market 
training (10.75) (23.04) (35.96) (17.31) (30.22) (21.78) (28.22) (18.45) (16.06) (30.82) (26.65) 

0.24 11.01 10.44 11.53 26.48 7.73 14.32 0.55 28.34 6.68 14.84 Youth 
measures (0.34) (5.21) (9.48) (5.5) (30.23) (8.76) (3.97) (0.59) (29.36) (15.29) (9.61) 

12.73 16.69 34.73 23.87 14.77 45.7 91.75 20.05 11.68 2.24 41.44 Subsidized 
employment (18.28) (7.89) (31.53) (11.39) (16.86) (51.77) (25.42) (21.74) (12.1) (5.13) (26.86) 

1.53 110.57 7.91 104.59 4.95 2.64 107.98 33.79 4.61 9.22 29.29 Measures for 
disabled (2.19) (52.28) (7.18) (49.89) (5.65) (2.99) (29.92) (36.65) (4.77) (21.09) (18.98) 

Total ALMP 69.62 211.47 110.15 209.63 87.59 88.28 360.88 92.22 96.52 43.72 154.3 
NOTE: Parentheses contain spending as a percentage of total spending on active labor market programs. 

To answer these questions, we estimate an m-STAR model with coevolutionary 

dynamics.40 The model, in matrix notation, is 

 
1

R

r r
r

ρ φ γ
=

⎡ ⎤
⎢ ⎥= + + + +⎢ ⎥
⎣ ⎦
∑y W y My Ly Xβ ε  (34), 

where y , ALM expenditures, is an NT%1 vector of cross sections stacked by periods as 

described previously. ρr is the rth spatial autoregressive coefficient, and Wr is an NT%NT 

block-diagonal spatial-weighting matrix. Each Wr contains a unique set of elements r
ijw  that 

reflect a particular type of interdependence (e.g., geographic proximity, EU co-membership, 

and economic interdependence). In the other new term, γ, is the coevolutionary-dependence 

parameter, and L is an NT%NT “policy-distance” matrix with |yi,t-1-yj,t-1| in cells (it,jt). The 

addition of γLy, therefore, reflects a substantive proposition that states with more-similar 

ALM policies (spending-levels, to be precise) affect each other’s ALM policies more (γ>0), 

as in the network analyst’s homophily, or less (γ<0) than do states with less-similar 

                                                 
40 Case et al. (1993), Brueckner & Saavedra (2001), Fredriksson & Millimet (2002), Redoano (2003), Allers & 
Elhorst (2005) among others have used spatial-lag models to test similar strategic policy-interdependence 
hypotheses, but none use multiple spatial lags or consider coevolution as alternative connectivity dimensions. 
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policies. In spatial-econometric terms, it is the endogenous determinant of the strength of 

interdependence. The rest is as before: Wy reflects the exogenous interdependence of units’ 

policies; My is the first-order temporal lag, with  its coefficient; Xβ are the exogenous non-

spatial components; and  are assumed-i.i.d. disturbances. 

The presence in (34) of L, which contains lagged y’s, renders the system of N equations 

nonlinear in the endogenous variable. This complicates calculation of spatiotemporal 

dynamics and prevents linear multipliers or analytical solution for steady states. The 

spatiotemporal coevolutionary responses to changes in X or δ must be calculated 

recursively. To start, rewrite (34) as t cross-sections: 

 ( )1 1t t t t t N t t t
absφ γ− −
⎡ ⎤⎡ ⎤= + + ⊗ + +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

y W y y y I y XΠ β ε  (35). 

yt, Wt , and Xt are N%1, N%N, and N%k matrices, and Π is an N%N2 matrix produced by 

horizontally concatenating N separate N%N matrices. The ith N%N matrix in Π has -1’s on 

its diagonal and 1’s for each element of the ith column except for (i,i) which is 0, as are all 

remaining elements. If N=3, for example:  

 

0 0 0 1 1 0 1 0 1

1 1 0 0 0 0 0 1 1

1 0 1 0 1 1 0 0 0

⎡ ⎤− −⎢ ⎥
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

Π  (36). 

The function abs is element-by-element absolute value; its argument gives the vector of 

differences yi,t-1-yj,t-1, reflecting homophily. In reduced form, (35) is 

 ( ) ( )
1

1 1t n t t N t t t
absγ φ

−

− −
⎡ ⎤⎡ ⎤⎡ ⎤= − + ⊗ + +⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

y I W y I y XΠ β ε  (37). 

Our empirical analysis applying (37) focuses on aggregate ALM-program expenditures 

and the two largest components thereof, subsidized employment (SEMP) and labor-market 

training (LMT) spending. Our dependent variables are measured per capita (2000, PPP$), 

and the key right-hand-side variables, which allow us to evaluate the nature of the spatial 

interdependence among the countries in our sample, are the spatial lags of ALM spending. 

Our spatial lags, Wry, involve four different weights matrices (R = 4). W1 is a 

standardized binary contiguity-weights matrix which begins by coding wij=1 for countries i 

and j that share a border and wij=0 for countries that do not border, with exceptions 

France, Belgium, and Netherlands treated as contiguous with U.K., Denmark with Sweden, 

and New Zealand with Australia. W2 is an EU co-membership weights-matrix; i.e., wij=1 if 
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both i and j are EU members and wij=0 otherwise. W3 has weights that reflect the trade 

(imports+exports) shares between sample countries.41 W4 is the policy-distance coevolution 

matrix with |yi,t-1-yj,t-1| in cells (it,jt) as described above. For estimation, we row-standardize 

(as is common in spatial econometrics) all W matrices, dividing each cell by its row’s sum.42  

We also control several domestic variables. We include macroeconomic performance 

with real GDP-growth and unemployment rates. As economies grow wealthier, governments 

might provide more public goods and services, suggesting a positive coefficient estimate for 

GDP per capita: Wagner’s Law. Alternatively, Baumol’s Disease, which refers to an argued 

decreasing relative productivity in service sectors rendering finance of public services more 

difficult as economies develop and shift toward service-sector employment, would suggest a 

relation of wealth to ALM spending. Most likely, though, our GDP-growth measure will 

capture pseudo-automatic programmatic responses to macroeconomic cycles, suggesting a 

negative coefficient. Unemployment should receive a positive coefficient for the same reason. 

Next, we control several structural features of a country’s economy related to its labor 

markets and exposure to external shocks. The labor-market factors are union density and 

Iversen & Cusak’s (2000) deindustrialization measure. Higher union density increases the 

influence of organized labor, so we expect it to associate closely with greater ALM 

spending. Iversen & Cusak (2000) argued that workers cross significant skill barriers when 

they shift from manufacturing and agriculture to services. Thus, we expect 

deindustrialization to spur LMT also. Many scholars argue that international economic 

exposure favors increased government spending, especially on programs that help workers 

adjust to external shocks (e.g., Ruggie 1982; Cameron 1978; Katzenstein 1985; Rodrik 1997; 

Hays et al. 2005). Others argue that increased international exposure produces competitive 

pressures that lead to smaller governments, but this mechanism is properly reflected in our 

model by the third spatial-lag (see Basinger & Hallerberg 2004, Franzese & Hays 2003, 

2004b, 2005ab, 2006c, 2007ab, 2008c). We use trade openness as our measure of exposure.  

We also include the working-age percentage of the population, the percent of cabinet 

seats held by left and Christian Democratic parties, and the percent of general-election 

                                                 
41 More specifically, wij(t) equals the sum of exports i to j and j to i and of imports i from j and j from i, 
divided by four times i’s GDP. We use all four values because the data exhibit slight discrepancies between, 
e.g., i to j exports and j from i imports. 
42 Row normalization is not necessarily substantively neutral (see, e.g., Plümper & Neumayer 2008). 
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votes won by left-libertarian parties. Working-age voters are natural constituencies for 

ALM programs, whereas the benefits for retired voters are indirect at best, so political 

pressure for ALM policies should increase with working-age population-shares. Scholars 

have variously identified Social Democratic, Christian Democratic, and Left-Libertarian 

parties as key supporters of active social-policies, albeit of/to/for different precise natures, 

extents, or reasons (see, e.g., Garrett 1998; Swank 2002; and Kitschelt 1994). The simpler 

left-right ideological dimension may also relate to ALM programs. 

Table 4: ALM-Spending Models — Estimation Results 
DEP. VAR. → Total ALM LMT SEMP 

INDEP. VAR. ↓ (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Constant -195.89* -150.369 51.487 -162.53*** -160.30** -100.950 -122.27** -129.70** -65.945 
 (103.645) (114.470) (125.395) (59.486) (64.481) (69.774) (57.794) (61.645) (71.708) 

Temporal Lag 0.875*** 0.836*** 0.801*** 0.872*** 0.865*** 0.758*** 0.830*** 0.848*** 0.704*** 
 (0.026) (0.032) (0.0407) (0.028) (0.031) (0.040) (0.034) (0.044) (0.062) 

Real GDP Growth Rate 1.365*** 0.449 -1.100 0.269 0.237 -0.861 0.036 -0.056 -1.044* 
 (0.411) (0.607) (1.144) (0.201) (0.258) (0.630) (0.188) (0.231) (0.629) 

Stdzd Unemployment Rate -0.070 0.552 0.125 0.361 0.844* 0.541 -0.169 -0.351 -0.544 
 (0.791) (0.835) (0.876) (0.445) (0.456) (0.509) (0.438) (0.448) (0.490) 

Union Density 0.888*** 0.711** 0.527* 0.205 0.138 0.259 0.567*** 0.645*** 0.629*** 
 (0.302) (0.318) (0.321) (0.167) (0.176) (0.176) (0.169) (0.175) (0.184) 

Deindustrialization 1.259 1.209 0.499 0.106 0.105 -0.183 1.426*** 1.440*** 1.0514** 
 (0.785) (0.776) (0.773) (0.449) (0.447) (0.435) (0.438) (0.438) (0.440) 

Trade Openness -0.522*** -0.183 -0.192 -0.187* -0.083 -0.009 0.018 0.039 0.104 
 (0.169) (0.196) (0.213) (0.097) (0.114) (0.118) (0.104) (0.113) (0.133) 

Working-Age Population 0.946 0.216 0.108 2.239*** 2.113** 2.623*** -0.139 -0.075 0.189 
 (1.498) (1.603) (1.629) (0.863) (0.909) (0.940) (0.829) (0.860) (0.934) 

Left Cabinet-Seats -0.024 0.001 0.001 0.035 0.044** 0.057*** -0.049** -0.047** -0.037* 
 (0.039) (0.039) (0.038) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) 

Christian Dem. Cab-Seats -0.160* -0.102 -0.085 -0.070 -0.074 -0.042 -0.032 -0.031 -0.037 
 (0.095) (0.096) (0.093) (0.054) (0.053) (0.052) (0.053) (0.053) (0.052) 

Left-Libertarian Vote -0.285 -0.549 -0.728 -0.316 -0.535 -0.714** -0.248 -0.208 -0.147 
 (0.622) (0.611) (0.598) (0.355) (0.361) (0.352) (0.346) (0.344) (0.340) 

SPATIAL WEIGHTS:          

Borders  -0.112*** -0.098***  -0.185*** -0.188***  0.058 0.054 
  (0.040) (0.040)  (0.057) (0.060)  (0.054) (0.056) 

EU Membership  -0.071*** -0.060*  -0.079 -0.183**  -0.058 -0.097 

  (0.034) (0.036)  (0.061) (0.073)  (0.062) (0.065) 

Trade Shares  0.386*** 0.239**  0.316*** 0.180  -0.017 -0.097 

  (0.101) (0.111)  (0.119) (0.159)  (0.148) (0.169) 

Policy Distance  -0.053 -0.189***  -0.004 -0.298***  0.049 -0.205** 

  (0.039) (0.067)  (0.046) (0.085)  (0.049) (0.087) 

TIME DUMMIES? No No Yes No No Yes No No Yes 

σ 21.221*** 20.741*** 19.564*** 12.061*** 11.828*** 11.161*** 11.794*** 11.702*** 11.154***

 (0.787) (0.775) (0.722) (0.454) (0.451) (0.426) (0.437) (0.434) (0.414) 

Log-Likelihood -1646.41 -1638.99 -1616.95 -1438.49 -1432.5 -1413.61 -1430.23 -1427.63 -1410.92 

Note: All regressions include fixed country effects; models (3), (6) and (9) also included fixed year effects. All the spatial weights 
matrices are row-standardized. The parentheses contain standard errors. 
*** Significant at the .01 level; ** Significant at the .05 level; * Significant at the .10 level. 
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 Table 4 presents our results. We estimate three regressions for each dependent variable: 

the first includes country indicators but omits spatial lags, ignoring interdependence; the 

second includes the spatial lags and the country indicators; the third includes spatial lags 

and country and time indicators. The period dummies are a flexible way to model common 

OECD-wide trends and/or common (random) shocks in ALM expenditures. Recall that the 

most important issue methodologically in obtaining good estimates of the strength of 

interdependence, i.e., of ρ, is to model well any alternative mechanisms by which the 

outcomes might correlate spatially, such as common exogenous shocks (e.g., global 

economic conditions) or correlated domestic factors. From that perspective, the country and 

year dummies serve as a powerfully conservative way to account for (near-)common outside 

shocks or spatially correlated (near-common) domestic factor. Failure to account for such 

alternatives will bias spatial-lag coefficient-estimates, usually positively. 

The non-spatial and spatial model estimates suggest subtly differing explanations for the 

spatiotemporal patterns in total ALM expenditures. The non-spatial model points to 

domestic real GDP-per-capita growth, indicating strong procyclicality to total ALM though 

not LMT or SEMP components, and to labor-market structures, deindustrialization and 

especially union density. The spatial models suggest that the effects that the non-spatial 

models attribute to domestic growth and trade exposure seem instead to reflect spatial 

diffusion of responses global conditions. More interestingly perhaps, all three estimation 

techniques find sizable differences in sources of LMT versus SEMP spending. LMT seems 

closely related to workforce age-demographics and not very closely related to our labor-

market structural or institutional measures. SEMP, to the contrary, counts strong labor 

and deindustrialization among its sources, and not age demography. The spatial models 

controlling for common shocks also show ALM policy, especially SEMP, more counter-

cyclical to the domestic economy. Perhaps most interestingly, the spatial models suggest 

that, while total ALM spending is not particularly partisan, the composition is decidedly so, 

with LMT associated positively and SEMP negatively with left cabinets. Wald tests of the 

spatial-lag coefficients reveal strong evidence of interdependence in ALM policy, the t-tests 

on 13 of the 24 ρr estimates being significant at conventional levels and the six joint tests of 

the four ρr estimates per spatial model all overwhelmingly rejecting null hypotheses of zero 

coefficients, i.e., of the nonspatial model.43 In particular, total ALM spending seems strongly 

                                                 
43 Likelihood-ratio tests of the models and information criteria also strongly favor the spatial models. 
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spatially interdependent along all four dimensions of proximity, SEMP much less so, and 

LMT intermediately. Consequently, coefficient estimates in non-spatial models, especially of 

total ALM, will almost certainly suffer from omitted-variable bias. 

We focus, therefore, on the spatial models of total ALM spending and, in particular, on 

the most-conservative time-dummies version. This model (column 3) finds few strong and 

significant effects of domestic conditions net of interdependence, common shocks, and fixed 

country-specific factors. Point estimates suggest positive ALM-spending response to 

unemployment, union density, deindustrialization, and working-age population, but only 

the response to union density is significant and sizable. They show negative responses to 

real-GDP growth, trade exposure, Christian-Democratic cabinet-seats, and Left-Libertarian 

vote-shares, but only the last and the countercyclical response to domestic growth are close 

to significant and sizable. No response at all to left cabinet-seats emerges, though we have 

already noted that this seems to mask a strongly left-partisan shifting from SEMP to LMT 

in ALM-spending composition. The estimated pattern of interdependence, i.e., the implicit 

net network, uncovers strongly negative interdependence among bordering countries and 

moderately negative interdependence among EU countries. The sign and relative strengths 

of interdependence by these patterns are consistent with our positive-externalities argument 

(Franzese & Hays 2006c). The negative ρ̂  for the EU-membership spatial-lag also bolsters 

the case for those concerned that the EU is not adequately spurring employment-policy 

coordination. The positive coefficient for the trade-weights spatial-lag, meanwhile, supports 

arguments of globalization-induced competition. The coefficient(s) on the policy-distance 

lag(s) are negative and quite significant for total ALM (and for LMT and SEMP also). This 

indicates lesser dependency of domestic ALM policies on countries with more dissimilar 

ALM policies. I.e., policymakers follow more closely those more similar to them, as revealed 

by the similarity in the policies they choose: homophily in other (network-analytic) terms. 

We are satisfied that ALM policy exhibits statistically significant interdependence, and 

that the patterns of interdependence relate to geographic contiguity and EU co-membership 

in ways that indicate policy free-riding, to trade relations in a way that implicates 

globalization and policy-competition, and to policy distance in a way that suggests 

homophily, but what do these results tell us of the net sign and substantive magnitude of 

this implicit network or of the effects of some countries’ ALM policies on policymakers in 

other countries via this estimated implicit (net) network? What do they say about the 
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ALM-policy responses across these interdependent political-economies over time to 

counterfactual shocks in domestic and/or foreign conditions or policies? Answers and fuller 

interpretation of the coevolutionary spatiotemporal effects and dynamics that these m-

STAR model-estimates imply requires calculation of the spatial multiplier in (37). 

Spatial multipliers, here: ( )
1

1n t t N
absγ

−

−
⎡ ⎤⎡ ⎤⎡ ⎤− + ⊗⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦
I W y IΠ , capture the feedback from, say, 

Belgium onto France and other countries, and back from France and those others onto 

Belgium, and so on. The immediate time-t effect on the vector of policies in the 21 

countries, yt, from a given set of time t-1 policies, yt-1, including the spatial feedback, can be 

calculated with this spatial multiplier for any desired counterfactual shocks to the rest of 

the right-hand side of (37). To find the long-run, steady-state, equilibrium (cumulative) 

level of y, we must solve (37) recursively. With exogenously time-varying W, like our trade 

weights, W3, we need to specify values or sequence of values of W that we will assume to 

maintain in the long-run or obtain over the period in question. With endogenously time-

varying W, like our policy-distance matrix W4, the system is much more complex. (For 

instance, stationarity must not only obtain initially but also hold continually as dynamics 

unfold.) To get variance estimates, we could use the delta method again, or simulate them 

by a parametric bootstrap as described above. Given the considerable nonlinearity of (37), 

the simulated standard-error estimates may have better properties. 

Table 5: Effects of a Common Counterfactual ($1) Shock to ALM Spending 
 Pre-Shock Steady-State 

ALM-Spending ($) 
Post-Shock Steady-State 

ALM-Spending ($) 
Difference in Steady-State 

ALM-Spending ($) 
Australia 528.08 525.95 -2.13 
Austria 150.52 150.29 -0.23 
Belgium 450.67 446.25 -4.42 
Canada 156.81 173.08 16.27 

Denmark 545.71 544.77 -0.94 
Finland 104.48 113.76 9.28 
France 478.34 474.95 -3.39 

Germany 466.87 465.8 -1.07 
Greece 70.11 79.13 9.02 
Ireland 85.04 92.6 7.56 
Italy 109.87 115.55 5.68 
Japan 472.63 476.32 3.69 

Netherlands 456.02 452.09 -3.93 
New Zealand 120.55 132.16 11.61 

Norway 525.74 523.6 -2.14 
Portugal 432.16 416.63 -15.53 
Spain 100.25 110.89 10.64 

Sweden 577.26 575.66 -1.6 
Switzerland 332.48 357.31 24.83 

United Kingdom 118.28 128.2 9.92 
United States 204.54 211.22 6.68 
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 Table 5 illustrates the calculation of estimated coevolutionary spatiotemporal responses 

to hypothetical shocks. In this example, we start with the 2001 values for all the exogenous 

variables (the last year all countries have data) and, using the parameter estimates from 

model 3 of Table 4, determine the steady-state levels of ALM expenditures by recursive 

calculation of (35). Then, with the system at this steady-state, we shock each country’s 

ALM spending by $1 (i.e., a $1 shock to δ) and calculate the new steady-state that emerges 

from there by the same recursive calculations. The results in Table 5 show the estimated 

system reasonably stable and the effects sizable. The pattern suggests convergence, with 

previously low (high) spenders spending more (less) in the new steady state. 
Figure 2: Coevolutionary Spatiotemporally Dynamic Response of German, Austrian, and French ALM-

Spending to +$10 Permanent Shock to German ALM-Spending 
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Germany: +$54.03 in S-S 
Expenditures (11.6%).

Austria: +$37.98 in S-S 
Expenditures (23.2%).

France: +$5.81 in S-S 
Expenditures (1.2%).

 

We can also use (35) to plot estimated coevolutionary spatiotemporal responses to 

shocks. Using the 2001 values of the exogenous variables, and starting from the steady 

states that would emerge from those values and the parameter estimates, Figure 2 plots, as 

an example, the 10-period responses in German, Austrian, and French ALM spending to a 

$10 permanent positive shock to Germany’s ALM spending (δ). Note the differences in how 
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France and Austria respond to the German shock, Austria converging toward Germany’s 

permanently higher ALM-spending and France returning to its status quo ante. These 

reflect the latent structure of interdependence between these three countries, as seen in the 

estimated network arranged in Table 6 and depicted in Figure 3 next. 

Using (32), we can also show the estimated weights matrix, i.e., estimated pattern of 

network interdependencies in ALM policy among these countries, as in Table 6 for the 

estimated network using the 1981 covariate values.44 

Table 6: Estimated ALM-Policy Interdependencies, i.e., the Net ALM-Policy Network, in 1981 

Note: Dependent variable: Total ALM Spending; Model: 3. Actual weights multiplied by 10 (and standard 
errors adjusted accordingly) to improve table formatting. 

We can also illustrate our estimated patterns of interdependence, i.e., the ALM-policy 

network, using graphical techniques familiar to network analysts. Figure 4 graphs the 

estimated patterns and strengths of interdependence in 1991 thus.45 EU member-countries 

are circles; other countries are squares. Red arrows represent negative interdependence, or 

implicit (net) network ties. Blue arrows indicate positive implicit (net) network-ties. Arrow 

                                                 
44 Tables for the 1991 and 2001 values are too large to show effectively but are available on request. 
45 The web appendix shows the analogous graphs using the 1981 and 2001 covariate values. 

 AUS CAN FIN FRA NTH NWZ ESP SWE GBR USA 

AUS 0.000 0.022 -0.371*** 0.160** -0.182* -0.905*** -0.025 -0.481** 0.179 1.123** 

 (0.000) (0.095) (0.140) (0.075) (0.096) (0.326) (0.023) (0.195) (0.200) (0.566) 

CAN -0.177** 0.000 -0.351*** -0.164** -0.129** -0.097*** -0.120*** -0.553*** 0.020 1.092 

 (0.073) (0.000) (0.126) (0.075) (0.055) (0.036) (0.046) (0.200) (0.064) (0.787) 

FIN -0.283** -0.159** 0.000 -0.072 0.080 -0.140*** -0.227** -0.246 0.493 0.075 

 (0.114) (0.075) (0.000) (0.165) (0.102) (0.051) (0.101) (0.317) (0.308) (0.180) 

FRA 0.047** -0.071 -0.347** 0.000 -0.033 -0.207*** -0.275* -0.418** -0.345 0.565* 

 (0.022) (0.062) (0.142) (0.000) (0.250) (0.076) (0.145) (0.204) (0.222) (0.306) 

NTH -0.293** -0.082 -0.134* 0.051 0.000 -0.039** -0.175* -0.238 -0.531* 0.357 

 (0.114) (0.056) (0.070) (0.313) (0.000) (0.016) (0.099) (0.149) (0.290) (0.280) 

NWZ -0.463 0.001 -0.244*** -0.220* -0.005 0.000 -0.214*** -0.439*** 0.575** 0.529 

 (0.328) (0.062) (0.089) (0.116) (0.028) (0.000) (0.082) (0.163) (0.272) (0.343) 

ESP -0.038 -0.055 -0.381*** -0.220 -0.053 -0.190*** 0.000 -0.502** 0.240 0.720** 

 (0.025) (0.047) (0.146) (0.308) (0.124) (0.069) (0.000) (0.214) (0.215) (0.355) 

SWE -0.243** -0.148* -0.638** 0.033 0.113 -0.169*** -0.190* 0.000 0.560 0.203 

 (0.106) (0.083) (0.299) (0.188) (0.141) (0.062) (0.101) (0.000) (0.354) (0.231) 

GBR -0.215* 0.057 -0.175* -0.619*** -0.405** 0.034* -0.124 -0.270 0.000 0.633 

 (0.114) (0.080) (0.104) (0.218) (0.186) (0.021) (0.094) (0.198) (0.000) (0.387) 

USA 0.008 0.284 -0.382*** 0.108 -0.069 -0.146** 0.040 -0.54**0 0.217 0.000 

 (0.070) (0.455) (0.143) (0.111) (0.106) (0.062) (0.042) (0.214) (0.190) (0.000) 
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thickness and arrow-head sizes gauge the estimated strength of the relationship. We would 

plot nodes with all estimated dependencies insignificant, say at .10, or of negligible 

strength, say less than .01, as singletons, but there are no such in this example. 

Figure 4: The Estimated Network of ALM-policy Interdependence, 1991 

 
 

VI. Conclusion and Discussion 

In Franzese & Hays (2006c), we estimated single-lag STAR models of ALM policy using 

binary contiguity (borders) weights matrices and a sample of European countries over the 

period 1987-1998. Our estimated coefficients on the spatial lags in those regressions were 

negative and statistically significant, and we argued that these results suggested appreciable 

ALM-policy free-riding in the EU. The results here, using an m-STAR model to consider 

multiple possible patterns and pathways of ALM-policy interdependence among the 

developed democracies more broadly, are strongly consistent with the conclusion that free-

riding dynamics dominate among EU members and that these dynamics emerge specifically 

in great extent due to cross-border spillovers as we had suggested. We also find now some 

evidence of positive dependence deriving from trade-related competition, supporting 

globalization-induced competitive-races (not necessarily to bottom) arguments, and that 
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policymakers follow most closely foreign policymakers from similar countries, at least where 

similarity is gauged by the magnitude of the policy in question. Methodologically, we have 

offered a simple way to model and estimate networks/interdependence-patterns 

simultaneously with estimation of the effect of those networks/interdependencies on units’ 

actions. Within this framework, we have suggested and started on the more ambitious 

agenda of endogenizing those two components of the coevolution of unit behavior/actions 

and networks/interdependence-patterns. 
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