
Southern Illinois University Carbondale
OpenSIUC

Discussion Papers Department of Economics

2-2004

Directional Technology Distance Functions:
Theory and Applications
Lane Blume Hudgins
Southern Illinois University Carbondale

Daniel Primont
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/econ_dp

This Article is brought to you for free and open access by the Department of Economics at OpenSIUC. It has been accepted for inclusion in Discussion
Papers by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Hudgins, Lane Blume and Primont, Daniel, "Directional Technology Distance Functions: Theory and Applications" (2004). Discussion
Papers. Paper 20.
http://opensiuc.lib.siu.edu/econ_dp/20

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fecon_dp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/econ_dp?utm_source=opensiuc.lib.siu.edu%2Fecon_dp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/econ?utm_source=opensiuc.lib.siu.edu%2Fecon_dp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/econ_dp?utm_source=opensiuc.lib.siu.edu%2Fecon_dp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/econ_dp/20?utm_source=opensiuc.lib.siu.edu%2Fecon_dp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu
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Carbondale, IL 62901-4515

February 29, 2004

1. Introduction

Properties of the directional technology distance function have been given in a
paper by Chambers, Chung, and Färe (1998). This function, �D(x, y; gx, gy), is an
implicit representation of an M-output, N-input production technology. An input-
output vector, (x, y), is feasible if and only if �D(x, y; gx, gy) = 0, where (gx, gy) is
a “direction” vector to be described later. An important antecedent of the direc-
tional technology distance function is the shortage function, introduced by Luenberger
(1992, 1995).

In this paper the theory of the directional technology distance function is extended
by deriving a set of restrictions on the first and second derivatives of the directional
technology distance functions. These restrictions would be useful in building an
econometric model based on the directional technology distance function. In a second
application, it is shown that the usual comparative static results for a competitive
firm are easily established.

Let x ∈ RN
+ be the input vector and let y ∈ RM

+ be the output vector. The
technology T is given by

T = {(x, y) : x can produce y} .
Assume (see Chambers, Chung, Färe (1998))

T1. T is closed
T2. Free disposability: if (x, y) ∈ T, x0 ≥ x, and y0 ≤ y then (x0, y0) ∈ T.
T3. No free lunch: if (x, y) ∈ T and x = 0 then y = 0.
T4. Possibility of inaction: (0, 0) ∈ T.
T5. T is convex.

The directional technology distance function is a particular representation of a
multi-output, multi-input production technology. Following Chambers, Chung, and
Färe (1998),
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�D(x, y; gx, gy) =


max {β : (x, y) + β(−gx, gy) ∈ T}

if (x, y) + β(−gx, gy) ∈ T for some β

−∞ otherwise.

(1)

The calculation of the directional technology distance function is depicted in Figure
1.
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Figure 1
where β∗ = �D(x, y; gx, gy).
There are, of course, many different implicit representations of a multi-output,

muliti-input production technology. However, the directional technology distance
function is particularly well-suited to the task of providing a measure of technical
efficiency in the full input-output space. To see this consider some of the competing
alternative measures.
The hyperbolic measure, proposed by Färe, Grosskopf, and Lovell (1985), is given

by
Fg(x, y) = min

n
λ :
³
λx,

y

λ

´
∈ T

o
.

The calculation of this hyperbolic measure is depicted in Figure 2.
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where λ∗ = Fg(x, y). It is possible to give this measure an economic interpretation
but this is done at the expense of assuming constant returns to scale. For the details
see Färe, Grosskopf, and Zaim (2002).
Another possibility is the radial measure given by

FR(x, y) = max {δ : (δx, δy) ∈ T} .

The calculation of this measure is depicted in Figure 3.
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Figure 3
However, this measure could produce very large values (high inefficiency scores) even
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when (x, y) is very close to the frontier. Moreover, this measure completely breaks
down under constant returns to scale.

Lemma 2.2 in Chambers, Chung, and Färe (1998) establishes that A1 - A5 imply
the following properties:

D1. Translation Property

�D(x− αgx, y + αgy; gx, gy) = �D(x, y; gx, gy)− α for all α ∈ R

D2. g-Homogeneity of Degree Minus One

�D(x, y;λgx, λgy) = λ−1 �D(x, y; gx, gy), λ > 0

D3. Input Monotonicity

x0 ≥ x⇒ �D(x0, y; gx, gy) ≥ �D(x, y; gx, gy)

D4. Output Monotonicity

y0 ≥ y ⇒ �D(x, y0; gx, gy) ≤ �D(x, y; gx, gy)

D5. Concavity
�D(x, y; gx, gy) is concave in (x, y)

2. Derivative Properties and Econometric Modelling

An econometric model of the directional technology distance function should im-
pose properties D1 - D5 listed above. This is conveniently accomplished by imposing
the restrictions on the first and second derivatives of �D(x, y; gx, gy) that are implied
by D1 - D5. These derivative conditions are given in the following lemma.

Lemma 1: Assume that �D(x, y; gx, gy) is twice continuously differentiable. Then D1
- D5 imply that:

DD1. Translation Property

∇x
�D(x, y; gx, gy)gx −∇y

�D(x, y; gx, gy)gy = 1

DD2. g-Homogeneity of Degree Minus One

∇gx
�D(x, y; gx, gy) +∇gy

�D(x, y; gx, gy) = − �D(x, y; gx, gy)

DD3. Input Monotonicity

∇x
�D(x, y; gx, gy) ≥ 0
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DD4. Output Monotonicity

∇y
�D(x, y; gx, gy) ≤ 0

DD5. Concavity
H�D is negative semidefinite

DD6. Symmetry
H�D is symmetric

where

H�D =

· ∇xx
�D(x, y; gx, gy) ∇xy

�D(x, y; gx, gy)

∇yx
�D(x, y; gx, gy) ∇yy

�D(x, y; gx, gy)

¸
is the Hessian matrix of �D.

Proof: Differentiating (D1) with respect to α we get

−∇x
�D(x− αgx, y + αgy; gx, gy)gx +∇y

�D(x− αgx, y + αgy; gx, gy)gy = −1.
Set α equal to one and multiply by −1 to get DD1:

∇x
�D(x, y; gx, gy)gx −∇y

�D(x, y; gx, gy)gy = 1.

D2. says that the directional technology distance function is homogeneous of degree
minus one in (gx, gy). DD2 follows by Euler’s Theorem. DD3 and DD4 follow directly
from the monotonicity conditions, D3 and D4, respectively. DD5 follows directly from
the concavity of �D(x, y; gx, gy) in (x, y) and DD6. follows from Young’s Theorem.
QED

Before concluding this section there is one more interesting property to explore.
The profit function is defined as

Π(p,w) = max
x,y

{py − wx : (x, y) ∈ T} (2)

= max
x,y

n
py − wx : �D(x, y; gx, gy) ≥ 0

o
(3)

since
(x, y) ∈ T ⇔ �D(x, y; gx, gy) ≥ 0. (4)

Because of (1) and (4) we can write

(x, y) ∈ T ⇔ (x− �D(x, y; gx, gy)gx, y + �D(x, y; gx, gy)gy) ∈ T,

by the free disposability assumption. Thus, profit may be defined by the uncon-
strained maximization problem:

Π(p,w) = max
x,y

n
p
³
y + �D(x, y; gx, gy)gy

´
− w

³
x− �D(x, y; gx, gy)gx

´o
= max

x,y

n
py − wx+ �D(x, y; gx, gy) (pgy + wgx)

o
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The first order conditions are:

−w +∇x
�D(x, y; gx, gy) (pgy + wgx) = 0

p+∇y
�D(x, y; gx, gy) (pgy + wgx) = 0

or

w

pgy + wgx
= ∇x

�D(x, y; gx, gy) (5)

p

pgy + wgx
= −∇y

�D(x, y; gx, gy) (6)

These are the inverse supply and demand functions. Prices (w, p) are normalized by
the number, pgy + wgx.
While this approach is efficient it does not provide an economic interpretation of

the term, pgy +wgx. To provide such an interpretation we turn to a more traditional
treatment of the profit maximization problem. Write the Lagrangian function for (3)
as

L = py − wx+ λ�D(x, y; gx, gy)

First order conditions are:

Lx = −w + λ∇x
�D(x, y; gx, gy) = 0⇒∇x

�D(x, y; gx, gy) =
w

λ
> 0

Ly = p+ λ∇y
�D(x, y; gx, gy) = 0⇒∇y

�D(x, y; gx, gy) =
−p
λ

< 0 (7)

or

wgx = λ∇x
�D(x, y; gx, gy)gx (8)

pgy = −λ∇y
�D(x, y; gx, gy)gy (9)

Multiplying (DD1) by λ we get:

λ∇x
�D(x, y; gx, gy)gx − λ∇y

�D(x, y; gx, gy)gy = λ

thus, adding (8) and (9) we get:

pgy + wgx = λ∇x
�D(x, y; gx, gy)gx − λ∇y

�D(x, y; gx, gy)gy

= λ

⇒ λ = pgy + wgx (10)

Thus, pgy +wgx is the optimal value of the Lagrangian multiplier in the profit max-
imization problem. If the technology is perturbed (improved) by a small value, ε,
from

T =
n
(x, y) : �D(x, y; gx, gy) ≥ 0

o
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to
T 0 =

n
(x, y) : �D(x, y; gx, gy) + ε ≥ 0

o
then the firm’s profit will rise and ∂Π(p,w)

∂ε
= pgy + wgx.1

Putting (10) into (7) and rearranging we get

w

pgy + wgx
= ∇x

�D(x, y; gx, gy)

p

pgy + wgx
= −∇y

�D(x, y; gx, gy)

which, of course, is the same result as (5) and (6).

3. Comparative Statics

In this section we show how comparative static derivatives of the input demand
and the output supply functions may be expressed as functions of the first and second
order derivatives of the directional technology distance function. Rearranging (5) and
(6), we get

∇x
�D(x, y) (pgy + wgx) = w (11)

∇y
�D(x, y) (pgy + wgx) = −p (12)

First, differentiate (11) and (12) with respect to the input price vector, w.

∇x
�D(x, y)gx +

·
∇xx

�D(x, y)
∂x

∂w
+∇xy

�D(x, y)
∂y

∂w

¸
(pgy + wgx) = 1

∇y
�D(x, y)gx +

·
∇yx

�D(x, y)
∂x

∂w
+∇yy

�D(x, y)
∂y

∂w

¸
(pgy + wgx) = 0

and write the result, rearranged, n matrix notation,

· ∇xx
�D(x, y) ∇xy

�D(x, y)

∇yx
�D(x, y) ∇yy

�D(x, y)

¸
∂x

∂w

∂y

∂w

 = 1

pgy + wgx

·
1−∇x

�D(x, y)gx
−∇y

�D(x, y)gx

¸
.

Next, differentiate (11) and (12) with respect to output prices, p.

∇x
�D(x, y)gy +

·
∇xx

�D(x, y)
∂x

∂p
+∇xy

�D(x, y)
∂y

∂p

¸
(pgy + wgx) = 0

∇y
�D(x, y)gy +

·
∇yx

�D(x, y)
∂x

∂p
+∇yy

�D(x, y)
∂y

∂p

¸
(pgy + wgx) = −1.

1It is also possible to infer this result from the proof in the Appendix of Chambers, Chung, and
Färe (1998).
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Rearrange and write in matrix notation.

· ∇xx
�D(x, y) ∇xy

�D(x, y)

∇yx
�D(x, y) ∇yy

�D(x, y)

¸
∂x

∂p

∂y

∂p

 = 1

pgy + wgx

· −∇x
�D(x, y)gy

−1−∇y
�D(x, y)gy

¸
.

· ∇xx
�D(x, y) ∇xy

�D(x, y)

∇yx
�D(x, y) ∇yy

�D(x, y)

¸
∂x

∂w

∂x

∂p

∂y

∂w

∂y

∂p



=
1

pgy + wgx

·
1−∇x

�D(x, y)gx −∇x
�D(x, y)gy

−∇y
�D(x, y)gx −1−∇y

�D(x, y)gy

¸

=
1

pgy + wgx

· −∇y
�D(x, y)gy −∇x

�D(x, y)gy
−∇y

�D(x, y)gx −∇x
�D(x, y)gx

¸
(using DD1.)

=
−1

pgy + wgx

· ∇y
�D(x, y)gy ∇x

�D(x, y)gy
∇y

�D(x, y)gx ∇x
�D(x, y)gx

¸
Thus, the matrix of comparative static derivatives of the input demand and the
output supply functions can be found above after we invert the Hessian matrix of the
directional technology distance function. We get, −∇wwΠ (p,w) −∇wpΠ (p,w)

∇pwΠ (p,w) ∇ppΠ (p, w)

 =


∂x

∂w

∂x

∂p
∂y

∂w

∂y

∂p


=

−1
pgy + wgx

· ∇xx
�D(x, y) ∇xy

�D(x, y)

∇yx
�D(x, y) ∇yy

�D(x, y)

¸−1 · ∇y
�D(x, y)gy ∇x

�D(x, y)gy
∇y

�D(x, y)gx ∇x
�D(x, y)gx

¸

4. Closing Remarks

In this paper we have established the derivative restrictions on the directional
technology distance function that would be useful in econometric work. It was also
shown that the standard neoclassical comparative static analysis for a competitive
firm can be easily handled with the directional technology distance function. Other
applications are possible. For example, Färe and Grosskopf (2000) show, among
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other things, that the directional technology distance function can be used to model
plant capacity. For another example, Färe and Primont (2003) use the directional
technology distance function to find conditions under which productivity indicators
for each firm in an industry can be aggregated to a productivity indicator for the
industry as a whole.
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