Southern Illinois University Carbondale **OpenSIUC**

Articles and Preprints

Department of Mathematics

10-2004

Generating Sequences of Clique-Symmetric Graphs via Eulerian Digraphs

John P. McSorley Southern Illinois University Carbondale, mcsorley60@hotmail.com

Thomas D. Porter Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles

Part of the Discrete Mathematics and Combinatorics Commons

Published in *Discrete Mathematics*, 287(1-3), 85-91.

Recommended Citation

McSorley, John P. and Porter, Thomas D. "Generating Sequences of Clique-Symmetric Graphs via Eulerian Digraphs." (Oct 2004).

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Generating Sequences of Clique-Symmetric Graphs via Eulerian Digraphs

John P. McSorley
Dept. of CCTM
London Metropolitan University
100 Minories
London, EC3N 1JY
mcsorley60@hotmail.com

Thomas D. Porter
Department of Mathematics
Southern Illinois University
Carbondale, IL 62901-4408
tporter@math.siu.edu

Abstract

Let $\{G_{p1},G_{p2},\ldots\}$ be an infinite sequence of graphs with G_{pn} having pn vertices. This sequence is called K_p -removable if $G_{p1}\cong K_p$, and $G_{pn}-S\cong G_{p(n-1)}$ for every $n\geq 2$ and every vertex subset S of G_{pn} that induces a K_p . Each graph in such a sequence has a high degree of symmetry: every way of removing the vertices of any fixed number of disjoint K_p 's yields the same subgraph. Here we construct such sequences using componentwise Eulerian digraphs as generators. The case in which each G_{pn} is regular is also studied, where Cayley digraphs based on a finite group are used.

 $Keywords\colon$ Cayley, clique, digraph, Eulerian, reconstruction, removal, symmetric, uniform

1 K_p -removable sequences

In general we follow the notation in [5]. In particular, if $S \subseteq V(G)$, let G[S] be the subgraph of G induced by S. Let p be a positive integer and n be a variable running from one to infinity. We use $[p] = \{1, \ldots, p\}$, and i for an element in [p].

An infinite sequence of graphs $\{G_{pn}\}=\{G_{p1},G_{p2},\ldots\}$, with G_{pn} having pn vertices, is K_p -removable if it satisfies the following two properties:

P1
$$G_{p1} \cong K_p$$
,

P2 for every $n \geq 2$, the graph G_{pn} contains at least one K_p and $G_{pn} - S \cong G_{p(n-1)}$ for every S for which $G_{pn}[S] \cong K_p$.

Each graph in such a sequence has a high degree of symmetry: every way of removing the vertices of any fixed number of disjoint K_p 's yields the same subgraph. We call this property clique-symmetric.

We often write G = G' in place of $G \cong G'$, and refer to K_p as a p-clique.

Let \vec{D} be a digraph without loops and multiple arcs, and with vertex set [p]. Let $i\vec{i}'$ denote an arc in $A(\vec{D})$, then i' is an out-neighbour to vertex i. Let i have $d^+(i)$ out-neighbours and $d^-(i)$ in-neighbours.

The following graph construction is central to this paper:

Consider a copy of K_p with vertices labelled $\{(1,1),\ldots,(p,1)\} = \{(i,1) \mid i \in [p]\}$; call these vertices vertices at level 1, and call this graph $D_1(K_p)$. Now consider another K_p with vertices labelled $\{(i,2) \mid i \in [p]\}$, these are vertices at level 2. For any vertex (i,2) join it to vertices $\{(i',1) \mid i\vec{i'} \in A(\vec{D})\}$ at level 1; call this graph $D_2(K_p)$. Now consider a third K_p with vertices labelled $\{(i,3) \mid i \in [p]\}$, at level 3. Join any vertex (i,3) to vertices $\{(i',2) \mid i\vec{i'} \in A(\vec{D})\}$ at level 2 and to vertices $\{(i',1) \mid i\vec{i'} \in A(\vec{D})\}$ at level 1; this is $D_3(K_p)$.

Now, for any $n \geq 1$, consider the graph which has been constructed level by level, up to n levels, according to this definition; call this graph $D_n(K_p)$ or simply D_n when p is clear. We say that the digraph \vec{D} generates the sequence $\{D_n\} = \{D_1, D_2, \ldots\}$.

In D_n the vertices are of the form (i, j) for every $i \in [p]$ and every j, $1 \le j \le n$, (where j is their level); and the edges are of two types:

(i) fixed-level edges, say at level j

 $((i_1,j),(i_2,j))$ is an edge for all $i_1,i_2\in[p]$ where $i_1\neq i_2$; and

(ii) cross-level edges, for j > j'

$$((i,j),(i',j'))$$
 is an edge if and only if $i\vec{i}' \in A(\vec{D})$.

Call digraph \vec{D} uniform if $d^+(i) = d^-(i)$ for every vertex i in \vec{D} . Note that \vec{D} need not be connected. Then \vec{D} is an Eulerian digraph if it has one component, otherwise \vec{D} is Eulerian on each of its components.

In this paper we study the sequences $\{D_n\}$. In Section 2 our main result (Theorem 2.3) states that if \vec{D} is uniform then its generated sequence $\{D_n\}$ is K_p -removable. In Section 3 we construct sequences in which each graph is regular. We use λ -uniform digraphs; these satisfy $\lambda = d^+(i) = d^-(i)$ for every vertex i in \vec{D} . They can be constructed in a similar manner to Cayley digraphs. We count the exact number of K_p 's in the graphs in these sequences. Many examples are given throughout the paper, as well as indications for further research.

2 $\{D_n\}$ is K_p -removable for uniform \vec{D}

In this section we consider $\{D_n\}$, the sequence of graphs generated by digraph \vec{D} . Often \vec{D} will be uniform. In order to prove that $\{D_n\}$ is K_p -removable in this case, we are interested in the K_p 's in such D_n . The next theorem gives necessary and sufficient conditions for their existence.

For each $i \in [p]$, let $I_i = \{(i, 1), \dots, (i, n)\} = \{(i, j) | 1 \le j \le n\}$ be the set of vertices in D_n in 'column i'. Then, because \vec{D} is loopless, i.e., $\vec{ii} \notin A(\vec{D})$, this is an independent set of vertices, the i-th independent set.

Now let $V = \{(1, v_1), \dots, (p, v_p)\}$ be an arbitrary vertex subset in D_n with exactly one vertex from each independent set I_i . Let V have vertices at m different levels: ℓ_1, \dots, ℓ_m where $\ell_1 < \dots < \ell_m$. For each $k, 1 \le k \le m$, let $V_k = \{i \mid v_i = \ell_k\} \ne \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_k . Then the sets V_1, \dots, V_m form a level-partition of $[p] = \{1, \dots, p\}$.

Now $D_n[V]$ contains the cross-level edge $((i, \ell_k), (i', \ell_{k'}))$ where $\ell_{k'} < \ell_k$ if and only if ii' is an arc in \vec{D} . We call ii' a V-skew arc. Hence a V-skew arc in \vec{D} 'joins' different levels of V.

Let AB denote the set of arcs in \vec{D} from A to B, *i.e.*, all arcs \vec{ab} with $a \in A$ and $b \in B$.

Theorem 2.1 Let \vec{D} be a uniform digraph with p vertices. Then $D_n[V]$ is a p-clique in D_n if and only if the associated V-skew arcs form a complete symmetric m-partite subdigraph in \vec{D} .

Proof. Suppose that $D_n[V]$ is a p-clique with level-partition V_1, \ldots, V_m . The digraph \vec{D} is uniform so the number of arcs entering any vertex subset equals the number of arcs outgoing from it. Now $D_n[V]$ is a p-clique so, in \vec{D} , $\vec{V_kV_{k'}}$ is complete for each k' and k, $1 \le k' < k \le m$; in particular $\vec{V_kV_1}$ is complete for each k, $2 \le k \le m$. The number of arcs entering V_1 is $|V_1|(|V_2|+\cdots+|V_m|)$ which equals the number of outgoing arcs, hence V_1V_k is also complete for each k, $2 \le k \le m$.

So $V_1 V_2$ is complete, and we can apply a similar argument to V_2 to show that $\overrightarrow{V_2 V_k}$ is complete for each $k, 3 \leq k \leq m$, then to $V_3,...$, and so on. Consequently, $\overrightarrow{V_{k'} V_k}$ is complete for each k' and $k, 1 \leq k' < k \leq m$, i.e., the V-skew arcs form a complete symmetric m-partite subdigraph in \overrightarrow{D} .

The converse is straightforward.

We usually refer to a p-clique in D_n as W. From the construction of D_n , for vertex (i, j) in D_n its degree is given by

$$\deg(i,j) = d^+(i)(j-1) + d^-(i)(n-j) + p - 1.$$

Corollary 2.2 Let \vec{D} be a uniform digraph with p vertices. If $D_n[W]$ is a p-clique then the number of edges in $D_n - W$ equals the number of edges in D_{n-1} .

Proof. Now $D_n[W] = K_p$ so the number of edges 'inside' W equals the number of edges inside the K_p at level n of D_n . For any vertex (i, j) in D_n we have by uniformity that $\deg(i, j) = d^+(i)(n-1) + p - 1$. So, if (i, j) is in W then its degree 'outside' W is $d^+(i)(n-1)$, which is independent of its level j. This outside degree is the same as the degree outside the K_p at level n of the level n vertex (i, n). Hence the removal of W from D_n removes the same number of edges as the removal of the K_p at level n, and so the result.

Now for our main result.

Theorem 2.3 Let \vec{D} be a uniform digraph with p vertices. Then its generated sequence of graphs $\{D_n\}$ is K_p -removable.

Proof. Suppose W induces a p-clique in D_n . Let the vertices of W be $\{(i, w_i) | 1 \le i \le p\}$. Now we construct a bijection ϕ between the vertices of $D_n - W$ and the vertices of D_{n-1} . Under ϕ , for a fixed $i \in [p]$, the vertices in the i-th independent set of $D_n - W$, namely in the set $I_i \setminus \{(i, w_i)\}$, are mapped to the vertices in the i-th independent set of D_{n-1} , namely to the set $\{(i, 1), \ldots, (i, n-1)\}$, as follows:

$$\phi(i,j) = \begin{cases} (i,j), & \text{for } 1 \le j < w_i \\ (i,j-1), & \text{for } w_i < j \le n. \end{cases}$$

Clearly ϕ is a bijection. It is straightforward to show that ϕ moves edges in $D_n - W$ to edges in D_{n-1} .

Now, from Corollary 2.2, the graphs $D_n - W$ and D_{n-1} have the same number of edges, and so ϕ is an isomorphism. Hence $\{D_n\}$ satisfies **P2**. Clearly $\{D_n\}$ satisfies **P1**, which gives the result.

Example 1 p = 3, $V(\vec{D}) = \{1, 2, 3\}$, $A(\vec{D}) = \{\vec{12}, \vec{21}, \vec{23}, \vec{32}\}$. Then \vec{D} is uniform with 3 vertices. The first three graphs in the K_3 -removable sequence $\{D_n\}$ are shown in Figure 1 on page 7. Notice the level-partition $V_1 = \{1, 3\}$, $V_2 = \{2\}$ which illustrates Theorem 2.1.

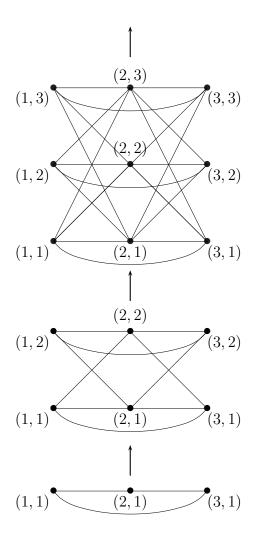


Figure 1

The converse of Theorem 2.3 is not true:

Example 2 p = 3, $V(\vec{D}) = \{1, 2, 3\}$, $A(\vec{D}) = \{\vec{12}\}$. Then $\{D_n\}$ is K_3 -removable, but \vec{D} is not uniform.

Question Is every K_p -removable sequence isomorphic to the generated sequence of some digraph \vec{D} ? (From Example 2 we know that \vec{D} need not be uniform.)

The K_p -removable sequence $\{G_{pn}\}$ is regular if every graph G_{pn} is regular, and irregular otherwise. In general, the sequence $\{D_n\}$ is irregular, see Example 1. It is straightforward to show that all K_p -removable sequences with p=1 or 2 are regular; they will given in Theorem 3.3 below. However, for every $p \geq 3$ an irregular K_p -removable sequence exists:

Example 3 $p \geq 3$, $V(\vec{D}) = [p]$, $A(\vec{D}) = \{\vec{12}, \vec{21}, \vec{23}, \vec{32}\}$. Then \vec{D} is uniform with p vertices, so $\{D_n\}$ is K_p -removable. However the graph D_2 is irregular because $\deg(1,2) = p$ but $\deg(2,2) = p+1$, so $\{D_n\}$ is irregular.

Call two K_p -removable sequences $\{G_{pn}\}$ and $\{G'_{pn}\}$ isomorphic, denoted by $\{G_{pn}\} \cong \{G'_{pn}\}$, if $G_{pn} \cong G'_{pn}$ for every $n \geq 1$.

Let $\theta: \vec{D} \to \vec{D'}$ be an isomorphism between uniform digraphs \vec{D} and $\vec{D'}$. For every fixed $n \geq 1$, θ induces an isomorphism Θ between D_n and D'_n given by: $\Theta(i,j) = (\theta(i),j)$, for every $i \in [p]$ and j with $1 \leq j \leq n$. Hence, for every $n \geq 1$, $D_n \cong D'_n$ and so $\{D_n\} \cong \{D'_n\}$. We conjecture that the converse is true:

Conjecture Let $\{D_n\}$ and $\{D'_n\}$ be two K_p -removable sequences generated by uniform digraphs \vec{D} and $\vec{D'}$, respectively. If $\{D_n\} \cong \{D'_n\}$ then $\vec{D} \cong \vec{D'}$.

As a final remark we note that the above construction of a K_p -removable sequence needs a uniform digraph with vertex set [p]. One way to construct such a uniform digraph is to take an undirected graph H with vertex set [p] and 'double-orientate' each edge in H, i.e., replace each edge (i,i') with two arcs $i\vec{i'}$ and $i'\vec{i}$. Indeed, \vec{D} in Example 1 was obtained from double-orientating the path on 3 vertices.

3 Generating regular (K_p, λ) -removable sequences using finite groups

Recall the definition of a regular K_p -removable sequence given above.

A uniform digraph \vec{D} is called λ -uniform if there is a natural number λ such that $\lambda = d^+(i) = d^-(i)$ for every vertex i in \vec{D} . Note that $0 \le \lambda \le p-1$ when \vec{D} has p vertices.

We noted in the proof of Corollary 2.2 that, for a uniform digraph \vec{D} with p vertices, the degree of any vertex (i,j) in D_n is $\deg(i,j) = d^+(i)(n-1) + p-1$. If \vec{D} is λ -uniform, then $\deg(i,j) = \lambda(n-1) + p-1$, which does not depend on i or j. Hence D_n is regular of degree $\lambda(n-1) + p-1$, and $\{D_n\}$ is a regular K_p -removable sequence. We call $\{D_n\}$ a regular (K_p, λ) -removable sequence.

So, from Theorem 2.3, we have

Theorem 3.1 Let \vec{D} be a λ -uniform digraph with p vertices. Then its generated sequence of graphs $\{D_n\}$ is regular (K_p, λ) -removable.

In this section we study such regular sequences $\{D_n\}$. To generate such a sequence we need a λ -uniform digraph. For this we can double-orientate a λ -regular graph H. However, this is only sufficient when such a λ -regular graph exists. Instead, we use a Cayley-type digraph which we obtain from an arbitrary finite group. See Biggs [2] and Grossman and Magnus [4].

Let $p \geq 1$ and let $\mathcal{G}_p = \{g_1, \ldots, g_p\}$ be a finite group with p elements, where e is the identity element. Let $\Lambda \subseteq \mathcal{G}_p$ be a subset of \mathcal{G}_p with $e \not\in \Lambda$ and with $|\Lambda| = \lambda$, where clearly $0 \leq \lambda \leq p-1$.

We form a digraph $\vec{D} = (\mathcal{G}_p, \Lambda)$ from \mathcal{G}_p and Λ as follows:

the vertices of \vec{D} are $\{g_1, \ldots, g_p\}$ and $\overline{g_i g_{i'}}$ is an arc in \vec{D} if and only if $g_{i'} g_i^{-1} \in \Lambda$.

We see that $d^+(g_i) = d^-(g_i) = |\Lambda| = \lambda$ for every vertex g_i , hence \vec{D} is λ -uniform. Consequently, using Theorem 3.1 above, $\{D_n\}$ is a regular (K_p, λ) -removable sequence. (Note that Λ need not be a generating set for \mathcal{G}_p ; this is why we call (\mathcal{G}_p, Λ) a Cayley-type digraph rather than a Cayley digraph.) Now for every $p \geq 1$ there is a cyclic group with p elements, \mathcal{C}_p , and a $\Lambda \subseteq \mathcal{C}_p$ with $e \notin \Lambda$ and $|\Lambda| = \lambda$ for each $0 \leq \lambda \leq p-1$; and, permitting

henceforth $\lambda = p$ corresponding to loops in \vec{D} , for every $p \geq 1$ there is a regular (K_p, p) -removable sequence, namely $\{K_{pn}\}$. So we have the following existence result for regular (K_p, λ) -removable sequences:

Theorem 3.2 For every $p \ge 1$ and every λ , $0 \le \lambda \le p$, there exists a regular (K_p, λ) -removable sequence.

The cases corresponding to $\lambda = 0$, p-1, and p are especially interesting; they result in sequences that are unique up to isomorphism. Let $K_{p\times n} = K_{\underbrace{n,\ldots,n}}$ be the complete p-partite graph on pn vertices. The proof of the following Theorem is straightforward.

Theorem 3.3 For every $p \ge 1$ there is a unique regular (K_p, λ) -removable sequence for $\lambda = 0, p - 1, or p$:

- (i) $\{nK_1\}$ is the unique regular $(K_1,0)$ -removable sequence,
- (ii) $\{K_n\}$ is the unique regular $(K_1, 1)$ -removable sequence. and, for every $p \geq 2$,
- (iii) $\{nK_p\}$ is the unique regular $(K_p, 0)$ -removable sequence,
- (iv) $\{K_{p\times n}\}\$ is the unique regular $(K_p, p-1)$ -removable sequence,
- (v) $\{K_{pn}\}\$ is the unique regular (K_p,p) -removable sequence.

The λ -uniform digraphs needed to generate the last three sequences in Theorem 3.3 are: (iii) the 0-uniform digraph with p vertices and no arcs; (iv) the (p-1)-uniform digraph obtained by double-orientating the complete undirected graph K_p ; and (v) the p-uniform digraph obtained by attaching one loop to each vertex to the digraph in (iv). (Note that in (v) the digraph is not loopless, but the construction still works.)

Example 4 Let $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ be the additive group (mod p). For $\lambda = 0$ set $\Lambda = \emptyset$, and for $1 \leq \lambda \leq p-1$ set $\Lambda = \{1, 2, \dots, \lambda\}$, and for $\lambda = p$ set $\Lambda = \mathbb{Z}_p$. Note that in this last case $0 \in \Lambda$, contrary to our previous assumption that $e \notin \Lambda$, but this causes no problems. Then (\mathbb{Z}_p, Λ) generates a regular (K_p, λ) -removable sequence for each λ , $0 \leq \lambda \leq p$. So (\mathbb{Z}_p, Λ) generates a spectrum of graph sequences among which are the three sequences of Theorem 3.3(iii) - (v), namely $\{nK_p\}, \dots, \{K_{p \times n}\}$, and $\{K_{pn}\}$.

As usual let $\{D_n\}$ be the regular (K_p, λ) -removable sequence obtained from a generating digraph $\vec{D} = (\mathcal{G}_p, \Lambda)$. Analogous to Theorem 2.1, we describe the structure induced on \vec{D} from p-cliques in D_n .

Let $\overline{\Lambda}$ denote the complement of Λ in \mathcal{G}_p and let $\langle \overline{\Lambda} \rangle$ be the subgroup generated by $\overline{\Lambda}$, also let $\langle \overline{\Lambda} \rangle g$ denote a typical coset of this subgroup.

Let $V = \{(g_1, v_1), \ldots, (g_p, v_p)\}$ be an arbitrary vertex subset in D_n with exactly one vertex from each independent set $I_i = \{(g_i, j) | 1 \leq j \leq n\}$. As in Section 2, let V have vertices at m different levels: ℓ_1, \ldots, ℓ_m where $\ell_1 < \cdots < \ell_m$. For each $k, 1 \leq k \leq m$, let $V_k = \{g_i | v_i = \ell_k\} \neq \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_k . Then the sets V_1, \ldots, V_m form a level-partition of \mathcal{G}_p , and we have:

Theorem 3.4 Let $\overrightarrow{D} = (\overrightarrow{\mathcal{G}_p}, \overrightarrow{\Lambda})$ be a λ -uniform digraph with generated sequence $\{D_n\}$. Then $D_n[V]$ is a p-clique in D_n if and only if each V_k is a union of cosets of $\langle \overline{\Lambda} \rangle$.

Proof. For any $r \geq 1$ let $\prod(r) = h_1 \cdots h_r$ denote a product of r arbitrary elements h_1, \ldots, h_r from $\overline{\Lambda}$. Clearly for any $a \in \langle \overline{\Lambda} \rangle$ we can express a as $\prod(r)$ for some fixed $r \geq 1$ and some suitably chosen r elements h_1, \ldots, h_r from $\overline{\Lambda}$.

Suppose $D_n[V]$ is a p-clique in D_n with level partition V_1, \ldots, V_m . Consider any V_k and let $g_i \in V_k$. Then $\prod(1)g_i \in V_k$ for any $\prod(1)$. For suppose otherwise. Then there exists a $\prod(1) = h_1$, say, with $h_1g_i \in V_{k'}$ for some $k' \neq k$. However, this implies from Theorem 2.1 that $g_i(h_1g_i)$ is an arc in \vec{D} , i.e., $(h_1g_i)g_i^{-1} = h_1 \in \Lambda$, a contradiction.

Now we show that if any $\prod(r)g_i \in V_k$ then any $\prod(r+1)g_i \in V_k$. For suppose that there is a $\prod(r+1) = a(r+1) = h_1 \cdots h_{r+1}$ with $a(r+1)g_i \notin V_k$. Then, by similar reasoning to the above, we must have $a(r+1)g_i \in V_{k''}$ for some $k'' \neq k$. Let $a(r) = h_2 \cdots h_{r+1}$; then, by the induction hypothesis, $a(r)g_i \in V_k$. Hence $a(r)g_i(a(r+1)g_i)$ is an arc in \vec{D} , and, as above, $h_1 \in \Lambda$, a contradiction.

Hence the induction goes through, and, for any $a \in \langle \overline{\Lambda} \rangle$ we have $ag_i \in V_k$, i.e., we have $\langle \overline{\Lambda} \rangle g_i \subseteq V_k$. Hence V_k is a union of cosets of $\langle \overline{\Lambda} \rangle$.

For the converse, let each V_k be a union of cosets of $\langle \Lambda \rangle$. Let (g_i, ℓ_k) and $(g_{i'}, \ell_{k'})$ be two arbitrary vertices in V. We show that $((g_i, \ell_k), (g_{i'}, \ell_{k'}))$ is an edge in D_n . If $\ell_k = \ell_{k'}$ then, certainly, $((g_i, \ell_k), (g_{i'}, \ell_{k'}))$ is an edge by construction of D_n . Otherwise, without loss of generality, let $\ell_k > \ell_{\underline{k'}}$. Then g_i and $g_{i'}$ are in different cosets of $\langle \overline{\Lambda} \rangle$, so $g_{i'}g_i^{-1} \notin \langle \overline{\Lambda} \rangle$, so $g_{i'}g_i^{-1} \in \langle \overline{\Lambda} \rangle \subseteq \Lambda$,

and again $((g_i, \ell_k), (g_{i'}, \ell_{k'}))$ is an edge. Thus $D_n[V] = K_p$, as required.

Theorem 3.4 enables us to count the exact number of K_p 's in D_n . Let $|\mathcal{G}_p:\langle\overline{\Lambda}\rangle|$ be the index of $\langle\overline{\Lambda}\rangle$ in \mathcal{G}_p , *i.e.*, the number of cosets of $\langle\overline{\Lambda}\rangle$ in \mathcal{G}_p .

Corollary 3.5 The number of K_p 's in D_n is $n^{|\mathcal{G}_p:\langle\overline{\Lambda}\rangle|}$.

Proof. Consider any coset $\langle \overline{\Lambda} \rangle g$, let us 'place' the elements of this coset at any fixed level j, where $1 \leq j \leq n$, in the graph D_n . Each such placement of every coset of $\langle \overline{\Lambda} \rangle$ gives a K_p and every K_p corresponds to such a placement of every coset of $\langle \overline{\Lambda} \rangle$. Hence, the number of K_p 's in D_n equals the number of such placements of all the cosets of $\langle \overline{\Lambda} \rangle$. There are $|\mathcal{G}_p : \langle \overline{\Lambda} \rangle|$ cosets, and n levels to place each, hence $n^{|\mathcal{G}_p : \langle \overline{\Lambda} \rangle|}$ such placements and so $n^{|\mathcal{G}_p : \langle \overline{\Lambda} \rangle|}$ corresponding K_p 's.

Finally we briefly consider three more topics: firstly, we discuss pairs (p,λ) for which there is a unique regular (K_p,λ) -removable sequence up to isomorphism; secondly, we prove that if any member of an arbitrary K_p -removable sequence $\{G_{pn}\}$ contains a K_{p+1} then $\{G_{pn}\}=\{K_{pn}\}$; lastly, we list some possibilities for further research.

Let \mathfrak{U} denote the set of pairs (p,λ) for which there is a *unique* regular (K_p,λ) -removable sequence up to isomorphism. Then, from Theorem 3.3, for every $p \geq 1$ we have (p,0), (p,p-1), and $(p,p) \in \mathfrak{U}$. Now we use Corollary 3.5 to show that for every even $p \geq 4$, we have $(p,p-2) \notin \mathfrak{U}$.

Example 5 For every even $p \ge 4$ there are at least two non-isomorphic regular $(K_p, p-2)$ -removable sequences:

For the first let $\mathcal{G}_p = \mathcal{D}_{\frac{p}{2}}$ be the dihedral group with p elements, the group of symmetries of the regular $\frac{p}{2}$ -gon. We have $\mathcal{D}_{\frac{p}{2}} = \langle a, b \mid a^{\frac{p}{2}} = b^2 = (ab)^2 = e \rangle$. Let $\Lambda = \mathcal{D}_{\frac{p}{2}} \setminus \{e, b\}$ so that $|\Lambda| = p - 2$ and $e \notin \Lambda$. So $\langle \overline{\Lambda} \rangle = \{e, b\}$ and $|\mathcal{D}_{\frac{p}{2}} : \langle \overline{\Lambda} \rangle| = \frac{p}{2}$. Thus D_n has $n^{\frac{p}{2}} K_p$'s.

For the second let $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ be the additive group (mod p). Let $\Lambda = \{1, 2, \dots, p-2\}$, then $|\Lambda| = p-2$ and $0 \notin \Lambda$. But $p-1 \in \overline{\Lambda}$ and p-1 generates \mathbb{Z}_p i.e., $\langle \overline{\Lambda} \rangle = \mathbb{Z}_p$, and so $|\mathbb{Z}_p : \langle \overline{\Lambda} \rangle| = 1$ and D'_n has $n \ K_p$'s.

Thus $D_2 \ncong D'_2$ and so $\{D_n\} \ncong \{D'_n\}$, and for every even $p \ge 4$, we have $(p, p-2) \not\in \mathfrak{U}$. Note that D_2 is K_{2p} minus the edges of p/2 disjoint 4-cycles, while D'_2 is K_{2p} minus the edges of a Hamiltonian cycle.

Now we show that if any member of an arbitrary K_p -removable sequence $\{G_{pn}\}$ contains a K_{p+1} then $\{G_{pn}\}=\{K_{pn}\}$.

Theorem 3.6 Suppose that for some $n \geq 2$ the n^{th} member, G_{pn} , of the K_p -removable sequence $\{G_{pn}\}$ contains a K_{p+1} . Then $G_{pn} = K_{pn}$ and $\{G_{pn}\} = \{K_{pn}\}$.

Proof. Now G_{pn} contains a K_{p+1} . Since every K_p in G_{pn} is part of a partition of $V(G_{pn})$ into disjoint p-cliques, we may assume without loss of generality that $V(G_{pn})$ is partitioned into n p-cliques L_1, \ldots, L_n so that some vertex u in L_2 is joined to every vertex of L_1 , i.e., $L_1 \cup \{u\} = K_{p+1}$. Let v be any vertex in L_1 . Deleting the n-1 p-cliques $L_3, L_4, \ldots, L_n, L_1 + \{u\} - \{v\}$ in this order, we obtain the p-clique $L_2 + \{v\} - \{u\}$. Hence v is adjacent to every vertex of L_2 and the union of L_1 and L_2 is K_{2p} . Consequently, the removal of any n-2 disjoint K_p 's must produce a K_{2p} . This implies that the union of every two levels L_j and $L_{j'}$ is K_{2p} ; therefore, G_{pn} is a complete graph. Hence $G_{pn} = K_{pn}$.

Then clearly for every n' > n we have $G_{pn'} = K_{pn'}$. And, by removing the required number of K_p 's, for every n' < n we have $G_{pn'} = K_{pn'}$ also. Hence $\{G_{pn}\} = \{K_{pn}\}$.

Some further research possibilities are the following:

- (A) Investigate the Question and Conjecture mentioned near the end of Section 2.
- (B) Investigate the set \mathfrak{U} ; in particular, is $(3,1) \in \mathfrak{U}$?

For other papers on graph sequences see Barefoot, Entringer, and Jackson [1], and the references therein; another somewhat related paper is Duchet, Tuza, and Vestergaard [3].

Acknowledgment The authors thank the referees for providing insight and suggestions that greatly improved this paper.

References

[1] C.A. Barefoot, R.C. Entringer, D.E. Jackson, Graph theoretic modelling of cellular development II, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 65 (1988) 135–146.

- [2] N. Biggs, Algebraic Graph Theory, 2nd Edition, (Cambridge University Press, 1993).
- [3] P. Duchet, Z. Tuza, P.D. Vestergaard, Graphs in which all spanning subgraphs with r fewer edges are isomorphic, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 67 (1988) 45–57.
- [4] I. Grossman, W. Magnus, Groups and their Graphs, (Random House, New York, 1964).
- [5] D.B. West, Introduction to Graph Theory, 2nd Edition, (Prentice Hall, 2001).