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can increase primary productivity, as discussed above, high
shad biomass may ultimately increase the probabihty of
hypoxia-induced mortality, thus setting in motion another
feedback process. After winter- or summerkill, gizzard shad
populations can typically rebound quickly for the reasons de-
scribed above. The increased chances of winterkill and sum-
merkill in productive reservoirs, along with the rapid recovery
of shad populations following die-offs, suggest that interan-
nual variability in shad recruitment and abundance should
be highest in productive reservoirs.

Management implications
The interactions between watersheds and gizzard shad sug-
gest that management of fisheries and water quality of reser-
voirs must proceed in tandem. Eutrophication remains the
most pervasive water-quality problem in freshwater ecosys-
tems {Carpenter et al. 1998). We contend that successful pre-
vention, control, or reversal of eutrophication in reservoirs of
eastern North America must consider both watershed in-
puts and gizzard shad abundance. The interactions between
watersheds and gizzard shad also imply that some effects of
watershed management may require relatively long time
scales to be effective, but may result in relatively large ef-
fects. Thus, if watershed management results in decreased
watershed subsidies to a productive reservoir, this may directly
reduce phytoplankton productivity in a relatively short time
period. Gizzard shad biomass should also decrease, but over
a longer time scale, because shad can persist on sediment de-
tritus that has accumulated in earlier years. The effectiveness
of watershed management to reduce gizzard shad biomass
may depend on the ability to reduce particulate nutrients,
which may provide a delrilal resource for shad. If so, man-
agement agencies should promote methods that reduce soil
erosion from agricultural areas, such as conservation tillage
and preservation of riparian areas.

In reservoirs with high inputs of nutrients from the wa-
tershed, control of gizzard shad by stocked exotic predators
such as hybrid striped bass has been suggested as a manage-
ment tool (Dettmers et al. 1996). If hybrid striped bass reduce
gizzard shad densities, Moplankton abundances should in-
crease, thereby facilitating growth and survival of other zoo-
planktivorous prey fish for predators such as age-0 largemouth
bass. Because littoral largemouth bass and pelagic hybrid
striped bass probably do not overlap spatially, we expect lit-
tle direct interaction between them, suggesting that intro-
ductions of these exotic predators should not directly
negatively affect native piscivores. Pond experiments showed
that hybrid striped bass can reduce gizzard shad densities, al-
lowing zooplankton to increase to levels that support bluegill
recruitment (Dettmers et al. 1996}. However, field experi-
ments, surveys, and modeling suggest that control of gizzard
shad by hybrid striped bass is limited to a relatively small sub-
set of reservoirs in which stocking densities of hybrid striped
bass are high, larval gizzard shad densities are low, and zoo-
plankton productivity is high (Dettmers and Stein 1996,
Dettmers et al. 1996). For example, only about 59̂ ) of reser-

voirs in Ohio have this combination of characteristics
(Dettmers et al. 1998), and this percentage is likely to be
similar throughout the Midwestern United States. This greatly
limits this management tactic in this region.

Reducing watershed inputs of nutrients to highly eutrophic
reservoirs should favor economically important sportfish
species, such as bluegill and largemouth bass, as gizzard shad
biomass declines. Hence, traditional fishery management
agencies that have historically focused on system-specific
population dynamics of sport fish should begin to docu-
ment watershed land use and form strong working relation-
ships with land mjinagers to improve fishery performance. The
relationships among watersheds, gizzard shad population
dynamics, and sport-fish assemblages suggest that manage-
ment of largemouth bass and other native species may well
be organized at tbe landscape (watershed) scale, which is
also an appropriate scale for managing water quality. Systems
receiving large nutrient inputs from watersheds may be can-
didates for stocking of exotic sport fish, such as hybrid striped
bass, while management of naturally reproducing, native
sport fish may be more successfiil in reservoirs with watersheds
that yield lower levels of nutrients. Mechanisms underlying
sport-fish recruitment and population dynamics are cer-
tainly complex. However, as researchers explore mechanisms
across gradients of watershed land use and ecosystem pro-
ductivity, generalities will continue to emerge, providing use-
fijl management insight.

Beyond reservoirs: The generality of
landscape-detritivore linkages
Because gizzard shad are widely distributed and abundant, in-
teractive effects of watersheds and gizzard shad are probably
common, potentially affecting thousands of reservoir ecosys-
tems across eastern North America. In these reservoirs, it
appears that no other fish species can play the same role as
gizzard shad. While a few other species consume detritus in
these ecosystems, none attains the abundance of gizzard
shad. Thus, it appears that gizzard shad are unique in their ef-
fects on reservoir ecosystems of eastern North America.

Are linkages between landscapes and detritivores or om-
nivores important in other ecosystems? Subsidies of detriti-
vore populations through allochthonous inputs are apparently
very common in aquatic and terrestrial ecosystems, and in
some ecosystems subsidized detritivore populations can have
far-reaching effects on their resident food webs (Moore et al.
2004, Polis et al. 2004). Although there are few detritivorous
fish species in temperate fresh waters, there are numerous
other detritivorous taxa in these ecosystems. For example,
many stream invertebrates are largely subsidized by inputs of
terrestrial leaf litter, and they in turn directly or indirectly af-
fect other stream organisms, such as fish, other invertebrates,
and algae (Wallace et al. 1999). Similarly, inputs of di.ssolved
detritus (organic matter) from forested watersheds can drive
food-web dynamics in northern temperate lakes (Face et al.
2004). In addition, detritivory is common among marine
fishes (especially in estuaries and coastal areas} and among
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tropical freshwater fishes. Interestingly, these ecosystems are
also characterized by large inputs of allochthonous detritus.
For example, floodplain lakes along large tropical rivers (the
most common type of lake in many tropical areas} receive large
inputs of sediment and other detritus from rivers, and sup-
port many species of detritivorous fish. Very little is known
about the impacts of these detritivores on their resident
ecosystems, but they are sufficiently abundant to be impor-
tant food sources for local people (Lowe-McConnell 1987),
suggesting that they may strongly interact with other mem-
bers of local food webs. Large, low-gradient rivers and estu-
aries are perhaps most similar to reservoirs; they have large
watersheds and receive pulses of nutrients and detritus in a
manner similar to that of reservoirs. More generally, it is
likely that detrital inputs have strong effects on many food
webs, including effects that propagate to the more well-
studied "green-world" (i.e., plant-herbivore-based} food-
web channels (Moore et al. 2004). However, in comparison
to our knowledge of top-down and bottom-up interactions
in green-world food webs, we know relatively little about the
dynamics of detritus and its impacts (Moore et al. 2004).

The interactive effects of watersheds and gizzard shad de-
scribed here provide a fi-amework for understanding and
managing reservoir ecosystems. Although reservoirs are
unique in that detritivorous gizzard shad can dominate fish
biomass, the principles described here regarding interactive
effects of landscapes, detritus, and key species may be wide-
spread and common in other ecosystem types. Thus, the
broad spatial framework afforded by a landscape perspective
may greatly increase our ability to understand how food
webs are regulated (Polis et al. 2004).
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