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Abstract  1

American black bears (Ursus americanus) have recolonized parts of their former range in 2

the Trans-Pecos region of western Texas after a >40-year absence.  Assessment of genetic 3

variation, structuring, gene flow, and dispersal among bear populations along the 4

borderlands of Mexico and Texas is important to gain a better understanding of 5

recolonization by large carnivores.  We evaluated aspects of genetic diversity and gene 6

flow for 6 sampling areas of black bears in southwestern North America using genotypic 7

data from 7 microsatellite loci.  Our results indicated that genetic diversity generally was 8

high in the metapopulation of black bears in northern Mexico and western Texas.  The 9

episodic gene flow occurring via desert corridors between populations in northern Mexico 10

and those in western Texas has permitted the establishment of only moderate levels of 11

genetic structuring.  Bayesian clustering analyses and assignment testing depicted the 12

presence of 3 subpopulations among our 6 sampling areas and attested to the generally 13

panmictic nature of bear populations in the borderlands region.  The potentially ephemeral 14

nature of the small populations in western Texas and genotypic characteristics of bears 15

recolonizing these habitats attest to the importance of linkages along this portion of the 16

borderlands of the United States and Mexico to effectively conserve and manage the 17

species in this part of its range.18

19

Introduction20

Populations of large carnivores have dramatically declined during the last 100 21

years.  Although extinctions have occurred, range contraction is most notable for species 22

such as lions (Panthera leo), brown bears (Ursus arctos), and tigers (Panthera tigris) 23
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(Woodroffe 2001).  In North America, a reversal of this trend has been observed via range 1

expansion and natural recolonization of former range by two large carnivores.  Gray wolves 2

(Canis lupus) have reappeared in parts of the northern Rocky Mountains, northern 3

Minnesota, Wisconsin, and Michigan (Forbes & Boyd 1996; Thiel et al. 1997; Boyd-Heger 4

& Pletscher 1999; Beyer Jr et al. 2001).  This recolonization process has been facilitated by 5

long-distance dispersal of female wolves (Boyd-Heger and Pletscher 1999) and corridors 6

between Canada and the United States (Mladenoff et al. 1995; Forbes & Boyd 1996).  The 7

distribution of American black bears (Ursus americanus) in the continental United States 8

has increased since the 1980’s (Pelton & van Manen 1994) in many cases via range 9

expansion.  For example, descendents of reintroduced black bears are expanding their 10

geographic range from western Arkansas into southeastern Oklahoma (Smith & Clark 11

1994) facilitated by contiguous bear habitat between the two states.  12

Phylogeography, gene flow and population structure have been assessed across a 13

wide portion of the range of black bears (Cronin et al. 1991; Byun et al. 1997; Wooding & 14

Ward 1997; Warrillow et al. 2001).  However, the majority of studies have concentrated on 15

populations in the northern latitudes of North America or the southeastern United States.  16

Notably absent from analyses are populations from southwestern North America.  The 17

geographic range of black bears in southwestern North America can be described as 18

discontinuous in comparison to ranges in more northern latitudes (Pelton et al. 1999).  The 19

map of Pelton et al. (1999) depicts regions known to contain black bear populations along 20

the Mexico-U.S.A border (Figure 1; shaded area).  Range expansion by black bears in this 21

region is slowed because populations of bears are restricted to montane islands of habitat 22

separated by expanses of non-occupied Chihuahuan desert  (Onorato & Hellgren 2001; 23
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Onorato et al. 2003; Onorato et al. 2004a; Hellgren et al. 2005). Additionally, although 1

male black bears commonly disperse > 30 km from their natal area, females rarely disperse 2

(Rogers 1987; Elowe & Dodge 1989; Schwartz & Franzmann 1992).  However, black bears 3

recently (mid 1980’s) recolonized parts of their former range in the western Texas segment 4

of the Big Bend Ecosystem (Onorato and Hellgren 2001).  Previously, we used 5

demographic and mtDNA data to describe black bears in this region as existing in a 6

mainland-island metapopulation (Onorato et al. 2004a) as defined by Hanski and 7

Simberloff (1997).  Island populations are defined as encompassing small, suitable habitat 8

patches and are located within dispersal distance from a very large habitat patch that 9

supports a perennial mainland population (Hanski and Simberloff 1997).10

  We describe genetic relationships of black bears from 6 sampling localities in 11

northern Mexico and the southwestern United States using 7 hypervariable microsatellite 12

loci.  Our objectives were to (1) assess levels of genetic variation in populations of black 13

bears within the Mexico-Texas mainland-island metapopulation (Onorato et al. 2004a); and 14

(2) evaluate the degree of genetic similarity between the recently recolonized population of 15

bears in Big Bend National Park, Texas (island population) and large populations in 16

northern Mexico (mainland populations) and southwestern New Mexico using measures of 17

genetic structuring and population assignment tests.  We predicted that our findings would 18

be consistent with the life-history paradigm of black bears and other large mammalian 19

carnivores, namely that genetics among populations within this metapopulation would be 20

affected by male-biased dispersal and geographic distance.  21
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Methods1

Sampling Areas2

Tissue collection was conducted in 6 locations within southwestern North America 3

(underlined locations in Figure 1).  We collected samples from black bears in Big Bend 4

National Park (Big Bend NP in Figure 1, n = 32), Texas between September 1998 and July 5

2001.  The Park encompasses about 320,000 ha of northern Chihuahuan Desert in the 6

Trans-Pecos region of western Texas.  The primary habitat for black bears in the Park is 7

located within a 100-km2 area comprising the Chisos Mountains (elevation 1400-2385 m) 8

where abundant food sources such as oak (Quercus spp.), juniper (Juniperus spp.), and 9

madrone (Arbutus xalapensis) are found.  During the same time period, tissue samples from 10

9 individuals also were obtained from a small population of black bears recolonizing 11

adjacent Black Gap Wildlife Management Area (Black Gap in Figure 1).  This region 12

contains suitable habitat at lower elevations (900-1400 m) about 60 km northeast of the 13

Chisos Mountains of Big Bend NP.14

Tissue samples from 8 individuals were collected throughout the Trans-Pecos 15

region of Texas between 1994 and 2002 (Figure 1). Precise locations for 6 of these samples 16

were provided in Onorato et al. (2004a), and the additional two samples were collected in 17

Val Verde and Webb counties along the border of Texas and northern Mexico.  All bears in 18

this region were sampled after vehicle collisions, poaching incidents, or during relocation 19

after nuisance complaints.  Reproductively viable populations were not present in habitats 20

where these samples were collected (Taylor 1999).  However, we combined these samples, 21

designated them as the Trans-Pecos group for several analyses, and qualify them as 22

dispersing or colonizing animals within historical range in western Texas.23
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Tissue samples also were obtained from two mountain ranges in northern Coahuila, 1

Mexico known to support large populations of black bears: Serranias del Burro between 2

1991-1999 (Burros, n = 58; (Doan-Crider & Hellgren 1996) and Sierra del Carmen in 1997 3

(Carmens, n = 5).  The combination of Big Bend NP, Black Gap, Burros, Carmens, and 4

Trans-Pecos populations will hereafter be referred to as the Mexico-Texas metapopulation. 5

Samples collected from the Mogollon Mountains (Mogollons in Figure 1, n = 29) of 6

west-central New Mexico during a long-term study by the Hornocker Wildlife Institute 7

(Costello et al. 2001) were analyzed for comparative purposes to determine genetic 8

differentiation between bears from this region and those found in the Mexico-Texas 9

metapopulation.  In terms of available habitat, the Mogollon Mountains are similar to the 10

larger mountain ranges found in northern Mexico.  The Mogollons study area is primarily 11

in the Gila National Forest and elevations range from 1750 m to > 3000 m.12

A caveat concerning sample size is necessary when completing analyses on a small 13

number of samples for 3 of the 6 sampling areas.  Comprehensive field studies on the black 14

bear population in the Carmens have only recently (2004) been initiated.  Subsequently, we 15

had few samples from this range.  Additionally, dispersing bears in western Texas that were 16

grouped into the Trans-Pecos group were obtained opportunistically via communication 17

with officials from Texas Parks and Wildlife.  In the case of Black Gap, the 9 samples 18

composed what is thought to be > 90% of the bears present in that population during this 19

study. Due to the limitations of these data and the subsequent impact of small sample sizes 20

on certain analyses (specifically estimates of Hardy-Weinberg equilibrium, linkage 21

disequilibrium, F statistics, and Nei’s genetic distance), these samples were included 22
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mainly for the Bayesian analysis of genetic structuring and subsequent assignment testing 1

(see below).     2

DNA Isolation and Microsatellite PCR3

Samples either were stored frozen (-20°C) or in lysis buffer (Longmire et al. 1997).  4

DNA was extracted using the phenol extraction method described by Longmire et al.5

(1997).  Seven (GT)n microsatellite loci were amplified using the polymerase chain reaction 6

(PCR) and primers described in Paetkau et al. (1998).  Six of these loci (G1D, G10B, 7

G10C, G10H, G10J, G10P) were cloned from an American black bear DNA library 8

(Paetkau & Strobeck 1994; Paetkau et al. 1995), whereas CXX20 was derived from a 9

domestic dog (Canis familiaris) library (Ostrander et al. 1993).  One primer of each pair 10

was synthesized with a fluorescent dye (FAM, HEX, or TET) to permit detection and sizing 11

of microsatellite repeats on a Perkin-Elmer ABI Prism 377 Automated Sequencer.  12

Genotyping error rate using these same loci on a subset of samples included in this study 13

was determined to be 1% via repeated amplifications of random samples and via allelic 14

mismatches between mothers and known offspring (Onorato et al. 2004)15

Amplifications were performed in 15-µl reactions using 50–200 ng DNA, 0.17 µM 16

of each primer, 9 µl True Allele PCR premix (Perkin-Elmer Applied Biosystems, Foster 17

City, CA) and 3.8 µl double deionized water.  The following thermal profile was used 18

during amplification:  12 min at 95°C; 10 cycles of 15 s at 94°C, 1 min at 49-55°C 19

(annealing temperatures were specific for different loci), 30 sec at 72°C; 25 cycles of 15 s 20

at 89°C, 1 min at 55°C, 30 s at 72°C; and 30 min at 72°C.  All DNA extracts and PCR 21

products were monitored for contamination via the inclusion of negative controls during 22

each DNA extraction and subsequent PCR reactions.  Products were diluted and combined 23
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based on the size, fluorescent dye and yield.  One microliter of PCR dilutions was added to 1

3 µl of loading buffer containing 0.5 µl GS-400HD ROX size standard, 0.5 µl of loading-2

dye, and 2.5 µl of formamide.  The mixture was denatured at 95°C for 5 min and loaded on 3

a 6% Long-Ranger acrylamide gel in an ABI 377 automated sequencer.  Resulting data 4

were analyzed using GENESCANTM version 2.1 and GENOTYPERTM version 2.5 software 5

packages (Perkin-Elmer Applied Biosystems, Foster City, California). 6

Data Analysis7

Assessment of observed (Ho) and expected (He) heterozygosity within the 6 8

sampling areas were quantified using GENETIX 4.05 (Belkhir et al. 2001).  Additionally, 9

the delimiting of allelic richness adjusted for sample size was determined using FSTAT 10

2.9.3.2 (Goudet et al. 2002).  Significant deviations from Hardy-Weinberg equilibrium 11

(HWE) at the loci level within each major population (≥ 29 samples) were assessed using 12

the Markov chain method through 1000 iterations (Guo & Thompson 1992) using 13

GENEPOP 3.1 (Raymond & Rousset 1995).  We tested for the presence of linkage 14

disequilibrium between pairs of loci for these same 3 populations using the unbiased 15

estimates of Fisher’s exact test via the Markov chain method in GENEPOP.  Tests that 16

involved multiple comparisons in GENEPOP were corrected for the increased likelihood of 17

making a type I error using a sequential Bonferroni adjustment (Sokal & Rohlf 1995).  The 18

probability of identity among siblings (P(ID)sib; Evett & Weir 1998; Waits et al. 2001), an 19

unbiased and conservative estimator of the probability of observing the same multilocus 20

genotype for two randomly sampled individuals from a population, was calculated using 21

the program GIMLET 1.3.3 (Valière 2002) 22
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Levels of population differentiation (pairwise FST) and overall genetic 1

differentiation were calculated via genotypic data collected from Big Bend NP, Burros, and 2

Mogollons using FSTAT 2.9.3.2 (Goudet et al. 2002).  Pairwise FST values were compared 3

with ST values obtained in a previous study by Onorato et al. (2004a) using mtDNA 4

sequences.  Additionally, this program allowed us to test for sex-biased dispersal patterns 5

of bears sampled in these same 3 populations using the mean corrected assignment index 6

(mAIc) and the variance of AIc (vAIc) as described by Goudet et al. (2002).  Values of 7

mAIc decrease in individuals that contain genotypes that are on average less likely to occur 8

in the population from which the individual was sampled.  Conversely, the vAIc values 9

should be larger for the dispersing sex, since this group will contain both resident and 10

immigrant animals, thereby increasing the variance in AIc.  Statistical significance was 11

assessed as a one-tailed test via a randomization approach using 10,000 permutations 12

(Goudet et al. 2002).  A one-tailed test was chosen because we acknowledged a priori that 13

males are more likely to disperse than females.  Only animals of post-dispersal age (≥ 3 14

years old) were included in this analysis.   15

We utilized the clustering algorithm in program STRUCTURE described by 16

Pritchard et al.  (2000) to infer population delineations among all 6 sampling areas.  17

Estimation of the number of subpopulations (K) was completed using 5 independent runs 18

with K = 1-10 (assuming no prior population delineation information) at 100000 MCMC 19

repetitions combined with a 100000 burn-in period.  Burn-in period was selected after 20

performing trial runs to determine when log-likelihood values of K became stationary. The 21

optimal K value was chosen according to the highest estimated log normal probability 22



Onorato 10

values (ln P (X | K)) obtained during Bayesian clustering calculations (Pritchard et al. 1

2000).2

We also assessed the likelihood that an individual’s multilocus genotype could be 3

assigned to a given population using the program STRUCTURE (Pritchard et al. 2000).  4

Each individual sample was assigned to a subpopulation (K) derived from the preliminary 5

Bayesian analysis of population structure.  Individuals were assigned to requisite 6

subpopulations according to the highest percentage of membership (posterior probabilities, 7

q) values that they were allocated.8

We calculated Nei’s (1972) standard genetic distance (DS) using GENETIX 4.05 for 9

Big Bend NP, Burros and the Mogollons.  This distance statistic has been demonstrated to 10

provide fine-scaled estimates of population structure in bears (Paetkau et al. 1997).  11

Pairwise-genetic-distance values (DS) were subsequently used to generate a neighbor-12

joining tree using MEGA version 2.1 (Kumar et al. 2001) to visualize genetic 13

differentiation across these 3 major sampling areas.14

Results15

DNA from 141 black bears representing 6 sampling localities was amplified and 16

genotyped at 7 microsatellite loci (Appendix I).  All loci were polymorphic with an average 17

of 9.29 alleles/locus and a range of 8 to 12.  Observed heterozygosity (Ho) was typically 18

He in sampled populations and bears in the Mogollons had the lowest level of He (Table 1).  19

Allelic richness values adjusted for sample size indicated that the Mogollons population 20

exhibited lower levels of allelic diversity when compared to populations in the Mexico-21

Texas metapopulation (Table 1).  Richness levels within the metapopulation were similar at 22
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~3.5 alleles.  Assessment of HWE via an exact test using the Markov chain parameters 1

denoted that the assumptions of HWE were violated only once at locus G1D in the Big 2

Bend NP population.  The recent nature of the recolonization event in this study area, 3

partial isolation of the habitat, and the impacts of periodic immigration are the potential 4

causes of this deviation.  The test for linkage disequilibrium among the 6 populations and 7 5

loci found no critical departures from equilibrium.  The P(ID)sibs for the 7 loci utilized in 6

these analyses was 0.001, denoting that genotypic diversity was sufficient to delineate 7

individuals with these genetic markers.8

Pairwise comparisons of FST and ST (Onorato et al. 2004a) amongst Big Bend NP, 9

the Burros and Mogollons inferred significant levels of structuring between populations in 10

the Mexico-Texas metapopulation and the Mogollon Mountains population (Table 2).  The 11

combined results from maternally inherited mtDNA and biparentally inherited nuclear 12

DNA for Big Bend NP and the Burros are indicative of a species that demonstrates male 13

biased dispersal and female philopatry.  Furthermore, genotypic data corroborated and 14

reinforced the notion that dispersal in black bears in this region is male biased.  The mAIc 15

score was lower for the 34 post-dispersal males as opposed to the 43 adult females (-0.481 16

vs. 0.380, respectively; randomization test, p = 0.069), denoting that males were more 17

likely to contain genotypes indicative of dispersing individuals.  The variance associated 18

with the assignment index was greater for males as opposed to females (vAIc males = 8.09, 19

females = 4.33; randomization test, p = 0.054). 20

Standard genetic distances (DS) calculated between Big Bend NP, the Burros and 21

Mogollons supported results from F-statistics, revealing a high level of genetic distance 22



Onorato 12

between populations located in Texas and Mexico and the population of bears from the 1

Mogollons of west-central New Mexico (Ds = 1.653 and 1.617 for comparisons between 2

the Mogollons vs. Big Bend NP and Burros respectively).  Assessment of mean genetic 3

distances between Big Bend NP and the Burros alludes to much lower levels of 4

differentiation (Ds = 0.185).  An unrooted neighbor-joining tree of DS values visually 5

illustrates the level of differentiation between bear populations in the Mexico-Texas 6

metapopulation and bears located in the Mogollons of west-central New Mexico (Figure 2).  7

The Bayesian analysis of population structure revealed that the 6 collection sites 8

could be clustered into 3 populations. The mean likelihood value for 5 independent runs 9

was greatest at K = 3.  Sampling areas could then be assigned to 1 of 3 groups: 1) Big Bend 10

NP in Texas; 2) Mogollon Mountains of New Mexico; and 3) those bears residing in 11

northern Mexico (Burros and Carmens) and remaining areas of western Texas (Black Gap 12

and the Trans-Pecos).  Subsequently, these 3 population designations were used in 13

assignment testing.  Mean values of the percentage of membership (q) provided further 14

credence to the elevated level of structuring between the Mogollon population and bears in 15

the Mexico-Texas metapopulation (Table 3 and Figure 3).  The elevated number of 16

individuals with inferred mixed ancestry (i.e., individuals with memberships allocated to 17

both groups 1 and 3) in northern Mexican populations, the Trans-Pecos and Black Gap 18

exemplifies the bidirectional gene flow that is occurring between these areas and Big Bend 19

NP.20

Discussion21

The present study, coupled with previous work (Onorato and Hellgren 2001, 22

Onorato et al. 2003, Onorato et al. 2004a), revealed several important characteristics 23
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concerning metapopulation dynamics of American black bears in the western Texas-1

Mexico borderland of southwestern North America.  Overall levels of He for each of the 6 2

southwestern populations ranged from 0.499 to 0.707, which is comparable to values 3

reported by Paetkau and Strobeck(1994) for Canadian black bears (0.360–0.801) and higher 4

than those cited by Warrillow et al. (2001) for disjunct black bear populations in the 5

southeastern United States (0.390–0.560).  Interestingly, none of the newly established 6

populations sampled in Texas (Big Bend NP and Black Gap) exhibited He values as low as 7

those found in insular populations (0.360 in Newfoundland; Paetkau and Strobeck 1994) or 8

other areas that may be impacted by low levels of gene flow between populations (0.33 in 9

White River National Wildlife Refuge, Arkansas USA; Warrillow et al. 2001).  In several 10

studies conducted with large carnivores, such as brown bears (U. arctos) and wolverines 11

(Gulo gulo), He values are typically < 0.60 for populations that are isolated from the effects 12

of migration and dispersal from other populations due to anthropogenic factors or natural 13

barriers (Paetkau et al. 1998; Waits et al. 2000; Kyle & Strobeck 2001).  Although the 14

desert ecosystem surrounding populations in Black Gap and Big Bend NP impedes 15

migration or dispersal, it apparently is not a complete barrier to periodic movements from 16

mountains in northern Coahuila to parts of western Texas.  Our field observations have 17

attested to bidirectional movement of male and female black bears between the Carmens 18

and Big Bend NP (Hellgren et al. 2005) and this movement is corroborated by mtDNA 19

analyses (Onorato et al. 2004a).20

Combining our earlier studies of mtDNA (Onorato et al. 2004a) with work on 21

biparentally inherited nuclear DNA markers demonstrated that both types of data are 22

needed for more complete deductions concerning phylogeography, population structure, 23
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and dispersal patterns of black bears and other species.  For example, our combined data 1

sets provide a more accurate assessment of how populations of bears in the Mexico-Texas 2

metapopulation are linked by gene flow.  Previous research using maternally inherited 3

mtDNA demonstrated a high degree of genetic structuring between the populations in the 4

Mogollons and Big Bend NP when compared to other populations in the Mexico-Texas 5

ecosystem (Onorato et al. 2004a).  Reanalysis of these sequence data incorporating only 6

data from Big Bend NP and the Burros continued to reveal high levels of differentiation7

(ST = 0.5636), yet biparentally inherited microsatellite data showed low levels of genetic 8

structuring between these two populations (FST = 0.0580).   The lack of concordance 9

between mtDNA and nuclear microsatellite data has been noted in other populations of 10

large carnivores, including brown bears in Scandinavia (Waits et al. 2000) and wolverines 11

from Canada (Chappell et al. 2004), and is often ascribed to differing patterns of male and 12

female gene flow.  Our analyses that assessed the presence of sex-biased dispersal patterns 13

in Big Bend NP, the Burros and the Mogollons revealed that dispersal is biased towards 14

males, although our results only trended towards significance.  Male biased dispersal and 15

female philopatry are commonly accepted demographic characteristics within populations 16

of Ursids (Rogers 1987; Taberlet et al. 1995; Woods et al. 1999).  Ultimately, it is the 17

periodic dispersal of males between Mexico and Texas (and vice-versa) that results in the18

genotypic homogenization of the metapopulation.  Regardless of the molecular marker used 19

to delineate genetic structuring, our analyses suggested that recolonizing populations in 20

western Texas are intimately linked with populations in the Burros and Carmens.  21
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The Bayesian approach to population structure did however elucidate a level of 1

structure between the Big Bend NP population and other sampling areas to warrant 2

subpopulation status for this study area.  The differentiation is likely a result of a 3

matriarchal founder effect associated with the recolonization of Big Bend NP (Onorato et 4

al. 2004a; 2004b) and the sporadic nature of successful dispersal and migration of black 5

bears from Mexico to the Park.  Similar results have been noted for carnivore species such 6

as wolverines (Gulo gulo) and Asiatic black bears (Ursus thibetanus) that persist in isolated 7

populations resulting from human habitat fragmentation (Saitoh et al. 2001; Cegelski et al. 8

2003). 9

Standard genetic distance values (DS) exhibited similar trends to the structural 10

statistics in characterizing the difference in genotypes present in the Mogollons versus 11

those in the Mexico-Texas metapopulation.  Similar relationships have been observed using 12

DS and FST in several species of large carnivores (Kyle & Strobeck 2001; Rueness et al. 13

2003).  This analysis again demonstrated the low probability for dispersal linkages for 14

black bears between the Mogollons and western Texas.  Conversely, within the Mexico-15

Texas metapopulation, there were low levels of genetic distance.  These data suggest the 16

semi-permeable nature of the Chihuahuan Desert barrier to dispersal by bears.  This 17

conclusion is consistent with our knowledge of recolonization of black bears in western 18

Texas and their association with populations in northern Coahuila (Onorato and Hellgren 19

2001; Hellgren et al. 2005).20

Population assignment testing using the Bayesian analysis in program 21

STRUCTURE depicted the elevated mean percentage of membership of the bears in the 22

Mogollon Mountains of New Mexico (q = 0.982, 96.6% of bears correctly assigned at q > 23
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0.9).  Once again, this high level of correct assignment is a result of the geographic 1

separation between bears in New Mexico and those in the Mexico-Texas metapopulation.  2

This separation and apparent lack of gene flow has ultimately led to differentiation at both 3

maternally (Onorato et al. 2004a) and biparentally inherited markers.  Big Bend NP also 4

exhibited an elevated mean percentage of membership (q = 0.867, 78.1% correctly 5

assigned), consistent with our scenario that most bears in the Park are descendents of a 6

matriarch female that recolonized the Chisos in the 1980’s (Onorato and Hellgren 2001).  7

An analysis of paternity and relatedness of bears in Big Bend NP resulted in a pedigree that 8

corroborates this conclusion (Onorato et al. 2004b).  9

The level of correct population assignment of bears in Big Bend NP was 10

comparable to 78% correctly assigned in a study by Warrillow et al. (2001).  Several 11

brown bear studies exhibited higher percentages of correct assignment (92%`; Paetkau et al. 12

1998; 84%`; Waits et al. 2000).  A study by Paetkau et al. (1995) on 4 populations of polar 13

bears (U. maritimus) obtained a much lower level of correct assignment (60%) and even 14

lower levels have been described for wolverines (43%`; Kyle & Strobeck 2001; 56%`; Kyle 15

& Strobeck 2002).  The lower levels of correct population assignment for polar bears and 16

wolverines may result from the biology of these animals, which requires that they maintain 17

large home ranges and disperse greater distances (Garner et al. 1994; Belikov & Boltunov 18

1998; Kyle & Strobeck 2001), ultimately resulting in the increased probability of gene flow 19

between populations.  Although brown and black bears of either sex may disperse distances 20

> 50 km (McLellan & Hovey 2001; Hellgren et al. 2005), movements beyond this distance 21

are uncommon in females.  22



Onorato 17

The high percentage of correct population assignment for populations of black bears 1

in the Mogollons is noteworthy.  No bears from the Mogollons were assigned to any of the 2

populations within Mexico or Texas.  Only 1 bear from the Mexico and Texas samples 3

exhibited a percentage of membership with the Mogollons that was > 0.04 (Bear FH-1, q = 4

0.353, 0.631, and 0.016 for the Mogollons, Northern Mexico/Western Texas, and Big Bend 5

NP populations respectively).  Previous analyses using mtDNA sequence data noted that 6

this bear contained a haplotype that was only present in bears located in Mogollons.  This 7

particular male bear was a road-killed specimen collected at Fort Hancock in extreme 8

western Texas >300 km from the Mogollons.  This dispersing individual may be an 9

indication of the potential for gene flow between New Mexico or Chihuahua and the Trans-10

Pecos region of Texas.  Further research should involve sampling black bears in the 11

northern and western parts of the Trans-Pecos such as Guadalupe Mountains National Park, 12

the Davis Mountains (GMNP and Davis, respectively in Figure 1), Hudspeth, and El Paso 13

counties to quantify linkages between bear populations in New Mexico and Texas.  The 14

Davis and Guadalupe Mountains historically contained black bear populations into the 15

early 1900’s (Onorato and Hellgren 2001).16

Three bears from Big Bend NP were identified as having a high probability of 17

assignment (q > 0.55) to a Mexican/Western Texas population.  These include 2 male bears 18

(BIBE28 and BIBE30 with q = 0.780 and 0.853 respectively) and 1 female (BIBE5, q = 19

0.581).  These assignments help to attest the natural recolonization process that is ongoing 20

in Big Bend NP.  The synthesis of mitochondrial and nuclear data delineates the prevalence 21

of male mediated gene flow within this metapopulation.  Male bears are periodically 22

supplementing genetic variation in the park via dispersal or migrations from adjacent range 23
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in Mexico.  Female gene flow occurs much less frequently.  Although BIBE5 is potentially 1

a first generation migrant/dispersing female, it is also plausible that she resulted via a 2

copulation event between a resident Park female and a migrant/dispersing adult male.  Of 3

additional merit is the case of BGWMA8, a male bear captured in the Trans-Pecos whom 4

had a high probability (q = 0.979) of originating from Big Bend NP.  These examples 5

demonstrate the process of gene flow between sampling areas and its subsequent 6

importance to recolonization and conservation of black bears in the borderlands ecosystem.7

The differentiation between bears in the Mogollons and those in the Mexico-Texas 8

metapopulation may be of interest from an evolutionary perspective.  Whether black bears 9

in the Mogollons represent a different subspecies of black bears in comparison to those 10

inhabiting the Mexico-Texas metapopulation will require further investigation and 11

analyses.  The modified distribution of black bear subspecies described by Larivière (2001)12

denotes the possible presence of U. a. eremicus, U. a. machetes, and U. a. amblyceps13

within this region. 14

Designating bears from these two ecoregions as separate ESU’s (Moritz 1994b, 15

1995) is controversial, given the continual debate over the actual definition of an ESU 16

(Fraser & Bernatchez 2001).  Additionally, limitations of our data make conclusions 17

concerning ESU status of these two regions contentious.  Regardless of whether these two 18

areas should be considered ESU’s, it is undeniable that they should be categorized as 19

distinct management units (MU’s) as described by Moritz (1994a).  The combination of 20

genetic and field data (Onorato et al. 2003) support the fact that very little, if any gene flow 21

occurs between populations in the Mogollons and those in the Mexico-Texas 22

metapopulation (Onorato et al. 2004a).  Any proposed reintroduction of black bears in 23
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southwestern North America should consider these data before proceeding.  In specific 1

regards to the Mexico-Texas metapopulation, it is apparent that uncommon events (e.g. 2

long range dispersal, particularly by females) are often key events in delineating the genetic 3

structure and maintaining variation within a metapopulation.  Undoubtedly, efforts to 4

conserve and manage populations of black bears within the Mexico-Texas metapopulation 5

will require a bi-national effort via coordination between private landowners, federal and 6

state agencies and Mexican authorities to insure linkages within this region continue to 7

serve as bi-directional pathways for gene flow.8

9
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Figure Legends1

Figure 1.  Range map depicting the distribution of American black bears (shaded) in the 2

southwestern part of North America (derived from Pelton et al. 1999).   The 6 underlined 3

localities encompass areas from which tissue samples were collected for this study.  The 4

Mexico-Texas mainland-island metapopulation includes Big Bend NP and Black Gap 5

(islands; n = 32 and n = 9 respectively) in western Texas, U.S.A. and the Carmens and 6

Burros (mainland; n = 5 and n = 58 respectively) in Coahuila, Mexico.  Samples (n = 8) 7

collected throughout the Trans-Pecos region of western Texas were grouped together for 8

several analyses.  Black bears were also sampled in the Mogollon Mountains of west-9

central New Mexico, U.S.A (n = 29) to assess differentiation between this population and 10

the Mexico-Texas metapopulation.  The Davis Mountains and Guadalupe Mountain 11

National Park (GMNP) are noted in the discussion and formerly sustained black bear 12

populations.13

Figure 2.  Assessment of genetic distinctiveness for the 3 major populations of American 14

black bears using Nei’s genetic distance values (DS) in an unrooted neighbor-joining tree.  15

The scale of the branches is relative to the differences in DS.16

Figure 3.  Plot of STRUCTURE population assignment results coinciding with initial 17

analyses that designated samples from 6 sampling localities as originating from 3 groups.  18

Rows represent individuals and are grouped by sampling area and bars represent the 19

proportion of ancestry attributed to each of the 3 groupings.  Ancestry proportions assigned 20

to Big Bend NP are in light grey, northern Mexico and remaining areas of western Texas in 21

white, and the Mogollons in dark grey.22
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Table 1.  Genetic variation of American black bears assessed at 7 microsatellite loci for 6 1

sampling localities in southwestern North America.  Abbreviations include observed and 2

expected heterozygosity (Ho and He respectively), and allelic richness adjusted for sample 3

size (rg).  Sampling areas are depicted geographically in Figure 1. 4

Population n Ho He rg

Total no. 

alleles

Big Bend NP 32 0.722 0.682 3.57 37

Black Gap 9 0.768 0.662 3.43 28

Burros 58 0.732 0.707 3.70 46

Carmens 5 0.657 0.662 3.59 27

Trans-Pecos 8 0.680 0.631 3.43 30

Mogollons 29 0.493 0.499 2.87 36

Overall 141 0.641 0.717

5

6
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Table 2.  Pairwise comparison of mtDNA genetic structure (ST from Onorato et al. 2004, 1

above the diagonal) and microsatellite structure (FST, below the diagonal) for the 3 major 2

sampling areas of American black bears.  Significant differentiation (*) for comparisons 3

was determined using the Bonferroni correction for pairwise comparisons (k = 3,  = 0.05 / 4

3 = P < 0.017).  Sampling area locations as depicted in Figure 1. 5

Population Big Bend NP Burros Mogollons

Big Bend NP 0.5636* 0.7366*

Burros 0.0580* 0.7040*

Mogollons 0.3482* 0.3265*

6
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Table 3.  Results of assignment tests using the Bayesian analysis in program 1

STRUCTURE.  Mean values of the percentage of membership (q) from each sampling area 2

and subsequent standard deviations are noted.  The number of bears assigned a q < 0.9 is an 3

indication of potential migrants/dispersers in the population or the presence of admixture.4

K

Sampling Areas N Big Bend NP Mogollons

Northern Mexico/Trans-

Pecos/Black Gap q < 0.9

Big Bend NP 32 0.867 (0.229) 0.005 (0.005) 0.128 (0.226) 7

Carmens 5 0.180 (0.272) 0.006 (0.003) 0.814 (0.270) 2

Black Gap 9 0.456 (0.322) 0.005 (0.003) 0.538 (0.324) 9

Burros 58 0.302 (0.307) 0.006 (0.006) 0.692 (0.307) 38

Trans-Pecos 8 0.395 (0.441) 0.049 (0.123) 0.557 (0.413) 5

Mogollons 29 0.007 (0.006) 0.982 (0.036) 0.011 (0.030) 1

5

6
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 APPENDIX1

Table A1.  Allele frequency distribution for 7 microsatellite loci collected from American 2

black bears in 6 localities in southwestern North America.3

Locus and allele Big Bend NP Black Gap Trans-Pecos Carmens Burros Mogollons

G1D

172 0.000 0.000 0.000 0.000 0.103 0.241

174 0.000 0.000 0.000 0.000 0.000 0.017

176 0.188 0.333 0.250 0.200 0.164 0.035

180 0.000 0.000 0.000 0.000 0.000 0.103

182 0.078 0.000 0.000 0.100 0.052 0.000

184 0.469 0.278 0.188 0.100 0.276 0.448

186 0.094 0.389 0.563 0.600 0.397 0.155

188 0.172 0.000 0.000 0.000 0.009 0.000

G10B

155 0.109 0.167 0.000 0.000 0.000 0.000

157 0.469 0.611 0.563 0.400 0.588 0.000

159 0.000 0.000 0.000 0.000 0.000 0.017

161 0.125 0.111 0.063 0.300 0.184 0.000

163 0.250 0.056 0.000 0.100 0.158 0.138

165 0.047 0.000 0.188 0.100 0.035 0.672

167 0.000 0.056 0.125 0.100 0.035 0.172

175 0.000 0.000 0.063 0.000 0.000 0.000
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Locus and allele Big Bend NP Black Gap Trans-Pecos Carmens Burros Mogollons

G10C
95 0.000 0.000 0.000 0.000 0.000 0.052

97 0.000 0.000 0.063 0.000 0.000 0.828

101 0.000 0.000 0.000 0.000 0.009 0.103

103 0.000 0.000 0.063 0.000 0.000 0.000

105 0.000 0.000 0.063 0.000 0.000 0.000

107 0.141 0.000 0.188 0.400 0.053 0.000

109 0.234 0.167 0.063 0.000 0.158 0.017

111 0.266 0.167 0.188 0.300 0.211 0.000

113 0.359 0.556 0.313 0.300 0.518 0.000

117 0.000 0.000 0.063 0.000 0.018 0.000

121 0.000 0.111 0.000 0.000 0.026 0.000

129 0.000 0.000 0.000 0.000 0.009 0.000

G10P

163 0.156 0.222 0.071 0.000 0.158 0.000

167 0.109 0.111 0.571 0.500 0.368 0.000

169 0.000 0.000 0.000 0.000 0.000 0.552

171 0.016 0.000 0.000 0.100 0.018 0.035

173 0.188 0.000 0.214 0.000 0.000 0.035

175 0.406 0.444 0.071 0.200 0.290 0.103

177 0.000 0.000 0.000 0.000 0.000 0.224

179 0.125 0.222 0.071 0.200 0.167 0.052
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Locus and allele Big Bend NP Black Gap Trans-Pecos Carmens Burros Mogollons

CXX20

122 0.156 0.333 0.214 0.400 0.103 0.035

124 0.000 0.000 0.000 0.100 0.052 0.000

126 0.031 0.000 0.000 0.000 0.000 0.000

128 0.078 0.000 0.000 0.000 0.095 0.000

130 0.000 0.000 0.000 0.000 0.000 0.828

132 0.000 0.000 0.000 0.000 0.000 0.052

136 0.000 0.167 0.000 0.000 0.017 0.017

138 0.266 0.278 0.429 0.300 0.440 0.017

140 0.297 0.222 0.071 0.200 0.181 0.000

142 0.172 0.000 0.286 0.000 0.069 0.000

144 0.000 0.000 0.000 0.000 0.000 0.052

148 0.000 0.000 0.000 0.000 0.043 0.000

G10H

233 0.033 0.250 0.000 0.375 0.116 0.804

235 0.150 0.188 0.300 0.250 0.071 0.071

237 0.733 0.500 0.500 0.375 0.384 0.000

239 0.05 0.000 0.200 0.000 0.321 0.000

241 0.000 0.000 0.000 0.000 0.018 0.125

243 0.000 0.000 0.000 0.000 0.036 0.000

245 0.017 0.000 0.000 0.000 0.027 0.000
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G10H (cont’)

247 0.017 0.063 0.000 0.000 0.027 0.000

243 0.000 0.000 0.000 0.000 0.036 0.000

245 0.017 0.000 0.000 0.000 0.027 0.000

247 0.017 0.063 0.000 0.000 0.027 0.000

G10J

83 0.233 0.000 0.400 0.100 0.118 0.000

85 0.417 0.389 0.600 0.400 0.300 0.018

87 0.050 0.333 0.000 0.000 0.273 0.018

93 0.000 0.000 0.000 0.000 0.000 0.232

95 0.000 0.000 0.000 0.000 0.000 0.054

101 0.267 0.167 0.000 0.100 0.200 0.446

103 0.033 0.111 0.000 0.400 0.100 0.107

105 0.000 0.000 0.000 0.000 0.000 0.125

113 0.000 0.000 0.000 0.000 0.009 0.000
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