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Abstract

A total labeling of a graph with v vertices and e edges is defined as a one-to-one
map taking the vertices and edges onto the integers 1, 2, · · · , v+e. Such a labeling is
vertex magic if the sum of the label on a vertex and the labels on its incident edges
is a constant independent of the choice of vertex, and edge magic if the sum of an
edge label and the labels of the endpoints of the edge is constant. In this paper we
examine graphs possessing a labeling that is simultaneously vertex magic and edge
magic. Such graphs appear to be rare.
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1 Introduction

All graphs in this paper are finite, simple and undirected. Unless otherwise
specified, the graph G has vertex set V = V (G) and edge set E = E(G) and
we write e for |E| and v for |V |. A general reference for graph theoretic notions
is [6].

A labeling for a graph is a map that takes graph elements to numbers (usually
positive or non-negative integers). In this paper the domain is the set of all
vertices and edges; such labelings are called total. Other domains have also
been studied. The most complete recent survey of graph labelings is [2].

In many cases, it is interesting to consider the sum of all labels associated
with a graph label. This will be called the weight of the element. For example,
the weight of vertex x under the total labeling λ is

wt(x) = λ(x) +
∑

y∼x

λ(xy),

while
wt(xy) = λ(x) + λ(xy) + λ(y).

If necessary, the labeling can be specified by a subscript, as in wtλ(x).

Various authors have introduced labelings that generalize the idea of a magic
square, by requiring that certain weights be constant. Kotzig and Rosa [3],
for example, defined a magic labeling to be a labeling on the vertices and
edges in which the labels are the integers from 1 to v + e and where the
sum of labels on an edge and its two endpoints is constant. Related labelings
have been studied by other authors and there are numerous variations in the
terminology used. Readers are referred to [1] for a discussion of these matters
and a standardization of the terminology.

In particular, we treat two types of total labeling. For detailed treatment of
the two types taken separately, see [1] and [4].

An edge magic total labeling or EMTL on G is a one-to-one map λ from
V (G) ∪ E(G) onto the integers 1, 2, . . . , v + e, with the property that, given
any edge xy,

λ(x) + λ(xy) + λ(y) = k

for some constant k. In other words, wt(xy) = k for any edge xy.

A vertex magic total labeling or VMTL on G is a one-to-one map λ from
V (G) ∪ E(G) onto the integers 1, 2, . . . , v + e, with the property that, given
any vertex x,

λ(x) +
∑

y∼x

λ(xy) = h
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for some constant h, where the sum is over all vertices y adjacent to x. In this
case the magic requirement is wt(x) = h for all vertices x.

Suppose λ is a vertex magic total labeling of G. Then the sum of all vertex
weights is

hv =
∑

x∈V

λ(x) + 2
∑

y∈E

λ(y)

= (1 + 2 + . . . + (v + e)) +
∑

y∈E

λ(y)

= 1
2
(v + e)(v + e + 1) +

∑

y∈E

λ(y). (1)

Similarly, if µ is an edge magic total labeling, then the sum of all edge weights
is

ke=
∑

x∈V

dxµ(x) +
∑

y∈E

µ(y)

= 1
2
(v + e)(v + e + 1) +

∑

x∈V

(dx − 1)µ(x), (2)

where dx is the degree of x. As

1 + 2 + . . . + e ≤
∑

y∈E

λ(y) ≤ (v + 1) + (v + 2) + . . . + (v + e),

(1) can be used to find upper and lower bounds for h. A similar approach,
taking the degree sequence into account, yields upper and lower bounds for k.

In this paper we investigate the question: for a graph G does there exist a
total labeling λ that is both edge magic and vertex magic? We shall call such
a λ a totally magic labeling and call G a totally magic graph. The constants
h and k will be called the vertex constant and edge constant respectively. We
do not require that h = k.
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2 Examples

One quickly constructs three small examples of connected totally magic graphs;
see below.

t
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K1 ∪ P3

An obvious trivial example is the single vertex graph K1. There are four totally
magic labelings of the triangle K3; if the set of vertex-labels is denoted by Sv,
then the labelings have

h = 9, k = 12, Sv = {4, 5, 6}

h = 10, k = 11, Sv = {2, 4, 6}

h = 11, k = 10, Sv = {1, 3, 5}

h = 12, k = 9, Sv = {1, 2, 3}.

(There is an obvious duality here.) The three-vertex path P3 has two labelings.
Writing the labels in sequence vertex-edge-vertex-edge-vertex, they are

h = 6, k = 9, labels 4, 2, 3, 1, 5,

h = 7, k = 8, labels 3, 4, 1, 2, 5.

Among disconnected graphs, we know that there is exactly one totally magic
labeling of K1 ∪P3, constructed from the first of the P3-labelings listed above
by mapping the isolated vertex to 6.

3 Isolates and stars

If λ is a totally magic labeling of G with vertex constant h then any isolated
vertex x has λ(x) = h, so there cannot be two such vertices. Similarly, an
isolated edge would have equal labels on its endpoints. We have:
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Lemma 1 No totally magic graph has two isolated vertices or an isolated
edge.

Moreover, if K1 ∪ G is totally magic, the isolated vertex must necessarily
receive the largest possible label, so the remaining labels form a totally magic
labeling of G. We have:

Lemma 2 If a graph with an isolated vertex is totally magic, then the graph
G resulting from the deletion of the isolate has a totally magic labeling with
vertex sum |V (G)| + |E(G)| + 1.

The labeling of K1 ∪ P3 given above is as described in this lemma.

A vertex of degree 1 is often called a leaf.

Theorem 3 Suppose the totally magic graph G has a leaf x. Then the com-
ponent of G containing x is a star.

Proof. Suppose λ is a totally magic labeling on G, with vertex and edge
constants h and k respectively, and suppose x is a leaf with neighbor y. By
the vertex magic property, λ(x)+λ(xy) = h, and by the edge magic property,
λ(x) + λ(xy) + λ(y) = k. So λ(y) = k − h.

By Lemma 1, y has a neighbor, z say. Then k = λ(y) + λ(yz) + λ(z) =
λ(yz) + λ(z) + k − h, so λ(yz) = h− λ(z). So wt(z) ≥ λ(z) + λ(yz) = h, with
equality only if z has degree 1. So every vertex adjacent to y has degree 1,
and the component of G containing y is a star with center y. �

Corollary 3.1 The only connected totally magic graph containing a vertex of
degree 1 is P3.

Every non-trivial tree has at least two vertices of degree 1, so the only possible
magic trees are K1 and the stars. But it was shown in Theorem 5 of [4] that
Km,n is never vertex magic when |m − n| > 1. So no star larger than K1,2 is
vertex magic, so

Corollary 3.2 The only totally magic trees are K1 and P3.

A totally magic graph cannot have two stars as components, because their
centers would each receive label k − h. It follows that the components of a
totally magic graph can include at most one K1 and at most one star, and all
other components have minimum degree at least 2, and consequently have as
many edges as vertices.

Corollary 3.3 The only totally magic proper forest is K1 ∪ P3.
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Theorem 4 The only totally magic graphs with a component K1 are K1 ∪P3

and K1 itself.

Proof. Suppose K1 ∪G is a totally magic graph; K1 has vertex x, and G has
v vertices and e edges, as usual. G may have a star as a component, but any
other component has minimum degree at least 2, so e ≥ v − 1. From Lemma
2,

h = λ(x) = v + e + 1,

and G is totally magic with vertex constant h. Now from (1),

v(v + e + 1) = 1
2
(v + e)(v + e + 1) +

∑

y∈E

λ(y).

So ∑

y∈E

λ(y) = 1
2
(v − e)(v + e + 1).

But
∑

λ(y) ≥ 1
2
e(e + 1), so

e(e + 1) ≤ (v − e)(v + e + 1),

and
2e(e + 1) ≤ v(v + 1).

Clearly e < v. So e = v − 1, whence

2(v2 − v) ≤ v2 + v,

and v ≤ 3. The only possibility is G = P3. �

4 Forbidden configurations

Theorem 5 If a totally magic graph G contains two adjacent vertices of de-
gree 2, then the component containing them is a cycle of length 3.

Proof. Suppose G contains a pair of adjacent vertices b and c, each having
degree 2, and suppose λ is a totally magic labeling of G with vertex and edge
constants h and k.

First, assume G contains a path {a, b, c, d}, where a and d are distinct vertices.
From h = wt(b) = wt(c) it follows that

λ(ab) + λ(b) + λ(bc) = λ(bc) + λ(c) + λ(cd),

from which
λ(cd) = λ(ab) + λ(b) − λ(c) (3)
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while the edge magic property yields

k = λ(a) + λ(ab) + λ(b) = λ(b) + λ(bc) + λ(c) = λ(c) + λ(cd) + λ(d); (4)

the second equality in (4) implies

λ(cd) = λ(b) + λ(bc) − λ(d) (5)

while the first gives
λ(a) + λ(ab) = λ(bc) + λ(c). (6)

But (3) and (5) give

λ(ab) − λ(c) = λ(bc) − λ(d)

so
λ(d) = λ(bc) + λ(c) − λ(ab) (7)

and (6) and (7) together imply λ(a) = λ(d), a contradiction.

Now assume b and c have a common neighbor, a say, and suppose a has some
other neighbor, z. ¿From (4) we see

λ(ab) = k − λ(a) − λ(b),

and similarly for bc and ca, so

wt(b)= λ(ab) + λ(b) + λ(bc)

= 2k − λ(a) − λ(b) − λ(c),

whereas

wt(a)=λ(ca) + λ(a) + λ(ab) + λ(az) + . . .

≥ 2k − λ(a) − λ(b) − λ(c) + λ(az)

>wt(a),

as λ(az) > 0. �

Corollary 5.1 No totally magic graph contains as a component a path other
than P3 or a cycle other than K3.

(Lemma 1 must be invoked to rule out P2.) In particular,

Corollary 5.2 The only totally magic cycle is K3.

Theorem 6 Suppose G contains two vertices, x1 and x2, that are each ad-
jacent to precisely the same set {y1, y2, . . . , yd} of other vertices. (It is not
specified whether x1 and x2 are adjacent.) If d > 1 then G is not totally
magic.

7



Proof. Suppose λ is a totally magic labeling of G with vertex and edge sums
h and k. For convenience, define λ(x1x2) = 0 if x1 is not adjacent to x2. Then

h = λ(xi) +
d∑

j=1

λ(xiyj) + λ(x1x2), i = 1, 2,

and
k = λ(xi) + λ(xiyj) + λ(yj), i = 1, 2, 1 ≤ j ≤ d.

So

dk = dλ(xi) +
d∑

j=1

λ(xiyj) +
d∑

j=1

λ(yj), i = 1, 2,

=(d − 1)λ(xi) + (h − λ(x1x2)) +
d∑

j=1

λ(yj), i = 1, 2,

so
(d − 1)λ(x1) = (d − 1)λ(x2),

a contradiction unless d = 1. �

Corollary 6.1 The only totally magic complete graphs are K1 and K3. The
only totally magic complete bipartite graph is K1,2.

Theorem 7 Suppose G contains two vertices, x and y, with a common neigh-
bor. If x and y are nonadjacent and each has degree 2, or are adjacent and
each has degree 3, then G is not totally magic.

Proof. Denote the common neighbor by z, the other neighbor of x by x1, and
the other neighbor of y by y1. (Possibly x1 = y1.) Suppose λ is a totally magic
labeling of G with vertex and edge constants h and k; if x is not adjacent to
y in G then define λ(xy) = 0.

The weight of x is

wt(x)= λ(x) + λ(xx1) + λ(xz) + λ(xy)

= λ(x) + (k − λ(x) − λ(x1)) + (k − λ(x) − λ(z)) + λ(xy)

= 2k − (λ(x) + λ(x1) + λ(z)) + λ(xy)

and similarly

wt(y)= 2k − (λ(y) + λ(y1) + λ(z)) + λ(xy).

From the vertex magic property, wt(x) = wt(y), so λ(x)+λ(x1) = λ(y)+λ(y1).
So λ(xx1) = k−λ(x)−λ(x1) = k−λ(y)−λ(y1) = λ(yy1). But this contradicts
the edge magic property. �
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(The case where x and y are adjacent could be rephrased, a totally magic
graph G cannot contain a triangle with two vertices of degree 3.)

Theorem 8 Suppose the totally magic graph G contains a triangle. Then the
sum of the labels of all edges outside the triangle and incident with any one
vertex of the triangle is the same, whichever vertex is chosen.

Proof. Suppose the triangle is xyz. Write X for the sum of the labels of all
edges other than xy and xz that are adjacent to x; define Y and Z similarly.
Then

h= wt(x) = λ(x) + λ(xy) + λ(xz) + X = 2k − λ(x) − λ(y) − λ(z) + X

= wt(y) = λ(y) + λ(xy) + λ(yz) + Y = 2k − λ(x) − λ(y) − λ(z) + Y

= wt(z) = λ(z) + λ(xz) + λ(yz) + Z = 2k − λ(x) − λ(y) − λ(z) + Z

so X = Y = Z. �

Corollary 8.1 If the totally magic graph G contains a triangle with one vertex
of degree 2, then the triangle is a component of G.

Observe that Theorems 5, 6, 7 and 8 are essentially forbidden configuration
theorems. If a graph G is in violation of one of them, then not only is G not
totally magic, but G cannot be a component or union of components in any
totally magic graph. We term a graph a survivor if it is not eliminated by the
application of these theorems.

5 Unions of triangles

In this section we construct two infinite families of totally magic graphs, both
based on triangles. We use the following Lemma, which has been proved several
times in the literature.

Lemma 9 The set of integers {1, 2, · · · , 3n} can be partitioned into n triples,
where the sum of elements in any triple is 3

2
(3n + 1), if and only if n is odd.

Proof. Observe that 1 + 2 + . . . + 3n = 3n(3n + 1)/2, so the only possible
common sum is 3

2
(3n + 1).

First suppose n is odd. For i = 1, 2, . . . , n, take xi to be the integer such that
xi = 3n− 2i+2 and 2n+1 ≤ xi ≤ 3n, and take yi to be the integer such that
yi = (3n+2i−1)/2 and n+1 ≤ yi ≤ 2n. Then one solution is {S1, S2, . . . , Sn},
where Si = {i, xi, yi}.
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If n is even, then 3
2
(3n + 1) is not an integer. �

Theorem 10 There is a totally magic labeling of nK3, the disjoint union of
n triangles, whenever n is odd.

Proof. Choose n 3-sets as defined in Lemma 9. For each triangle, label the
edges with the members of the triple. If edge xy receives label λ(xy), the
vertex opposite xy receives 3n + λ(xy). As the three edge-labels on a triangle
sum to 3

2
(3n + 1), the edges all have weight 6n + 3

2
(3n + 1) and the vertices

all have weight 3n + 3
2
(3n + 1). �

In the above construction, label 1 appears on an edge. If this edge is deleted,
and 1 is subtracted from the label of each vertex and each remaining edge, the
resulting labeling is totally magic, with vertex constant 3n + 3

2
(3n − 1) and

edge constant 6n + 3
2
(3n − 1). This produces another infinite family:

Corollary 10.1 The graph P3 ∪ nK3 is totally magic when n is even.

On the other hand, an even union of triangles is never totally magic.

Theorem 11 There is no totally magic labeling of nK3, the disjoint union of
n triangles, whenever n is even.

Proof. Suppose λ is a totally magic labeling of nK3, where n = 2m for some
positive integer m. Write h and k for the vertex and edge constants of λ. If
xyz is a triangle, write µ(x) for λ(yz).

Summing the weights of edges and vertices, we have
∑

x(λ(x)+2µ(x)) = 6mh
and

∑
x(µ(x) + 2λ(x)) = 6mk, so

∑
x(λ(x) + µ(x)) = 2m(h + k). Since the

labels are 1, 2, . . . , 12m,

36m + 3 = h + k. (8)

Consider a triangle xyz. Clearly λ(xy) = k − λ(x) − λ(y). So λ(x) + λ(xy) +
λ(xz) = h implies λ(x) + k − λ(x) − λ(y) + k − λ(x) − λ(z) = h. So the sum
of the three vertex labels is the same in any triangle:

λ(x) + λ(y) + λ(z) = 2k − h.

Similarly the sum of the three edge labels in a triangle is constant:

λ(xy) + λ(yz) + λ(zx) = 2h − k.

So λ(xy) = k−λ(x)−λ(y) = k +λ(z)−λ(x)−λ(y)−λ(z) = h− k +λ(z), or

λ(xy) = h − k + λ(x). (9)
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Let us assume that h ≥ k (otherwise, we can exchange the labels of the vertices
and the edges and obtain another totally magic labeling with h ≥ k). Then
from (9) labels 1, 2, . . . , h− k must all be vertex labels, and h− k +1, h− k +
2, . . . , 2(h− k) are edge labels. So 2(h− k) + 1, 2(h − k) + 2, . . . , 3(h − k) are
vertex labels, and so on: the vertex labels are precisely the labels a satisfying
a ≡ 1, 2, . . . , (h−k)( mod 2(h−k)). Since there are 6m vertices and 6m edges,
h − k divides 6m. Clearly h − k ≡ h + k = 36m + 3 ≡ 1(mod 2), so , h − k is
odd, h − k divides 3m, and therefore 1 ≤ h − k ≤ 3m.

First, suppose h − k = 1. We have to partition the edge labels 2, 4, . . . , 12m
into 2m sets of size 3 such that the sum of the labels in each set is constant.
If such a partition exists, halving it provides a partition of 1, 2, . . . , 6m into
2m sets of size 3 such that the sum of the labels in each set is a constant. But
such a partition is impossible by Lemma 9.

So we assume h−k ≥ 3. Write h−k = 2c+1. From (8) we obtain h = 18m+c+2
and k = 18m− c+ 1. So 2k −h = 18m− 3c, and 2k −h ≡ 18m− 3c ≡ −3c ≡
c + 2(mod 4c + 2), since 2c + 1 divides 3m.

Each vertex label must be congruent to one of 1, 2, . . . , h − k(mod 2(h − k)),
that is 1, 2, . . . , 2c + 1(mod 4c + 2). The sum of the three vertex labels in any
triangle will be congruent to 2k − h. Now, 2k − h ≡ c + 2(mod 4c + 2). Since
0 < c < h − k, c + 1 must be a vertex label. But this is impossible, since
there do not exist two elements d, e ∈ {1, 2, . . . , 2c+1}(mod 4c+2) such that
c + 1 + d + e ≡ c + 2(mod 4c + 2).

Hence 2mK3 is not totally magic for any positive integer m. �

If there were a totally magic labeling of P3 ∪ nK3 with vertex and edge con-
stants h and k, it is easy to show that the labels on the endpoints of the P3

must add to k. Suppose those two endpoints are joined, and the new edge is
labeled 0. Then the labeling of (n + 1)K3, constructed by adding 1 to every
label, will be totally magic. From Theorem 11, this cannot occur when n is
odd. So

Corollary 11.1 The graph P3 ∪ nK3 is not totally magic when n is odd.

6 Small graphs

We have carried out a complete search for small totally magic graphs. The
result is that no examples with ten or fewer vertices exist, other than the
four graphs given in Section 2 and the two nine-vertex graphs constructed in
Theorem 10 and Corollary 10.1.
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The complete search was carried out in two stages. First, using nauty [5], lists
were prepared of all connected graphs (up to ten vertices) not ruled out by
Theorems 5, 6, 7 and 8. Second, the survivors were tested exhaustively. There
were three survivors with six or fewer vertices (K1,K3 and P3), 42 with seven,
1,070 with eight, 61,575 with nine and 4,579,637 with 10.

Exhaustive testing is very time-consuming. However, a shortcut is available.
If a totally magic labeling exists, it must retain the magic properties after
reduction modulo 2. So we tested all mod 2 possibilities. Label 1 or 0 is as-
signed to each vertex and to the constant k. Then every edge-label can be
calculated. Next, one can check whether all the vertex weights are congruent
(mod 2). Moreover, the total number of vertices and edges labeled 1 must ei-
ther equal the number labeled 0 or exceed that number by 1. This process is
quite fast (for example, only 29 cases need to be examined in the eight-vertex
case), and eliminated over 25% of graphs. Then one can sieve the remaining
graphs modulo 3, then modulo 4, and so on. For example, sieving the 1070
eight-vertex graphs mod2 eliminated 307 graphs, sieving mod3 eliminated
351 more, and so on: one graph survived after sieving modulo 7, and it was
eliminated mod 8.

There were very few disconnected graphs to consider. Except for the graph
K1 ∪ P3, the only possibilities are made up of at most one star, copies of
K3, and survivors with more than three vertices. The only cases not already
discussed are K1,n ∪ K3 for n = 3, 4, 5, 6,K1,4 ∪ 2K3, and the 42 unions of a
triangle and a 7-vertex survivor. None of these is totally magic, so there are
no further totally magic graphs with ten or fewer vertices.

There are exactly eight totally magic labelings of 3K3. They arise in dual pairs
(the dual is derived by exchanging the label of each vertex with that of its
opposite edge). Of the four pairs, two come from the construction of Theorem
10 and two do not. In each dual pair, one member has 1 as an edge label, so
there are four totally magic labelings of P3 ∪ 2K3.

We carried out a further investigation using a variant of simulated annealing.
This procedure quickly found the graphs we have described, but has so far
found no other examples. This might suggest that we have found all totally
magic graphs. However, for larger numbers of vertices (more than 20, say), it
appears that the search gets “nearer” to satisfaction (no, we do not wish to
clarify this vague description!), so perhaps there are large totally magic graphs
yet to be discovered.
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