
Southern Illinois University Carbondale
OpenSIUC

Articles and Preprints Department of Mathematics

3-2007

Behavior of Elemental Sets in Regression
David J. Olive
Southern Illinois University Carbondale, dolive@math.siu.edu

Douglas M. Hawkins
University of Minnesota - Twin Cities

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles
Published in Statistics & Probability Letters, 77, 621-624. doi: 10.1016/j.spl.2006.09.009

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles
and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Olive, David J. and Hawkins, Douglas M. "Behavior of Elemental Sets in Regression." (Mar 2007).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.elsevier.com/wps/find/journaldescription.cws_home/505573/description#description
http://dx.doi.org/10.1016/j.spl.2006.09.009
mailto:opensiuc@lib.siu.edu


Behavior of elemental sets in regression

David J. Olive and Douglas M. Hawkins ∗

Southern Illinois University and University of Minnesota

June 12, 2005

Abstract

Elemental sets are used to produce trial estimates b of the regression coefficients

β. If bo minimizes ‖b−β‖ among all elemental fits b, then ‖bo−β‖ = OP (n−1), re-

gardless of the criterion used. For any estimator bA, ‖bA−β‖ is at best OP (n−1/2).

Hence restricting fits to elemental introduces asymptotically negligible error.
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1 Introduction

Consider the regression model

Y = Xβ + e (1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

and e is an n× 1 vector of errors. The ith case (xT
i , yi) corresponds to the ith row xT

i of

X and the ith element of Y .

High breakdown (HB) estimators are used to produce “fits” that resist outliers. Im-

portant examples include the least median of squares (LMS) estimator (Hampel 1975),

the least trimmed squares (LTS) estimator (Rousseeuw 1984), the least trimmed abso-

lute deviations (LTA) estimator (Hössjer 1994) and the regression depth (RD) estimator

(Rousseeuw and Hubert 1999). The computational complexities of the LTA, LMS and

RD exact algorithms are O(np+1), O(np+2) and O(n2p−1 log n), respectively. Since these

exact algorithms are impractical, approximate algorithms are generally used.

Many algorithms use subsets of p cases called “elemental sets.” The oldest such

method is the “basic resampling” or “elemental set” algorithm (Siegel 1982; Rousseeuw

1984; Hawkins, Bradu, and Kass 1984), and some estimators can be found by search-

ing all C(n, p) =
(

n
p

)
elemental sets. Examples include least absolute deviations (L1),

regression depth, the repeated median (Siegel 1982) and LTA.

Following Lehmann (1999, pp. 53-54), recall that the sequence of random variables

Wn is tight or bounded in probability, Wn = OP (1), if for every ε > 0 there exist positive

constants Dε and Nε such that P (|Wn| ≤ Dε) ≥ 1− ε for all n ≥ Nε. Also Wn = OP (Xn)

if |Wn/Xn| = OP (1). Wn has the same order as Xn in probability, written Wn �P Xn, if
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Wn = OP (Xn) and Xn = OP (Wn).

If Wn = ‖β̂n − β‖ �P n−δ for some δ > 0, then we say that both Wn and β̂n have

rate nδ. Notice that if Wn = OP (n−δ), then nδ is a lower bound on the rate of Wn. As

an example, if LMS, least squares (OLS) or L1 is used for β̂, then Wn = OP (n−1/3), but

Wn �P n−1/3 for LMS while Wn �P n−1/2 for OLS and L1.

In the basic resampling algorithm, Kn elemental sets are randomly selected. An exact

fit of the regression is performed for each subset, producing the estimators b1,n, ..., bKn,n.

Then the algorithm estimator bA,n is the elemental fit that minimized the regression

criterion Q. Let β̂Q,n denote the estimator that the algorithm is approximating, e.g.,

β̂LTS,n. Let bo,n be the “best” elemental fit examined by the algorithm in that

bo,n = argminh=1,...,Kn
‖bh,n − β‖ (2)

where Kn is the number of random starts and the Euclidean norm is used. Since the

algorithm estimator is an elemental fit, ‖bA,n −β‖ ≥ ‖bo,n −β‖, and an upper bound on

the rate of bo,n is an upper bound on the rate of bA,n.

Hawkins and Olive (2002) proved that under weak conditions ‖bo,n−β‖ ≤ OP (K−1/p
n ).

Since the rate of bA,n is bounded above by the rate of bo,n regardless of the criterion Q, this

result is one of the most powerful tools for examining the behavior of robust estimators

actually used in practice. For example, an estimator bA,n that uses n randomly drawn

elemental sets satisfies ‖bA,n−β‖ ≤ OP (n−1/p). When all elemental sets are searched, the

rate of bo,n ∈ [n1/2, n] since the L1 estimator is elemental and provides the lower bound.

Section 2 establishes that ‖bo,n−β‖ = OP (K−1/p
n ) and that the number of elemental sets

bi,n that satisfy ‖bi,n − β‖ = OP (n−δ) where 0 < δ ≤ 1 is proportional to np(1−δ).
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2 The anatomy of elemental sets

The following observations are useful for examining elemental sets. Let J = Jh =

{h1, ..., hp} be a randomly selected elemental set. Then Y Jh
= XJh

β + eJh
where Y Jh

and eJh
are p×1 vectors and XJh

is a p×p matrix. Denote the ith entry of Y Jh
by yhi, the

ith entry of eJh
by ehi, and the ij entry of XJh

by xhi,j . Denote the ith elemental case by

(xT
hi, yhi). The subscript h will often be suppressed. Then the elemental data (Y J ,XJ)

produce an estimator bJ = X−1
J YJ of β, and ‖bJ − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖‖eJ‖. Let

0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of XJ . Then the following results

(Golub and Van Loan 1989, pp. 57, 80) on the Euclidean norm are useful:

‖X−1
J ‖ =

σ1

σp‖XJ‖
, (3)

max
i,j

|xhi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xhi,j|, and (4)

1

p maxi,j |xhi,j|
≤ 1

‖XJ‖
≤ ‖X−1

J ‖. (5)

Two assumptions are used, but results that do not use (A2) are given later.

(A1) The errors are iid, independent of the predictors, and have a density f that is

positive and continuous in a neighborhood of zero.

(A2) Let τ be proportion of elemental sets J that satisfy ‖X−1
J ‖ ≤ B for some constant

B > 0. Assume τ > 0.

These assumptions are reasonable. If the errors can be arbitrarily placed, then they

could cause the estimator to oscillate about β. Hence no estimator would be consistent

for β. Note that if ε > 0 is small enough, then P (|ei| ≤ ε) ≈ 2εf(0). Equations (3) and

(4) suggest that (A2) will hold unless the data is very badly behaved.
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Theorem 1. Assume that all C(n, p) elemental subsets are searched and that (A1)

and (A2) hold. Then ‖bo,n − β‖ = OP (n−1).

Proof. Let the random variable Wn,ε count the number of errors ei that satisfy |ei| ≤

Mε/n for i = 1, ..., n. For fixed n, Wn,ε is a binomial random variable with parameters

n and Pn where nPn → 2f(0)Mε as n → ∞. Hence Wn,ε converges in distribution to a

Poisson(2f(0)Mε) random variable, and for any fixed integer k > p, P (Wn,ε > k) → 1 as

Mε → ∞ and n → ∞. Hence if n is large enough, then with arbitrarily high probability

there exists an Mε such that at least C(k, p) elemental sets Jhn have all |ehni| ≤ Mε/n

where the subscript hn indicates that the sets depend on n. By condition (A2), the

proportion of these C(k, p) fits that satisfy ‖bJhn
− β‖ ≤ B

√
pMε/n is greater than τ.

If k is chosen sufficiently large, and if n is sufficiently large, then with arbitrarily high

probability, ‖bo,n − β‖ ≤ B
√

pMε/n and the result follows. QED

Corollary 2. Assume that Hn ≤ n but Hn → ∞ as n → ∞. If (A1) and (A2) hold,

and if Kn = Hp
n randomly chosen elemental sets are used, then ‖bo,n −β‖ = OP (H−1

n ) =

OP (K−1/p
n ).

Proof. Suppose Hn cases are drawn without replacement and all C(Hn, p) ∝ Hp
n

elemental sets are examined. Then by Theorem 1, the best elemental set selected by this

procedure has rate H−1
n . Hence if Kn = Hp

n randomly chosen elemental sets are used and

if n is sufficiently large, then the probability of drawing an elemental set Jhn such that

‖bJhn
− β‖ ≤ MεH

−1
n goes to one as Mε → ∞ and the result follows. QED

Suppose that an elemental set J is “good” if ‖bJ − β‖ ≤ MεH
−1
n for some constant

Mε > 0. If Hn = nδ where 0 < δ ≤ 1, then the number of “good” sets is proportional to
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np(1−δ).

The following argument shows that similar results hold if the predictors are iid with

a multivariate density that is everywhere positive. Assume that the regression model

contains a constant: x = (1, x2, ..., xp)
T . Construct a (hyper) pyramid and place the

“corners” of the pyramid into a p× p matrix W . The pyramid defines p “corner regions”

R1, ..., Rp. The p points that form W are not actual observations, but the fit bJ can be

evaluated on W . Define the p × 1 vector z = W β. Then β = W−1z, and ẑ = W bJ is

the fitted hyperplane evaluated at the corners of the pyramid. If an elemental set has

one observation in each corner region and if all p absolute errors are less than ε, then the

absolute deviation |δi| = |zi − ẑi| < ε, i = 1, ..., p.

Examining these pyramids in low dimensions may help clarify the idea. If p = 2, then

the 1-dimensional pyramid is simply a line segment [w1, w2], region R1 = {x2 : x2 ≤ w1}

and let region R2 = {x2 : x2 ≥ w2}. Now assume that p = 3 and the two nontrivial

predictors are scattered about the origin. Then the three points (a,−a/2)T , (−a,−a/2)T ,

and (0, a/2)T determine a triangle where a > 0. Use this triangle as the pyramid and let

W =




1 a −a/2

1 −a −a/2

1 0 a/2




.

The corner regions are formed by extending the three lines that form the triangle and

using points that fall opposite of a corner of the triangle.

For general p ≥ 2, form a (p − 1)-dimensional pyramid and let W be the matrix

formed from the p pyramid corners. Then each of the p corner regions is formed by

extending the p − 1 surfaces of the pyramid that form the corner. The notation x ∈ Ri
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will be used to indicate that (x2, ..., xp)
T ∈ Ri.

Lemma 3. Fix the pyramid that determines (z,W ) and consider any elemental set

(XJ ,Y J) with each point (xT
hi, yhi) such that xhi ∈ a corner region Ri and each absolute

error |yhi − xT
hiβ| ≤ ε. Then the elemental set produces a fit bJ = X−1

J Y J such that

‖bJ − β‖ ≤ ‖W−1‖ √
p ε. (6)

Proof. Let the p × 1 vector z = W β, and consider any subset J = {h1, h2, ..., hp}

with xhi in Ri and |ehi| < ε for i = 1, 2, ..., p. The fit from this subset is determined

by bJ = X−1
J Y J so ẑ = WbJ . Let the p × 1 deviation vector δ = (δ1, ..., δp)

T where

δi = zi − ẑi. Then bJ = W−1(z − δ) and |δi| ≤ ε by construction. Thus ‖bJ − β‖ =

‖W−1z − W −1δ −W −1z‖ ≤ ‖W−1‖‖δ‖ ≤ ‖W−1‖√p ε. QED

Next we will consider all C(n, p) elemental sets and again show that best elemental fit

bo,n satisfies ‖bo,n −β‖ = OP (n−1). To get a bound, we need to assume that the number

of observations in each of the p corner regions is proportional to n. This assumption is

satisfied if the nontrivial predictors are iid from a distribution with a joint density that

is positive on the entire (p − 1)−dimensional Euclidean space. We replace (A2) by

(A3): Assume that the probability that a randomly selected x ∈ Ri is bounded below

by αi > 0 for large enough n and i = 1, ..., p.

If Ui counts the number of cases (xT
j , yj) that have xj ∈ Ri and |ei| < Mε/Hn, then

Ui is a binomial random variable with success probability proportional to Mε/Hn, and

the number Gn of elemental fits bJ satisfying equation (6) with ε replaced by Mε/Hn

satisfies

Gn ≥
p∏

i=1

Ui ∝ np(
Mε

Hn
)p.
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Hence the probability that a randomly selected elemental set bJ that satisfies ‖bJ −β‖ ≤

‖W−1‖ √
p Mε/Hn is bounded below by a probability that is proportional to (Mε/Hn)p.

If the number of randomly selected elemental sets Kn = Hp
n, then

P (‖bo,n − β‖ ≤ ‖W−1‖ √
p

Mε

Hn
) → 1

as Mε → ∞. These remarks prove the following corollary.

Corollary 4. Assume that (A1) and (A3) hold. Let Hn ≤ n and assume that

Hn → ∞ as n → ∞. If Kn = Hp
n elemental sets are randomly chosen then

‖bo,n − β‖ = OP (H−1
n ) = OP (K−1/p

n ).

In particular, if all C(n, p) elemental sets are examined, then ‖bo,n − β‖ = OP (n−1).

The following result shows that elemental fits can be used to approximate any p × 1

vector c, and are thus useful for projection pursuit. Of course this result is asymptotic,

and some vectors will not be well approximated for reasonable sample sizes.

Theorem 5. Assume that (A1) and (A3) hold and that the error density f is positive

and continuous everywhere. Then the closest elemental fit bc,n to any p × 1 vector c

satisfies ‖bc,n − c‖ = OP (n−1).

Proof sketch. The proof is essentially the same. Sandwich the plane determined by

c by only considering points such that |gi| = |yi − xT
i c| < α. Since the ei’s have positive

density, P (|gi| < α) ∝ 1/α) (at least for xi in some ball of possibly huge radius R about

the origin). Also the pyramid needs to lie on the c-plane and the corner regions will have

smaller probabilities. By placing the pyramid so that W is in the “center” of the X

space, we may assume that these probabilities are bounded away from zero, and make

Mε so large that the probability of a “good” elemental set is larger than 1 − ε. QED
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