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 Abstract 1 

 Discerning linkages among trophic levels and untangling indirect interactions is essential 2 

to understanding structuring of communities and ecosystems.  Indeed, indirect 3 

interactions among disparate taxa are often essential to the functional role of these 4 

species. The goal of this research was to test the hypothesis that the relationship between 5 

2 dendrophagous taxa, the North American porcupine (Erethizon dorsatum) and the pine 6 

engraver beetle (Ips hoppingi), is an asymmetric indirect interaction mediated by a 7 

common host.  We proposed that the porcupine predisposes the papershell pinyon pine 8 

(Pinus remota) to colonization by pine engraver beetles.  We examined porcupine tree 9 

selection, pinyon pine physiology and physiognomy, and beetle-pine associations on a 10 

study area in the southwestern Edwards Plateau of Texas from June 1997 to August 1999.  11 

Although attacks by beetles were evident on both damaged and undamaged trees, 12 

successful colonization was greater (χ2 = 75.3, df = 3, P < 0.01) on pines damaged by 13 

porcupines.  Intensity of porcupine attack, indexed by number of feeding scars and area 14 

of bark removed, also was associated with subsequent colonization by beetles. 15 

Porcupines selected pinyon pines over more abundant species (P < 0.001) and were 16 

selective at the level of morphology, whereas pine engraver beetles were selective of tree 17 

morphology and physiology.  Trees colonized by beetles had phloem with higher 18 

concentrations of fructose and glucose and lower percent composition of limonene, 19 

sabinene, and terpinolene than uncolonized trees.  Our findings supported our hypothesis 20 

of an indirect interaction between these dendrophages.  We rejected alternative 21 

explanations (e.g., that these dendrophages preferred similar trees or that beetles 22 

facilitated porcupine damage) for this relationship based on the biology of Ips and their 23 
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selection of host trees.  We propose that release of volatile terpenes as a result of 1 

porcupine feeding and reallocation of carbon resources as a response to stress explains 2 

the facilitation of beetle colonization in porcupine-damaged trees.  Our findings parallel 3 

those observed in other systems involving indirect effects and fit within the framework of 4 

integrated theories explaining host plant-herbivore interactions.  5 

Key Words: dendrophages, Erethizon dorsatum, indirect effects, Ips hoppingi,  Pinus 6 

remota, plant-herbivore interactions 7 

 8 

1.  Introduction 9 

The role of direct interspecific interactions in structuring communities is evident 10 

in extensive examinations of competition (Connell, 1983; Schoener, 1983) and predator-11 

prey relations (Sih et al., 1985; Martin, 1988).  The strength of indirect effects occurring 12 

among different trophic levels has received much less attention, which is likely a result of 13 

the inherent difficulty in detecting these types of relationships (Wooton, 1994).  The role 14 

of a requisite third species in these events compromises the efficacy and timely detection 15 

of indirect interactions (Davidson et al., 1984).   16 

Indirect ecological interactions among species in disparate taxa are essential to the 17 

functional roles of these individual species (Christensen and Whitham, 1993; Elkinton et 18 

al., 1996;  Martinsen et al., 1998).  Discounting or ignoring the role of indirect effects can 19 

lead to erroneous conclusions regarding community dynamics of a system (Davidson et 20 

al., 1984; Wooton, 1992).  Insects and vertebrates can interact to influence species 21 

composition, organic decomposition, and soil properties within an ecosystem (Sharpe et 22 

al., 1995; Elkinton et al., 1996).  Several studies have shown that attack by one consumer 23 

can increase susceptibility to attack by others.  Browsing by mammalian herbivores can 24 

lead to increased densities of leaf-eating (Martinsen et al., 1998) and galling insects 25 
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(Roininen et al., 1997; Olofsson and Strengbom ,2000).  Herbivory may induce 1 

qualitative changes in defensive chemistry (Tallamy and Raupp, 1991; Loreto et al., 2 

2000), resulting in increased occurrence of related and non-related herbivorous taxa 3 

(Martinsen et al., 1998; Redman and Scriber, 2000; Tomlin et al.,  2000).  Although the 4 

impact of herbivory on dendrophagic insects has received less attention, Conner and 5 

Rudolph (1995) suggested that pecking at resin wells by red-cockaded woodpeckers 6 

(Picoides borealis) may increase susceptibility of cavity trees to infestation by bark 7 

beetles (Dendroctonus frontalis.) Similarly, defoliation of jack pine (Pinus banksiana) by 8 

the jack pine budworm (Choristoneura pinus pinus) led to increased colonization by 9 

subcortical insects (Wallin and Raffa, 2001).  10 

 We examine a novel interaction involving 2 dendrophagic species and their tree 11 

hosts to advance our understanding of plant-herbivore interactions.  Previous research 12 

effort in this area has focused on leaf-eaters and defoliation.  The cost to defend, repair, 13 

and replace bark damaged by dendrophages likely differs from damage produced by 14 

defoliators, warranting examination of a model system involving indirect interactions 15 

among a host plant and 2 dendrophages.  Our study animals, the porcupine (Erethizon 16 

dorsatum) and bark beetles (Coleoptera: Scolytidae), are taxonomically distinct 17 

dendrophagous taxa occurring sympatrically in many wooded ecosystems.  Their 18 

phloem-feeding activities impact nutrient flow within the host tree, as opposed to nutrient 19 

production (by defoliators) or nutrient storage and acquisition (by root pathogens).  20 

Phloem feeding causes wounding or girdling, thereby altering translocation of 21 

carbohydrates and resulting in increased activity of bark beetles (Dunn and Lorio 1992).   22 

Mechanisms of host attack exhibited by porcupines and bark beetles differ.  The 23 

porcupine exploits a variety of habitat types (Roze and Ilse, 2003) and prefer to attack 24 

healthy, vigorous trees (Sharpe et al., 1995).  A strict herbivore, it consumes deciduous 25 

leaves and herbaceous matter during spring and summer, but feeds primarily on inner 26 

bark and coniferous foliage during the winter and fall (Roze and Ilse, 2003).  Although 27 
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trees may be girdled in the process, damage frequently is restricted to rectangular or 1 

ovate patches positioned within grasping distance of branches occupied by the porcupine 2 

(Spencer, 1964).  Conversely, scolytid species of the Ips genus, emerge in spring and 3 

aggregation and development of multiple generations occurs through summer (Stark, 4 

1982).  Furthermore, they attack, feed, and oviposit in stressed or otherwise compromised 5 

conifers (Raffa et al., 1993) and exhibit greater host specificity at the species level 6 

(Wood, 1963; Cane et al., 1990).  Events known or presumed to precipitate pine engraver 7 

and other bark beetle infestations include fire, severe drought, mechanical injury, 8 

lightning, and even cavity-nesting by the red-cockaded woodpecker (Blanche et al., 1985; 9 

Nebeker and Hodges, 1985; Conner and Rudolph, 1995).  As with porcupine damage, 10 

host mortality following infestation is contingent upon attack intensity and tree vigor.   11 

 The constitutive oleoresin system of healthy conifers acts as a primary defense 12 

response against bark beetle attack by flushing out invaders.  A secondary, or induced, 13 

response contains the infestation when the primary response is insufficient to repel attack 14 

(Berryman ,1972; Cates and Alexander, 1982; Raffa, 1991).   Chemical and nutritional 15 

imbalances resulting from a variety of stressors diminish a host’s ability to mount a 16 

defensive response and increase the potential for pathogenic infection and increased 17 

susceptibility to bark beetle invasion (Hodges et al., 1979; Lorio 1993; Paine and Baker, 18 

1993). 19 

 Porcupines and pine engravers feed upon the papershell pinyon pine (Pinus 20 

remota) in the pinyon-juniper woodlands of the Edwards Plateau region of Texas (Ilse, 21 

2001; Ilse and Hellgren 2001).  Close observation of vigorous, healthy pines in this 22 

region often indicated extensive porcupine feeding scars.  However, examination of dead 23 

and dying trees indicated additional presence of pine engraver beetles (I. hoppingi).  24 

These observations led to development of our hypothesis that porcupine-feeding activity 25 

acts similar to other mechanical stressors (e.g., fire, lightning, cavity-building), 26 

predisposing these pinyon pines to subsequent colonization by bark beetles and 27 
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producing an asymmetric, indirect interaction between these 2 dendrophages.   We 1 

compared morphological and physiological characteristics, as well as colonization 2 

success of I. hoppingi, of trees that were (target) or were not (nontarget) attacked by 3 

porcupines.  We predicted that if a facultative association occurred among these taxa, we 4 

would observe greater colonization of pine engraver beetles on those trees that had been 5 

previously damaged by porcupines. We also predicted that we would discern differences 6 

in morphology and physiology of target and nontarget trees attributed to taxon-specific 7 

host selection.   8 

 9 

2.  Study area and methods 10 

 11 

2.1 Study area 12 

 13 

  Research was conducted on the 2577-ha Kickapoo Caverns State Park (KCSP; 14 

Fig.1) located about 35 km north of Brackettville, Texas.  The site (formerly recognized 15 

as Kickapoo Caverns State Natural Area) straddles Kinney and Edwards counties in the 16 

southwestern region of the Edwards Plateau.  Topography was predominantly steep 17 

limestone hills and deep canyons with elevations of 482–610 m.  Average annual rainfall 18 

is about 45 cm (National Oceanic and Atmospheric Administration, 1999).  No standing 19 

water or active springs were present on the site.  20 

 Shallow clay soils of east- and north-facing slopes supported pinyon-juniper-oak 21 

plant communities.  In addition to papershell pinyon pine, dominant tree species included 22 

Ashe juniper (Juniperus ashei),  plateau live oak (Quercus fusiformis),  Texas persimmon 23 

(Diospyros texana), and vasey oak (Q. pungens var. vaseyana).  Woody shrubs included 24 

evergreen sumac (Rhus virens), guajillo (Acacia berlandieri) prickly pear (Opuntia spp.), 25 

and Roemer acacia (Acacia roemeriana).  Ground cover was represented by cedar 26 

panicgrass (Dichanthelium pedicellatum) and cedar sedge (Carex planostachys) in 27 
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shaded areas, and sideoats grama (Bouteloua curtipenula) and hairy tridens (Erioneuron 1 

pilosum) in more open areas. Shallow soils of the south- and west-facing slopes were 2 

dominated by guajillo plant communities, with pinyon pines restricted to lower slopes.  3 

Shrub species included guajillo, coyotillo (Karwinskia humboldtiana) and leatherstem 4 

(Jatropha dioica). Grasses included threeawn (Aristida spp.) and red grama (Bouteloua 5 

trifida). Mottes of plateau live oak mixed with vasey oak and Ashe juniper were common 6 

in canyons and drainages where moisture was more abundant and soil was deeper.  7 

Pinyon pines and netleaf hackberry (Celtis reticulata) also occurred in these areas.  8 

Dominant grasses include threeawn and annual dropseed (Sporobolus spp.).    9 

 10 

2.2 Animal capture and handling 11 
 12 

Porcupines were captured in cage-type live traps (Tomahawk Live Trap Co.,  13 

Tomahawk, WI) using apples and salt as bait (Hale and Fuller 1996) or by immobilizing 14 

animals in trees or dens by use of an adjustable pole-mounted syringe.  We immobilized 15 

porcupines with a mixture of tiletamine hydrochloride and zolazepam hydrochloride 16 

(Telazol®, A.H. Robbins, Richmond, VA) at a rate of 7 mg/kg body weight (Hale et al., 17 

1994).  All animals were marked with self-piercing ear tags (National Band and Tag Co., 18 

Newport, KY), and individuals > 1.5 kg body mass were outfitted with radio-transmitters 19 

(L&L Electronics, Manomet, Illinois) secured by nylon mesh collars.    20 

 21 

2.3 Selection of trees by porcupines 22 
 23 

 We used radiotelemetry to locate and obtain visual observations on all animals at 24 

least twice weekly during 1997–1999.  Triangulation was used only when an animal left 25 

the study site and lack of appropriate authorization or hunting seasons precluded our safe 26 

and/or lawful access.  We recorded location and activity of each porcupine and the tree 27 

species for every animal located within a tree. Three hundred, 0.04–ha fixed-radius plots 28 
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were randomly established across the study site and sampled to assess relative availability 1 

of tree species.  We tallied all trees > 1.5 m in height because porcupines were rarely 2 

observed using trees shorter than this threshold. 3 

 4 

2.4 Morphology of target vs. nontarget trees 5 
 6 

 We randomly established 20, 500–m transects (Fig.1) in woodland habitat used by 7 

porcupines across the study area.  Transects were not placed in open grassland or guajillo 8 

habitats where porcupine activity was limited.  At 25–m intervals on each transect, we 9 

tagged the nearest porcupine-damaged (target) tree and a neighboring undamaged 10 

(nontarget) tree for a maximum of 20 pairs of trees per transect.  Most transects had 11 

fewer than 20 pairs of trees due to low availability of nontarget trees. Diameter at root 12 

collar (Cognac, 1996), height, crown diameter, crown density and bark thickness were 13 

recorded for each tree.  Basal area was determined using a 10-factor prism at each tagged 14 

tree. 15 

 Limb structure of each tree was characterized as vertical if lateral limbs generally 16 

extended upward and horizontal if lateral limbs extended outward.  Total number of 17 

porcupine feeding scars was recorded and area of bark removed (cm2) was estimated for 18 

each target tree.  Activity of bark beetles at each tree was characterized as: no beetle 19 

activity (N); attack only (A), evident by the presence of resin tubules but no successful 20 

colonization; or colonization (C), evident by the presence of  > 1 dead stems or branches 21 

resulting from beetle engravings.  Morphological and beetle activity data on all transects 22 

were collected during June-August in 1997 and 1998. 23 

 24 

2.5 Physiology of transect trees 25 
 26 

 Physiological characteristics of pinyon pines were evaluated by measuring plant 27 

moisture stress, 24-hr resin flow, monoterpene content of resin, and carbohydrate content 28 
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of phloem in August-September 1998.  Plant moisture stress was evaluated using the 1 

pressure-bomb technique (Waring and Cleary, 1967; Ritchie and Hinckley, 1975).  Stems 2 

representing current year’s growth were excised and sampled during pre-dawn hours to 3 

ensure trees were at equilibrium with regard to water potential.  4 

  Exudate from an arch punch wound (1.25 cm) was collected in plastic vials to 5 

determine 24-hr resin flow (Hodges et al., 1979) for all tagged trees.  All trees were 6 

tapped between 0700 and 0900 h to alleviate photoperiod effects. Tissue removed from 7 

the arch punch wound from 3 randomly selected pairs of trees from each transect was 8 

placed in plastic bags and frozen before processing for carbohydrate analyses.  Phloem 9 

was separated from the outer bark and dried at 45o C to a constant weight.  Samples were 10 

ground using a mortar and pestle.  Sugar extraction was performed using a modification 11 

of the method described by McCready et al. (1950) and modified by Wood and McMeans 12 

(1981) for woody tissues.  Three extractions were completed using 80% ethanol and then 13 

brought to volume using 80% ethanol for a 1:400 dilution.  Glucose, fructose, and 14 

sucrose were identified using high-pressure liquid chromatography (HPLC) and 15 

expressed in mole fractions (µmol/mL; Russo et al., 1998).     16 

 Resin for monoterpene analyses was collected from the same 3 randomly selected 17 

pairs of trees used in carbohydrate analyses.  Holes (12 mm) were drilled at an upward 18 

angle into the tree and 1-dram glass vials were screwed directly into the holes to alleviate 19 

evaporative loss of hydrocarbons.  Vials were removed after 24 h and the resin they 20 

contained was processed for subsequent gas chromatograph analysis of 7 monoterpenes 21 

(α-pinene, camphene, sabinene,  β-pinene,  myrcene, limonene, and terpinolene).  Equal 22 

volumes of chromatographic grade pentane were added to aliquots of each sample 23 

(Snyder, 1992) to facilitate injection into a gas chromatograph (Smith, 1977).   24 

 25 

2.6 Statistical analyses 26 
 27 
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 Selection of tree species by porcupines was determined by comparing use with 1 

availability using compositional analysis (Aebischer et al. 1993) and individual 2 

porcupines as the experimental unit.   Analyses were restricted to porcupines with >20 3 

locations in trees (n = 19) and to 4 groups of tree species: oaks, junipers, pinyon pines, 4 

and other.  Tree availability was based on plot sampling.  5 

 Morphological and physiological data for all trees were averaged across each 6 

transect (n = 20); hence, transects were the experimental units.  To explore porcupine 7 

selection, average values for target and nontarget trees on each transect were compared 8 

using paired t-tests and significance was set at P < 0.05.  The relationship between 9 

porcupine damage (target, nontarget) and beetle activity (none, attacked, colonized) on 10 

individual trees was examined with a χ2  test of independence.  In addition, 11 

morphological and physiological characteristics of target and nontarget trees was 12 

compared using 2-way ANOVA, with level of beetle activity and tree classification 13 

(target, nontarget) as main effects and the activity-classification interaction.  Resin 14 

chemistry data were entered as percent composition of 8 dominant monoterpenes and 15 

subjected to angular transformation before analysis.  Correlation analyses were 16 

performed to determine if percent composition of individual monoterpenes was 17 

associated with area of exposed xylem resulting from porcupine herbivory.   Alpha levels 18 

were Bonferroni-adjusted for correlation analyses of monoterpene concentrations to P = 19 

0.0024.       20 

 21 

3.  Results 22 
 23 

3.1  Selection of trees by porcupines 24 
 25 

 Thirty-seven porcupines (24F;13M) were equipped with radio collars and were 26 

tracked > 1 month during the 3-year study period, yielding 1,496 total locations.  Visual 27 

observations comprised 1,401 of the locations.  Eighty percent of those locations (n = 28 
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1,118) were in trees, 14% (n = 197) were on the ground, and only 6% ( n = 86) were 1 

located in dens. 2 

 We tallied 1,046 trees representing 10 distinct genera in the plot sampling. Ashe 3 

juniper, Texas persimmon, oaks, and pinyon pines accounted for 92% of all available tree 4 

species, and 97% of all porcupine observations occurred in these species.  Trees were 5 

used nonrandomly ( χ2
3 = 35.6, P < 0.001) by the 19 porcupines included in the analysis.  6 

Pinyon pines ranked highest in selection, and were preferred (P < 0.05) in all pairwise 7 

comparisons with other tree groups.  Oaks ranked second, and were preferred (P < 0.05) 8 

relative to junipers and other trees.   9 

 10 

3.2 Morphology of transect trees 11 
 12 

 Data were collected on 366 trees (183 pairs).  Four morphological characteristics 13 

differed between target and nontarget trees (Table 2).  Porcupines used trees that were 14 

greater in girth, taller, greater in crown diameter, and thicker-barked.  Post hoc analyses 15 

of those 5 characteristics revealed that diameter at root collar was significantly correlated 16 

with height (r = 0.79, P < 0.0001), bark thickness (r = 0.83, P < 0.0001), crown diameter 17 

(r = 0.89, P < 0.0001), and resin flow  (r = 0.50, P < 0.001). Additionally, 72 % (n = 131) 18 

of all trees damaged by porcupines (n = 183) exhibited horizontal instead of vertical 19 

lateral limb structure, indicating disproportionate use of this structural characteristic (χ2 = 20 

35.2, df  = 1, P < 0.0001).  Similarly, beetle colonization was associated with horizontal 21 

limb structure (χ2 = 13.6, df = 2, P < 0.001).  Of beetle-colonized trees, 83% (83 of 100) 22 

had horizontal limb structure vs. 62.5% (15 of 24) attacked trees and 56.9% (33 of 58) of 23 

trees with no beetle activity.  24 

 Trees damaged by porcupines were more likely to be colonized by bark beetles, 25 

and undamaged trees were more likely to free from beetle attack (χ2 = 75.3, df = 3, P < 26 

0.01, Fig. 2).  However, tree characteristics varying by level of beetle activity were not 27 
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entirely consistent with those associated with porcupine use of trees (Table 2).  Larger 1 

trees were more likely to be fed upon by porcupines and colonized by beetles; however, 2 

resin flow did not vary across levels of beetle activity.  Pinyon pine basal area varied by 3 

the interacting effects of beetle activity and tree classification (F2,92 = 3.94, P = 0.02).  4 

Basal area of pinyon pines (Table 2) was greater (P < 0.055) on colonized, nontarget 5 

trees (x + SE = 3.1 + 0.8 m2/ha) than any other combination of beetle activity and tree 6 

class (pooledx + SE = 1.4 + 0.3 m2/ha, all cellx between 1.1 and 1.8 m2/ha ).   7 

Number of porcupine scars was correlated positively with area of bark that had 8 

been removed ( r = 0.90, P < 0.0001).   Area of bark removed was less (P < 0.001) on 9 

trees that exhibited no beetle activity or attack only (pooledx + SE = 303 cm2 + 75) than 10 

on trees that had been colonized (x + SE = 989 cm2 + 152).     11 

 12 

3.3 Physiology of transect trees 13 
 14 

 Target trees had greater resin flow than nontarget trees (Table 2). Plant moisture 15 

stress did not differ between target and non-target trees (P > 0.05) and measurable 16 

amounts of sucrose were found in only 2 samples collected from transects.  Glucose and 17 

fructose dominated all samples, but did not differ between target and nontarget trees 18 

(glucose:x + SE = 0.410 µmol/mL + 0.020; fructose: 0.417 µmol/mL + 0.023).  Trees 19 

that were colonized by beetles had higher levels of both these sugars (glucose: 0.451 20 

µmol/mL + 0.021, P < 0.01; fructose: 0.455 µmol/mL + 0.022, P < 0.03) than trees that 21 

had no beetle activity or had been attacked only (glucose: 0.389 µmol/mL + 0.019; 22 

fructose: 0.395 µmol/mL + 0.022).  An interaction in fructose concentration across levels 23 

of beetle activity and by tree classification approached significance (P < 0.08).  24 

Undamaged trees that were colonized by beetles tended to have higher levels of fructose 25 

(0.544 µmol/mL + 0.04) than target trees (0.422 µmol/mL + 0.03) and undamaged trees 26 

with no beetle activity or attack only (0.386 µmol/mL + 0.02).  Fructose concentrations 27 
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also were higher in undamaged colonized trees than all target trees (0.422 µmol/mL + 1 

0.03).   2 

 The most abundant monoterpenes in target and nontarget trees (n = 120) were α-3 

pinene, β-pinene, and limonene (Table 3).  Alpha-pinene concentration was correlated 4 

negatively with sabinene ( r = -0.36, P < 0.0017), β-pinene ( r = -0.89, P < 0.0001), 5 

myrcene ( r = -0.73, P < 0.0001), limonene ( r < -0.88, P < 0.001), and terpinolene ( r = -6 

0.35, P < 0.002).  Positive correlations were evident between sabinene and myrcene ( r = 7 

0.40, P < 0.0005), β-pinene and myrcene ( r = 0.72, P < 0.0001), β-pinene and limonene 8 

( r = 0.67, P < 0.0001), myrcene and limonene ( r = 0.48, P < 0.001), myrcene and 9 

terpinolene ( r = 0.45, P < 0.0001) and terpinolene and sabinene ( r = 0.97, P < 0.0001). 10 

  Of the terpenes we examined, only myrcene concentration differed between 11 

target and nontarget trees (P = 0.008; Table 3).   Negative associations were detected 12 

between area of bark removed and levels of sabinene ( r = -0.48, P = 0.03), terpinolene ( 13 

r = -0.47, P =0.03), and myrcene ( r = -0.16, P = 0.08).  Sabinene, limonene, and 14 

terpinolene occurred in lower proportions in trees that had been colonized or attacked 15 

than in trees with no beetle activity (Table 3).  The only monoterpene affected by the 16 

interaction of beetle activity and porcupine damage was camphene (F2,63 = 5.16, P = 17 

0.008).  Undamaged, colonized trees had higher proportions of this monoterpene (x + 18 

SE = 2.4% + 1.9) than trees with other combinations of beetle activity and porcupine 19 

damage (pooledx = 0.4% + 0.1). 20 

 21 

4. Discussion 22 

 23 

 Our findings are compatible with our predictions that porcupine bark-feeding 24 

activity predisposes pinyon pines to subsequent bark beetle activity.  Our results do not 25 

unequivocally define the mechanism that explains our observations.  However, we 26 

propose and elaborate 2 non-exclusive and likely interacting mechanisms responsible for 27 
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the facilitative association observed in our study.  These mechanisms are, first, that  1 

porcupine damage is a stressor needed for successful colonization by bark beetles, and 2 

second, that porcupine damage causes release of volatile terpenes, which in turn cue pine 3 

engraver beetles to the status of potential colonization sites.  In addition, we will reject 4 

alternative explanations regarding the direction of the indirect interaction.    5 

The first mechanism, that porcupine damage represents an additional stressor 6 

requisite to infestation by these bark beetles, is supported by our result that trees damaged 7 

by porcupines were more likely to be colonized by bark beetles than undamaged trees.  In 8 

addition, trees colonized by bark beetles had, on average, 3 times as much bark removed 9 

by porcupines as non-colonized trees.  Association of beetles with trees in areas of higher 10 

pinyon pine basal area in this study further emphasizes the role of stress in insect 11 

outbreaks (Hodges and Lorio, 1975; Mattson and Haack , 1987; Paine and Baker, 1993). 12 

Under these conditions, balance of nutrients necessary for growth and defense responses 13 

of the tree is compromised because of lower levels of photosynthates and increased 14 

competition for nutrients among within-plant processes (growth-differentiation 15 

hypothesis; Lorio, 1986).  Consistent with our results, Lombardero et al. (2000) found 16 

that resin flow induced by wounding in Pinus taeda was lowest in trees with smaller 17 

crowns and in areas of high basal density.  Successful colonization by beetles was likely 18 

facilitated because of the diminished resistance by the host tree.  We postulate that injury 19 

to trees by porcupines elicits a similar response, causing the tree to displace nutrients 20 

used for growth to the wound site for defense (Christiansen et al., 1987).  Disruption of 21 

carbon allocation by reallocation of photosynthates to terpenes and resins surrounding 22 

feeding scars, and therefore away from the remainder of the tree, puts the tree at 23 

increased vulnerability to beetle infestation. 24 

Porcupines may select pinyon pines over more abundant species to optimize 25 

nutrient acquisition and thermoregulation.  Coniferous species provide thermal 26 

advantages over deciduous species (Clarke and Brander , 1973) and frequently constitute 27 
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the preferred feeding and resting trees of porcupines (Dodge, 1967; Griesemer, 1995; 1 

Speer and Dilworth, 1978).  We observed that feeding by porcupines on oaks was 2 

restricted to leaves and acorns in the canopy, whereas consumption of bark was apparent 3 

only in pinyons.  Pine bark and cambium is easier to remove than oak bark and is 4 

generally higher in fats and water content.  Conversely, oak leaves and acorns are higher 5 

in protein than pine bark and cambium (Stricklan et al., 1995).  Live oaks on site allowed 6 

porcupines to supplement and balance winter nutritional needs with foliage, precluding a 7 

diet restricted to bark.   8 

  Paired sampling on transects allowed us to eliminate site favorability as a cause 9 

for tree selection by porcupines.  Significant correlations of height, crown diameter, bark 10 

thickness, and resin flow with diameter at root collar indicate that size is the dominant 11 

factor in intraspecific selection of trees.  Similar findings of size-related selectivity by 12 

porcupines have been reported (Krefting et al., 1962; Tenneson and Oring, 1985; Sullivan 13 

et al., 1986). Trees colonized by beetles also were larger than nontarget trees.  14 

Preponderance of horizontal limb structure in target trees was indicative of the habit of 15 

porcupines to rest on branches and then feed and remove bark within comfortable reach 16 

(Spencer, 1964).  These data validate the contention that morphological selection of trees 17 

by porcupines reflects foraging optimization (Roze, 1989).   18 

We reject alternative explanations regarding the direction of the indirect 19 

interaction.  First, it is unlikely that beetles are predisposing subsequent feeding by 20 

porcupines because beetles are facultative colonizers, usually requiring stressed hosts 21 

(but see Santoro et al., 2001), whereas porcupines are not limited by host health.  22 

Facilitation of beetle attack by porcupine feeding exemplifies an asymmetrical process.  23 

Porcupines, because of their size, sharp incisors, and large claws, select large, healthy 24 

trees from which they can easily remove bark.  Ips, however, is a facultative parasite that 25 

generally attacks stressed or injured hosts (Raffa et al., 1993; but see Santoro et al., 26 

2001). Unlike the porcupine, which is not dependent on a single host tree for survival, the 27 
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pine engraver spends much of its life cycle within the inner bark of the host, leaving only 1 

to disperse to a new host.   Furthermore, successful brood production by all scolytid 2 

beetles requires recently dead tissue (Raffa et al., 1993).  Hence, the engraving pattern 3 

typical in the course of colonization by Ips beetles results in death of the colonized host 4 

limb/whole tree, rendering it unavailable for use by porcupines.    5 

We also reject the alternative explanation that the relationship we observed was a 6 

result of similar tree preferences by the 2 dendrophages in our study system.  This 7 

explanation was similarly discussed and ultimately rejected for a budworm 8 

(Choristoneura pinus pinus)–bark beetle (Ips grandicollis)–woodborer (Monochamus 9 

carolinensis) system (Wallin and Raffa, 2001). Porcupines and beetles exhibited several  10 

differences in tree selection, especially physiologically.  Our data indicate that 11 

biochemical variability may influence porcupine diet selection, but minimally.  We found 12 

no correlation between feeding activity of porcupines and levels of limonene, in contrast 13 

to Snyder and Linhart (1997).  Target and nontarget trees of porcupines differed for only 14 

1 physiological measure, myrcene concentration.  On the other hand, as discussed below, 15 

the biochemical composition of trees colonized by beetles differed from uncolonized 16 

trees for several terpenes and carbohydrates.  Association of increased beetle colonization 17 

on trees with higher levels of glucose and fructose was not surprising given nutritional 18 

requirements of the pine engraver (Haack and Slansky, 1987).     19 

We propose that the second mechanism to explain the directional nature of the 20 

association between beetle colonization and porcupine feeding activity is that damage by 21 

porcupines causes release of volatile terpenes, thereby cueing pine engraver beetles to 22 

presence of toxic substances and availability of potential pheromone precursors.  Such a 23 

mechanism parallels that observed for defoliator-conifer-bark beetle models of host-24 

herbivore interactions (Wallin and Raffa, 1999; Erbilgin et al., 2003).  In those systems, 25 

variation in monoterpene content and composition of the induced defenses of a host tree 26 

led to variation in the relative aggregation or inhibition of bark beetles (Ips pini; Erbilgin 27 
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et al., 2003). Defoliation intensity, which is analogous to amount of bark removed in our 1 

study, directly altered monoterpene composition and was inversely related to 2 

monoterpene concentration over long time frames (≥ 12 months; Wallin and Raffa, 1999, 3 

2001).      4 

Beetles, in contrast to the porcupine, appeared to select trees based on 5 

monoterpene characteristics of resin.  High levels of limonene are toxic to many bark 6 

beetles (Harborne, 1993) and explain increased beetle activity on trees in our study area 7 

exhibiting low proportions of this monoterpene.  Loreto et al. (2000) reported increased 8 

emissions of limonene and α-pinene in artificially wounded needles of the Mediterranean 9 

pine (Pinus pinea).  Hence, bark removal by the porcupine and resultant vaporization of 10 

limonene may alert the beetle to levels of this hydrocarbon.  Similar responses to 11 

herbivore-induced volatile plant terpenes and other plant chemicals have been reported 12 

for parasitic wasps (Turlings et al., 1990) and anthocorid predators (Drukker et al., 2000).   13 

Chemical reactions between host monoterpenes and pheromone production are 14 

complex and have not been identified completely for I. hoppingi.  However, myrcene and 15 

α-pinene serve as pheromone precursors in other species of pine engraver beetles 16 

(Hughes, 1974; Renwick et al., 1976; Hughes and Renwick, 1977; Byers et al., 1979). 17 

Cane et al. (1990) reported a lack of pheromone specificity occurring between I. confusus 18 

and I. hoppingi, which are closely related to I. paraconfusus but are host-specific to 19 

pinyon pines.  They attributed this lack of specificity to recent phylogenetic divergence of 20 

these beetles.  Based on the close phylogenetic relationship among these species of Ips, 21 

we speculate that myrcene and α-pinene may be suitable pheromone precursors for I. 22 

hoppingi. 23 

 The overwhelming dominance of monoterpene composition by α-pinene in all 24 

groups of trees may have masked an association between beetle colonization and this 25 

terpene.  Alpha-pinene, a major constituent of pines and other conifers, is particularly 26 

dominant in pinyon pines.  Percent composition of this monoterpene ranges from about 27 
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10% in ponderosa pine (Sturgeon, 1979; Snyder, 1992) to > 90% in populations of 1 

Mexican pinyon pine (Pinus cembroides) in the Big Bend region of Texas (Zavarin and 2 

Snajberek, 1985).  We postulate that I. hoppingi is either an α-pinene obligate species or 3 

harbors Bacillus cereus and is therefore able to biosynthesize this monoterpene, as in Ips 4 

paraconfusus (Brand et al. 1975).  Beetles attacked or colonized trees with lower levels 5 

of sabinene and terpinolene, which were terpenes that were correlated negatively with 6 

concentrations of α-pinene.  7 

We acknowledge that a stronger test of our hypothesis would have included 8 

experimental manipulation of trees or demonstrating the temporal sequence of 9 

dendrophagy.  Alternatively, long-term temporal observation across a quantified range of 10 

bark removal by porcupines (sensu Wallin and Raffa, 2001) also would also strengthen 11 

our inference.  However, we were constrained by the limited number of pinyon pines of 12 

comparable size and possessing physiological characteristics preferred by porcupines that 13 

were also free of porcupine and/or beetle damage (Ilse, 2001).  Conservation concerns on 14 

the study area also precluded the ability to artificially inflict damage requisite to 15 

experimental manipulation.  Therefore, we were unable to adequately test our hypothesis 16 

with an experimental manipulation at our study site.  However, our detailed observational 17 

data supports the hypothesis and rejects alternative explanations.   18 

 The novel aspect of our work is the focus on the indirect effects of a vertebrate  19 

dendrophage on a insect dendrophage with the same host plant, as opposed to the large 20 

body of work exploring effects of insect defoliators on host plant suitability to other 21 

insect herbivores.    However, the proposed mechanisms for the association between 22 

porcupines and bark beetles fit within the framework of integrated theories explaining 23 

host plant-herbivore interactions.  First, the porcupine feeding process can be generalized 24 

to a mechanical stress to the host tree, rendering it susceptible to invertebrate infestation.   25 

The outcome of the invertebrate attack likely depends on the interaction among seasonal 26 

timing of initial damage by porcupines, attack magnitude by beetles, and the induced-27 
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defense response of the stressed host (Raffa and Berryman, 1983), which is a trade-off 1 

best explained by the growth-differentiation model of plant resistance (Lorio, 1986; 2 

Herms and Mattson, 1992).  Second, the putative mechanism linking the 2 dendrophages 3 

involves release of chemical cues (e.g., monoterpenes) from the host tree that are 4 

triggered by the mechanical damage. The specific composition and concentration of these 5 

cues can either trigger beetle aggregation or inhibit beetle attraction (Erbilgin et al., 6 

2003).  We suggest that the differential nature of the induced response by host plants to 7 

varying types of wounding (e.g., defoliation, root pathogenic infection, bark removal) be 8 

examined.           9 
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 1 
Table 1.  Availability and use of dominant tree species by porcupines on Kickapoo 

Caverns State Park, southwestern Texas, USA, 1996-1999. 
 
  Availabilitya  (n =965)  Use (n = 1092) 

Tree species  n  %  n  % 

Ashe juniper  350  36  155  14 

Oak species  253  26  393  35 

Texas persimmon  216  22  2  0.2 

Papershell pinyon pine  146  15  542  50 

 2 
a Based on 300, 0.04 ha fixed-radius plots. 3 
 4 
 5 
     6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 



 1 

Table 2.  Morphological and physiological characteristics of pinyon pines differing with regard to porcupine and bark beetle activity on the 2 

Kickapoo Caverns State Park, southwestern Texas, USA 1996-1999. Values represent average of 20 transect means. 3 
  Porcupines  Beetlesa 

  Target  Nontarget    None  Attacked   Colonized   

Characteristic   x   SE  x  SE  P b   x SE  x SE  x SE P c 

DRC (cm)d  22.3  1.1 12.4  0.5  <0.001  14.8 A 0.6 15.2 A 0.9   23.6 B 0.9 < 0.001 

Height (m)  4.6  0.2 3.2  0.1  <0.001  4.4 A 0.2 4.6 A 0.3    7.1 B 0.3 < 0.001 

Crown diameter (m)  4.1  0.2 2.3  0.1  <0.001  2.7 A 0.2 2.7 A 0.2    4.1 B 0.2 < 0.001 

Crown density (%)  88.7  1.7 88.2  1.7   0.755  88.1AB 0.2 91.8A 0.2   84.3B 0.2    0.147 

Bark thickness (cm)  0.8  0.03 0.4  0.02  <0.001  0.4 A 0.03 0.4 A 0.0    0.8 B 0.0 < 0.001 

Basal area (m2/ha)e  3.1  0.2 1.5  0.2   0.424  1.5 A 0.3 1.3 A 0.3    2.0 B 0.4    0.04 

24-hr Resin flow 
(mL) 

 2.6  0.3 1.4  0.2  <0.001  1.9 0.2 2.0 0.3    2.6 0.3    0.09 

 4 

    a  Means for each characteristic with the same letter are not different at α = 0.05 level of significance. 5 

    b  Main effect of porcupine damage (present or absent). 6 

    c    Main effect of level of beetle activity.   7 

   d Diameter at root collar.   8 

   e  See text for discussion of interactive effects. 9 
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Table 3.  Percent (+ SE) composition of seven monoterpenes occurring in papershell pinyon pines used by porcupines and pine engraver beetles on 1 

the Kickapoo Caverns State Park, southwestern Texas, USA, 1999.  Values represent average of 20 transects (3 pairs of trees/transect). 2 

  Porcupines  Beetles a 

Monoterpene %  Target   Nontarget  P b  None  Attacked   Colonized  P c 

α-pinene  86.15 + 1.83  82.63 + 2.16  0.1187  80.14 + 2.28  86.30 + 3.03  88.9 + 1.96  0.1201 

Camphene d  0.39 + 0.06  0.56 + 0.10  0.3864  0.37 + 0.07A  0.38 + 0.10A  0.67 + 0.28B  0.0223 

Sabinene  0.60 + 0.21  0.79 + 0.25  0.4483  0.62 + 0.17A  1.65 + 0.60B  0.15 + 0.08A  0.0218 

β-pinene  5.04 + 0.91  6.65 + 0.97  0.1298  7.64 + 1.06  4.8 + 1.27  4.11 + 1.09  0.2111 

Myrcene  0.63 + 0.11  1.08 + 0.14  0.0084  1.03 + 0.15  0.86 + 0.19  0.61 + 0.14  0.4413 

Limonene  6.79 + 0.98  7.89 + 1.11  0.2957  9.82 + 1.25B  5.26 + 1.40A  5.38 + 0.93A  0.0247 

Terpinolene  0.37 + 0.11  0.44 + 0.11  0.6043  0.34 + 0.09A  0.91 + 0.28B  0.17 + 0.05A  0.0138 

 3 
a  Means for each monoterpene with the same letter are not different at α = 0.05 level of significance. 4 
               5 
b   Main effect of porcupine damage (present or absent). 6 
 7 
c   Main effect of level of beetle activity. 8 
 9 
d     See text for discussion of interactive effects. 10 
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 3 

 4 

Figure Captions 5 

 6 

Fig. 1.  Location of study site, Kickapoo Caverns State Park, in southwestern Texas, USA with 7 

solid bars delineating vegetation transects. 8 

 9 

Fig. 2.  Association of bark beetle activity on target (porcupine-damaged) and nontarget (non-10 

damaged) pinyon pines on Kickapoo Caverns State , in southwestern Texas, USA.  N = no beetle 11 

activity; A = beetle attack only, C = beetle colonization.  12 
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