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Prediction Intervals for Regression Models

David J. Olive∗

Southern Illinois University

March 6, 2006

Abstract

This paper presents simple large sample prediction intervals for a future re-

sponse Yf given a vector xf of predictors when the regression model has the form

Yi = m(xi) + ei where m is a function of xi and the errors ei are iid. Intervals

with correct asymptotic coverage and shortest asymptotic length can be made by

applying the shorth estimator to the residuals. Since residuals underestimate the

errors, finite sample correction factors are needed.

As an application, three prediction intervals are given for the least squares

multiple linear regression model. The asymptotic coverage and length of these

intervals and the classical estimator are derived. The new intervals are useful since

the distribution of the errors does not need to be known, and simulations suggest
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that the large sample theory often provides good approximations for moderate

sample sizes.

KEY WORDS: multiple linear regression; prediction intervals.

2



1 INTRODUCTION

Regression is the study of the conditional distribution Y |x of the response Y given the

p × 1 vector of predictors x. An important regression model is

Yi = m(xi) + ei (1.1)

for i = 1, ..., n where m is a function of xi and the errors ei are continuous and iid. Many

of the most important regression models have this form, including the multiple linear

regression model and many time series, nonlinear, nonparametric and semiparametric

models. If m̂ is an estimator of m, then the ith residual is ri = Yi − m̂(xi) = Yi − Ŷi.

Notation is needed for the population and sample percentiles. Let ξα be the α per-

centile of the error e, i.e., P (e ≤ ξα) = α. Let ξ̂α be the sample α percentile of the

residuals, e.g., as computed by the R/Splus function quantile.

An important topic in regression analysis is predicting a future observation Yf given a

vector of predictors xf where (Yf ,xf ) comes from the same population as the past data

(Yi,xi) for i = 1, ..., n. Let 1 − α2 − α1 = 1 − α with 0 < α < 1 and α1 < 1 − α2 where

0 < αi < 1. Then

P [Yf ∈ (m(xf ) + ξα1,m(xf ) + ξ1−α2)] = P (m(xf ) + ξα1 < m(xf) + ef < m(xf ) + ξ1−α2)

= P (ξα1 < ef < ξ1−α2) = 1 − α2 − α1 = 1 − α.

A large sample 100(1 − α)% prediction interval (PI) has the form (L̂n, Ûn) where

P (L̂n < Yf < Ûn)
P→ 1 − α as the sample size n → ∞. See Patel (1989) for a review. To

derive a simple PI, assume that m̂ is consistent: m̂(x)
P→ m(x) as n → ∞. Then

ri = Yi − m̂(xi)
P→ Yi − m(xi) = ei and ξ̂α

P→ ξα.
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Consequently,

P [Yf ∈ (m̂(xf ) + ξ̂α1, m̂(xf ) + ξ̂1−α2)]
P→ 1 − α

as the sample size n → ∞. Typically the squared residuals underestimate the squared

errors. Hence (m̂(xf ) + ξ̂α1, m̂(xf ) + ξ̂1−α2) has less than 100(1 − α)% coverage in small

samples. Multiplying ξ̂α1 by an and ξ̂1−α2 by bn where, for example, an = bn = 1 + 15/n,

can greatly improve the small sample performance of the PI. If an
P→ 1 and bn

P→ 1 as

n → ∞, then

(L̂n, Ûn) = (m̂(xf) + anξ̂α1 , m̂(xf ) + bnξ̂1−α2) (1.2)

is a large sample 100(1 − α)% PI for Yf .

Preston (2000) suggested the PI (1.2) with an = bn ≡ 1 for simple linear regression.

The following section will give illustrations of (1.2) and show how to choose the finite

sample correction factors an and bn.

2 Examples

The location model is

Yi = µ + ei (2.1)

for i = 1, ..., n. Hence xi = 1 and m(xi) = µ. If m̂(xi) = µ̂ for all i, then the ith residual

ri = Yi − µ̂, and the sample percentiles ξ̂α of the residuals are related to the sample

percentiles ξ̂α(Y ) of Y by ξ̂α = ξ̂α(Y )− µ̂. Thus m̂(xi) + ξ̂α = µ̂ + ξ̂α(Y )− µ̂ = ξ̂α(Y ). If

an = bn ≡ 1, then the PI (1.2) becomes the usual nonparametric PI

(ξ̂α1(Y ), ξ̂1−α2(Y )). (2.2)
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Example 2.1. The Buxton (1920) data contains heights of 87 men (in mm) but 5

heights were recorded to be about 0.75 inches tall. Deleting these 5 cases and setting

α1 = α2 = 0.05 yields a large sample 90% PI (1590,1790). It turns out that the 5 outliers

were recorded under head length and were 1755, 1537, 1650, 1675 and 1610. Hence 4 out

of 5 of these values fell within the PI.

Parametric PIs often try to find a pivotal quantity based on Yf − m̂(xf ). Assume

that (Yf ,xf) is independent of the past data and that VAR(e) = σ2. Since m̂ is based on

the past, Yf and m̂ are independent and VAR(Yf −m̂(xf)) = VAR(Yf )+VAR(m̂(xf)) =

VAR(ef) + VAR(m̂(xf )) = σ2 + VAR(m̂(xf)). If σ̂2 P→ σ2 and V̂ is an estimator of

VAR(m̂(xf )) such that V̂
P→ 0, then the pivotal quantity T satisfies

T − ef

σ
=

Yf − m̂(xf)√
σ̂2 + V̂

− ef

σ
P→ 0.

Thus the percentiles of T estimate the percentiles of e/σ, asymptotically.

The most important regression model is the multiple linear regression (MLR) model

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (2.3)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (2.4)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors.

We will assume that xi,1 ≡ 1 and that the iid errors have 0 mean and constant variance

σ2. Note that the 0 mean assumption can be made without loss of generality since if

5



Yi = β̃1 +xi,2β2 + · · ·+xi,pβp + ẽi where E(ẽi) ≡ µ, then Yi = β1 +xi,2β2 + · · ·+xi,pβp + ei

where ei = ẽi − µ and β1 = β̃1 + µ. Thus E(Yi) = m(xi) = xT
i β.

Under regularity conditions, the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ) (2.5)

when

XT X

n
→ W −1.

This large sample result is analogous to the central limit theorem and is often a good

approximation if n > 5p and the error distribution has “light tails,” i.e., the tails go to

zero at an exponential rate or faster. For error distributions with heavier tails, much

larger samples are needed, and the assumption that the variance σ2 exists is crucial,

e.g., Cauchy errors are not allowed. Also, outliers can cause OLS to perform arbitrarily

poorly.

Under regularity conditions, much of the inference for MLR that is valid when the

iid errors ei ∼ N(0, σ2), is approximately valid when the ei are iid with 0 mean and

constant variance if the sample size is large. For example, confidence intervals for βi are

asymptotically correct, the MSE can be used to estimate σ2 (see Seber and Lee 2003, p.

45) and variable selection procedures perform well (see Olive and Hawkins 2005).

However, parametric prediction intervals made under the assumption that ei ∼ N(0, σ2)

may not perform well. Following Seber and Lee (2003, p. 132), the classical parametric

100(1 − α)% PI is

Ŷf ± tn−p,1−α/2

√
MSE

√
(1 + hf) (2.6)

where P (T ≤ tn−p,α) = α if T has a t distribution with n− p degrees of freedom and the
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“leverage”

hf = xT
f (XT X)−1xf .

Notice that if the ei have constant variance σ2, then VAR(Yf − Ŷf ) = VAR(Yf ) +

VAR(Ŷf ) ≈ σ2 + σ2hf using the fact that Yf is independent of Ŷf and the fact that

for large samples β̂ ≈ Np(β, σ2(XT X)−1) so that xT
f β̂ ≈ N(xT

f β, σ2xT
f (XT X)−1xf).

Here the approximation that VAR(Ŷf ) = VAR(xT
f β̂) ≈ σ2xT

f (XT X)−1xf = σ2hf is

being used. If the errors ei ∼ N(0, σ2), then the approximation is exact and the pivotal

quantity

T =
Yf − Ŷf√

MSE(1 + hf)
∼ tn−p.

We assume that hf ≤ maxi=1,...,n hi since otherwise extrapolation is occuring, i.e.,

(Yf ,xf) is not from the same population as the past data (Yi,xi) and the PI can not be

expected to be valid. Then typically hf → 0 and

T − e

σ
P→ 0.

Notice that the PI

Ŷf ± tn−p,1−α/2

√
MSE

√
(1 + hf ) = Ŷf ± z1−α/2

√
MSE

tn−p,1−α/2

z1−α/2

√
(1 + hf ).

Thus the quantity

an = bn =
tn−p,1−α/2

z1−α/2

√
(1 + hf )

can be regarded as a finite sample correction factor if ei ∼ N(0, σ2) where P (Z ≤ zα) = α

if Z ∼ N(0, 1).

Let 1 − δ be the asymptotic coverage of the classical nominal (1 − α)100% PI (2.6).
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Then

1 − δ = P (−σz1−α/2 < e < σz1−α/2) ≥ 1 − 1

z2
1−α/2

(2.7)

where the inequality follows from Chebyshev’s inequality.

Next we find an = bn in order to tailor the PI (1.2) for MLR. Notice that

E(MSE) = E

(
n∑

i=1

r2
i

n − p

)
= σ2 = E

(
n∑

i=1

e2
i

n

)

suggests that
√

n

n − p
ri ≈ ei.

Using

an =
(
1 +

15

n

)√
n

n − p

√
(1 + hf ), (2.8)

a large sample semiparametric 100(1 − α)% PI for Yf is

(Ŷf + anξ̂α/2, Ŷf + anξ̂1−α/2). (2.9)

This PI is very similar to the classical PI except that ξ̂α is used instead of σzα to estimate

the error percentiles ξα. The term
√

n
n−p

is needed since the squared residuals underesti-

mate the squared errors, and the term 1+15/n was found to work well in the simulation

study described below. Stine (1985) used the bootstrap to provide nonparametric PIs

while Schmoyer (1992) gave asymptotically valid PIs based on the quantiles of a convo-

lution of the empirical distribution of the residuals and the limiting normal distribution

of the parameter estimates.

An asymptotically conservative (ac) 100(1−α)% PI has asymptotic coverage 1− δ ≥

1 − α. We used the (ac) 100(1 − α)% PI

Ŷf ±
√

n

n − p
max(|ξ̂α/2|, |ξ̂1−α/2|)

√
(1 + hf ) (2.10)
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which has asymptotic coverage

1 − δ = P [−max(|ξα/2|, |ξ1−α/2|) < e < max(|ξα/2|, |ξ1−α/2|)]. (2.11)

Notice that 1 − α ≤ 1 − δ ≤ 1 − α/2 and 1 − δ = 1 − α if the error distribution is

symmetric.

Example 2.2. For the Buxton (1920) data suppose that the response Y = height

and the predictors were a constant, head length, nasal height, bigonal breadth and cephalic

index. Five outliers were deleted leaving 82 cases. Figure 1 shows a fit response plot of

the fitted values versus the response Y with the identity line added as a visual aid. If the

model is good then the plotted points should scatter about the identity line in an evenly

populated band. The triangles represent the upper and lower limits of the semiparametric

95% PI (2.9). Notice that 79 (or 96%) of the Yi fell within their corresponding PI while

3 Yi did not.

In the simulations below, ξ̂α will be the sample percentile for the PIs (2.9) and (2.10).

A PI is asymptotically optimal if it has the shortest asymptotic length that gives the

desired asymptotic coverage. An asymptotically optimal PI can be created by applying

the shorth(c) estimator to the residuals where c = dn(1 − α)e and dxe is the smallest

integer ≥ x, e.g., d7.7e = 8. That is, let r(1), ..., r(n) be the order statistics of the resid-

uals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let (r(d), r(d+c−1)) = (ξ̂α1 , ξ̂1−α2)

correspond to the interval with the smallest distance. See Grübel (1988) and Rousseeuw

and Leroy (1988). Then the 100 (1 − α)% PI for Yf is

(Ŷf + anξ̂α1 , Ŷf + bnξ̂1−α2). (2.12)

In the simulations, we used an = bn where an is given by (2.8). See Di Bucchianico,
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Einmahl, and Mushkudiani (2001) for related intervals for the location model.

A small simulation study compares the PI lengths and coverages for sample sizes

n = 50, 100 and 1000 for several error distributions. The value n = ∞ gives the asymp-

totic coverages and lengths. The MLR model with E(Yi) = 1 + xi2 + · · · + xi8 was used.

The vectors (x2, ..., x8)
T were iid N7(0, I7). The error distributions were N(0,1), t3, ex-

ponential(1) −1, uniform(−1, 1) and 0.9N(0, 1) + 0.1N(0, 100). Also, a small sensitivity

study to examine the effects of changing (1 + 15/n) to (1 + k/n) on the 99% PIs (2.9)

and (2.12) was performed. For n=50 and k between 10 and 20, the coverage increased

by roughly 0.001 as k increased by 1.

The simulation compared coverages and lengths of the classical (2.6), semiparametric

(2.9), asymptotically conservative (2.10) and asymptotically optimal (2.12) PIs. The

latter 3 intervals are asymptotically optimal for symmetric error distributions in that

they have the shortest asymptotic length that gives the desired asymptotic coverage. The

semiparametric PI gives the correct asymptotic coverage if the errors are not symmetric

while the PI (2.10) gives higher coverage (is conservative). The simulation used 5000 runs

and gave the proportion p̂ of runs where Yf fell within the nominal 100(1−α)% PI. The

count mp̂ has a binomial(m = 5000, p = 1−δn) distribution where 1−δn converges to the

asymptotic coverage (1− δ). The standard error for the proportion is
√

p̂(1 − p̂)/5000 =

0.0014, 0.0031 and 0.0042 for p = 0.01, 0.05 and 0.1, respectively. Hence an observed

coverage p̂ ∈ (.986, .994) for 99%, p̂ ∈ (.941, .959) for 95% and p̂ ∈ (.887, .913) for 90%

PIs suggests that there is no reason to doubt that the PI has the nominal coverage.

Tables 1-5 show the results of the simulations for the 5 error distributions. The

letters c, s, a and o refer to intervals (2.6), (2.9), (2.10) and (2.12) respectively. For the
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normal errors, the coverages were about right and the semiparametric interval tended to

be rather long for n = 50 and 100. The classical PI asymptotic coverage 1− δ tended to

be fairly close to the nominal coverage 1 − α for all 5 distributions and α = 0.01, 0.05,

and 0.1. The classical PI was the most conservative for the uniform (−1, 1) distribution.

The classical PI had about 3% under coverage for the 99% PI when the errors were from

the mixture distribution even though the length of PI was far shorter than the optimal

asymptotic length of 32.9.

3 Conclusions

The large sample MLR prediction intervals presented in this paper are useful to practi-

tioners since the normality assumption of the errors can be relaxed. For the importance

of prediction intervals in data analysis, see Carroll and Ruppert (1991). The fit response

plot should always be made to check the adequacy of the model (1.1) and adding the

prediction limits as in Figure 1 is a valuable aid for explaining prediction intervals to

students and consulting clients.

Large sample intervals similar to (2.9), (2.10) and (2.12) can be used for model (1.1)

with Ŷf = m̂(xf ), but may perform very poorly for realistic sample sizes if good finite

sample correction factors can not be found. For semiparametric models such as spline

and kernel fits, theory for the bias of ri and the variability of m̂(xf ) is needed to find

useful correction factors. For example, theory for the bias of ri and the variability of Ŷf

suggested Equation (2.8) as a correction factor for OLS MLR.

If there is a lot of data (e.g. ≥ 50 cases) at xf , then model free prediction intervals can
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be created by applying the location model PI to the Y s at xf . If the constant variance

assumption for MLR is violated, one could use the cases in a narrow vertical slice about

xT
f β̂ in the fit response plot to make a PI. Both of these suggestions require much larger

amounts of data than the simple model based PI (1.2).

A referee noted that PIs can be improved by applying optimal design techniques as

in Müller and Kitsos (2004).

The R/Splus functions piplot and pisim, used to create Figure 1 and for the simula-

tions, are included in the collection of functions rpack.txt. The Buxton data and rpack.txt

are available from the website (http://www.math.siu.edu/olive/ol-bookp.htm).
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Table 1: N(0,1) Errors

α n clen slen alen olen ccov scov acov ocov

0.01 50 5.860 6.172 5.191 6.448 .989 .988 .972 .990

0.01 100 5.470 5.625 5.257 5.412 .990 .988 .985 .985

0.01 1000 5.182 5.181 5.263 5.097 .992 .993 .994 .992

0.01 ∞ 5.152 5.152 5.152 5.152 .990 .990 .990 .990

0.05 50 4.379 5.167 4.290 5.111 .948 .974 .940 .968

0.05 100 4.136 4.531 4.172 4.359 .956 .970 .956 .958

0.05 1000 3.938 3.977 4.001 3.927 .952 .952 .954 .948

0.05 ∞ 3.920 3.920 3.920 3.920 .950 .950 .950 .950

0.1 50 3.642 4.445 3.658 4.193 .894 .945 .895 .929

0.1 100 3.455 3.841 3.519 3.690 .900 .930 .905 .913

0.1 1000 3.304 3.343 3.352 3.304 .901 .903 .907 .901

0.1 ∞ 3.290 3.290 3.290 3.290 .900 .900 .900 .900
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Table 2: t3 Errors

α n clen slen alen olen ccov scov acov ocov

0.01 50 9.539 12.164 11.398 13.297 .972 .978 .975 .981

0.01 100 9.114 12.202 12.747 10.621 .978 .983 .985 .978

0.01 1000 8.840 11.614 12.411 11.142 .975 .990 .992 .988

0.01 ∞ 8.924 11.681 11.681 11.681 .979 .990 .990 .990

0.05 50 7.160 8.313 7.210 8.139 .945 .956 .943 .956

0.05 100 6.874 7.326 7.030 6.834 .950 .955 .951 .945

0.05 1000 6.732 6.452 6.599 6.317 .951 .947 .950 .945

0.05 ∞ 6.790 6.365 6.365 6.365 .957 .950 .950 .950

0.1 50 5.978 6.591 5.532 6.098 .915 .935 .900 .917

0.1 100 5.696 5.756 5.223 5.274 .916 .913 .901 .900

0.1 1000 5.648 4.784 4.842 4.706 .929 .901 .904 .898

0.1 ∞ 5.698 4.707 4.707 4.707 .935 .900 .900 .900
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Table 3: Exponential(1) −1 Errors

α n clen slen alen olen ccov scov acov ocov

0.01 50 5.795 6.432 6.821 6.817 .971 .987 .976 .988

0.01 100 5.427 5.907 7.525 5.377 .974 .987 .986 .985

0.01 1000 5.182 5.387 8.432 4.807 .972 .987 .992 .987

0.01 ∞ 5.152 5.293 8.597 4.605 .972 .990 .995 .990

0.05 50 4.310 5.047 5.036 4.746 .946 .971 .955 .964

0.05 100 4.100 4.381 5.189 3.840 .947 .971 .966 .955

0.05 1000 3.932 3.745 5.354 3.175 .945 .954 .972 .947

0.05 ∞ 3.920 3.664 5.378 2.996 .948 .950 .975 .950

0.1 50 3.601 4.183 3.960 3.629 .920 .945 .925 .916

0.1 100 3.429 3.557 3.959 3.047 .930 .943 .945 .913

0.1 1000 3.303 3.005 3.989 2.460 .931 .906 .951 .901

0.1 ∞ 3.290 2.944 3.991 2.303 .929 .900 .950 .900
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Table 4: Uniform(−1, 1) Errors

α n clen slen alen olen ccov scov acov ocov

0.01 50 3.394 3.088 2.539 3.177 1.00 .998 .981 .999

0.01 100 3.158 2.589 2.361 2.542 1.00 .996 .985 .994

0.01 1000 2.991 2.068 2.068 2.060 1.00 .995 .993 .993

0.01 ∞ 2.975 1.980 1.980 1.980 1.00 .990 .990 .990

0.05 50 2.535 2.768 2.267 2.748 .979 .990 .954 .988

0.05 100 2.391 2.328 2.115 2.277 .988 .984 .956 .978

0.05 1000 2.275 1.937 1.935 1.927 1.00 .960 .955 .951

0.05 ∞ 2.263 1.900 1.900 1.900 1.00 .950 .950 .950

0.1 50 2.110 2.505 2.041 2.403 .919 .974 .904 .956

0.1 100 1.998 2.133 1.937 2.076 .935 .963 .916 .943

0.1 1000 1.908 1.827 1.825 1.811 .949 .910 .910 .898

0.1 ∞ 1.899 1.800 1.800 1.800 .950 .900 .900 .900
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Table 5: 0.9 N(0,1) + 0.1 N(0,100) Errors

α n clen slen alen olen ccov scov acov ocov

0.01 50 18.296 27.425 26.958 30.829 .964 .975 .980 .977

0.01 100 17.566 29.226 30.774 26.265 .961 .977 .982 .972

0.01 1000 17.072 32.306 34.056 31.100 .960 .988 .990 .987

0.01 ∞ 17.010 32.898 32.898 32.898 .960 .990 .990 .990

0.05 50 13.623 15.636 15.262 14.829 .945 .945 .943 .942

0.05 100 13.200 13.901 15.235 11.676 .949 .945 .954 .938

0.05 1000 12.971 13.257 14.656 12.354 .948 .948 .952 .945

0.05 ∞ 12.942 13.490 13.490 13.490 .948 .950 .950 .950

0.1 50 11.455 9.973 8.931 8.526 .937 .919 .901 .910

0.1 100 11.140 7.513 7.546 6.620 .941 .909 .907 .906

0.1 1000 10.871 4.939 5.096 4.791 .944 .904 .908 .901

0.1 ∞ 10.862 4.638 4.638 4.638 .934 .900 .900 .900
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