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FROM STAR CHARTS TO STONEFLIES: DETECTING RELATIONSHIPS IN
CONTINUOUS BIVARIATE DATA

JAMES E. GARVEY,1 ELIZABETH A. MARSCHALL,2 AND RUSSELL A. WRIGHT3

Aquatic Ecology Laboratory, Department of Zoology, Ohio State University, 1314 Kinnear Road,
Columbus, Ohio 43212 USA

Abstract. Within many ecological systems, relationships between controlling factors
and associated response variables are complex. In many cases, the response should vary
little when the controlling factor exerts strong effects. Conversely, when the effect of the
controlling factor is weak or absent, the response may vary greatly with effects of other
factors. Correlation or regression analyses often may not be appropriate for testing these
relationships, because variance of the response changes with values of the controlling factor.
We suggest using a technique from the astronomy literature, a two-dimensional Kolmo-
gorov-Smirnov (2DKS) test, to detect relationships in bivariate data with these patterns of
variance. This technique successfully identified simulated bivariate data composed of paired
independent values as having nonsignificant relationships and simulated bivariate data in
which mean and variance of y was constrained at high levels of x as having significant
relationships. Using these simulations and examples from aquatic and terrestrial systems,
we demonstrate that the 2DKS is a robust test for detecting nonrandom patterns in bivariate
distributions that commonly arise in many ecological systems.

Key words: bivariate distributions; correlation; limiting factors; nonparametric test; statistical
test; two-dimensional Kolmogorov-Smirnov test; variance.

INTRODUCTION

Within many ecological systems, complex interac-
tions underlie observed patterns. In many cases, func-
tional relationships exist between controlling factors
and associated response variables. However, the
strength of these relationships often differ greatly over
the range of observed values. For example, in many
systems, we expect the response to vary little when the
controlling factor exerts strong effects. Conversely,
when the effect of the controlling factor is weak or
absent, the response may vary greatly with the influ-
ence of other factors. Though we often attempt to char-
acterize these relationships statistically using correla-
tions and regressions, these unsatisfactory approaches
clearly violate the assumption that variance of the re-
sponse does not change with the magnitude of the con-
trolling factor. These techniques fail to capture an im-
portant and interesting characteristic of these relation-
ships: Correlations between the response and control-
ling factor change over the range of observations.

To illustrate some common features of these types
of data sets, we use density data from two co-occurring
benthic insects. Leuctra tenuis (a stonefly) and Ame-
letus ludens (a mayfly) were sampled in pools in head-
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water streams in Ohio (see Dingledine 1996 for de-
tails). Though experimental results indicated that Ame-
letus distributions were likely strongly controlled by
presence/absence of fish, Leuctra densities were not as
easily explained by these fish treatments. To answer
the post hoc question of whether Leuctra might be re-
sponding to presence of Ameletus rather than to fish,
we plotted the densities of Leuctra vs. Ameletus from
each benthic sample (Fig. 1; Dingledine 1996). Clearly,
at high Ameletus densities, Leuctra were rare, whereas
at low Ameletus densities, Leuctra occurred at both
high and low densities (Fig. 1). Though Leuctra and
Ameletus densities may have been negatively related
when Ameletus were abundant, a regression (implying
a functional relationship between Leuctra and Amele-
tus) over the entire range of data would be inappro-
priate if other factors drove Leuctra densities when
Ameletus were rare. A traditional measure of correla-
tion (e.g., Pearson product–moment correlation) also
would not be appropriate because of its underlying as-
sumption of a linear relationship between variables,
which is clearly of little relevance in these data.

Rather than asking how much variance can be ex-
plained by these two factors, we suggest asking if the
distributions of Ameletus and Leuctra densities could
arise independently. Our initial willingness to interpret
the absence of data points in the upper right quadrant
of Fig. 1 as indicating that Ameletus had a negative
effect on Leuctra was tempered by the fact that neither
species occurred in high numbers very frequently. Even
if density distributions of the two species were inde-
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FIG. 1. Relationship between number of Ameletus and
Leuctra per benthic core (N 5 72 cores) in pools in Ohio
headwater streams. About 51% of observations are located
at #1 Ameletus and Leuctra per benthic core. Symbols rep-
resenting overlapping values are offset slightly to demon-
strate how points are distributed on the graph. The value
producing DBKS is denoted by l.

pendent, the probability of observing them jointly at
high densities was low, given that high densities of
either species rarely occurred. Clearly, a test is required
in which we assume that the joint bivariate distribution
of densities arose independently, consisting of chance
pairings of these data. We then compare the observed
joint distribution to this null distribution, determining
whether the densities were related.

Recall that the familiar Kolmogorov-Smirnov test
compares two univariate cumulative probability distri-
butions by determining if DKS, the maximum difference
between the two distributions, is significantly large. We
have borrowed a technique from the astronomy liter-
ature to extend this approach to bivariate distributions.
Because cumulative probability distributions are not
well defined beyond one dimension (Press et al. 1992),
Fasano and Franceschini (1987) modified an approach
by Peacock (1983) to compare two-dimensional (bi-
variate) distributions. Their solution was to find the
maximum difference, DBKS, in integrated probabilities
for four quadrants around each point in the plane. If
DBKS between an observed and theoretical bivariate dis-
tribution (one-sample test) or two observed bivariate
distributions (two-sample test) exceeds that expected
randomly, we conclude that they differ. To demonstrate
the utility of the two-dimensional Kolmogorov-Smir-
nov (2DKS) test in exploring the types of relationships
described above, we provide several examples. First,
we use the 2DKS test to detect dependence between
two variables in simulated data sets. By then comparing
this test to traditional techniques using ecological ex-
amples, we demonstrate its potential widespread utility
for delineating patterns in ecological data.

METHODS

Two-dimensional Kolmogorov-Smirnov test (2DKS)

To test for independence in a single bivariate data
set (one-sample test), we used a 2DKS test (Peacock
1983, Fasano and Franceschini 1987, Press et al. 1992,
1996a, b). For each pair of coordinates (Xi, Yi, i 5 1,
. . . , n), we counted the points in each of four sur-
rounding quadrants, with Xi, Yi at the origin,

(x # X , y $ Y ) (x . X , y $ Y )i i i i

(x # X , y , Y ) (x . X , y , Y )i i i i

(i 5 1, . . . , n) (1)

and calculated associated proportions. To compare the
observed bivariate distribution to one expected if x and
y values were distributed independently, for each pair
of coordinates we calculated the proportions of ob-
served x . Xi, observed x # Xi, observed y $ Yi, and
observed y , Yi, and multiplied these to get the pro-
portions of (x, y) points that would fall in each quad-
rant. Within each quadrant, the difference between the
observed and expected proportion of points was de-
termined. After all differences were calculated, we de-
termined DBKS as the maximum difference between the
observed and expected proportions across all points
and quadrants. To determine if DBKS differed from that
expected by chance, we re-randomized the original data
5000 times (Manly 1991), performing the 2DKS test
each time to get a randomly generated difference, DRAN.
Comparing our randomly generated differences to
DBKS, we assessed the significance level of the test,
P(DRAN . DBKS).

Simulated data

In our view, rather than imposing discrete limits to
distributions, limiting factors likely restrict their vari-
ance and also may affect their mean. To determine
whether the 2DKS test detects changes in variance of
a dependent variable, y, with respect to a limiting factor,
x, we simulated 200 data sets (N 5 250 points each):
100 in which x and y were distributed independently
and 100 in which x restricted variance of y beyond some
limit. Values of x and y were generated randomly using
a routine from Press et al. (1992), with a different ran-
dom seed number for each simulation. For both sets of
simulations, we generated a random distribution of pos-
itive, independent x and y values where small numbers
were common but a significant number of large values
also were present, using the following generating func-
tion from Press et al. (1992):

3 3f d
X 5 f 1 Y 5 d 1 (2)i i1 2 1 2) ) ) )s sx y

where

2 2f ø N(0, s ) d 5 N(0, s ) (3)x y

and sx
2 5 100. For simulations in which values of x



444 Ecology, Vol. 79, No. 2JAMES E. GARVEY ET AL.

ECOLOGY
Friday Sep 18 04:17 PM
Allen Press • DTPro

ecol 79 232 Mp 444
File # 32sc

FIG. 2. Example of data from one simulation (total num-
ber of simulations 5 200; N 5 250 points) in which x and y
values with skewed positive distributions were generated and
then tested with a 2DKS test. (a) No pattern present in data;
(b) pattern present in data, where, for x . 10, variance of
randomly generated values of y was constrained. The values
producing DBKS are designated by l.

and y were distributed independently, sy
2 5 100 for all

values of x. For simulations in which values of y were
small, with constrained variance beyond a limit im-
posed by x,

2s for x # 10ya2s 5 (4)y 25s for x . 10.yb

We set sya
2 5 100 and syb

2 5 1.
We then assessed the sensitivity of the 2DKS test to

the magnitude of this restriction of variance in y for x
. 10. Using the same generating function and variance
for x as above, we conducted simulations in which
standard deviation of y (syb) was varied as a proportion
of sya. We kept sya 5 10 and varied syb from one (highly
constrained) to 10 (i.e., identical distribution of y over
the entire range of x) by increments of one. Ten rep-
licates were conducted for each level of variance (N 5
250 points each; generating a total of 100 data sets).

Empirical examples

We identified potential factors that control variance
and abundance of: (1) benthic invertebrates in a stream,
(2) fishes in reservoirs, and (3) nectar in flowers. We
argue that the 2DKS test should robustly determine the
likelihood that these bivariate data derived from two
independent, univariate distributions. In contrast, tra-
ditional regression techniques should produce poor fits
to these kinds of data, where we expect that functional
relationships between the variables is limited to some
range of values of the limiting factor. (1) We used a
2DKS test to determine whether abundances of Ame-
letus and Leuctra were related in stream pools (Fig. 1;
Dingledine 1996). We then used linear and nonlinear
(assuming a negative exponential fit to the data) least
squares regressions to determine if the assumption of
a continuous functional relationship between Ameletus
and Leuctra produces satisfactory results (SAS Insti-
tute 1985). (2) Age-0 threadfin shad (Dorosoma pe-
tenense) and gizzard shad (D. cepedianum) may com-
promise growth and survival of other sympatric age-0
fishes such as sunfish (Lepomis spp.) and white crappie
(Pomoxis annularis) through exploitative competition
for zooplankton (Guest et al. 1990, DeVries and Stein
1992, Dettmers et al. 1996). To test the hypothesis that
Dorosoma spp. limit variance and abundance of sun-
fishes in Ohio reservoirs (,100 ha), we conducted a
2DKS test to determine whether distributions of age-
0 Dorosoma spp. and sunfish densities collected across
four reservoirs and several years (Garvey et al. 1998)
could have arisen independently. Again, we applied
linear and nonlinear regressions to these data, com-
paring these results to those of the 2DKS test. (3) In
flowers, high nectar volume at a given time may be an
indication of generally high productivity; thus we
would expect this volume to be positively correlated
with production of new nectar following removal of
this initial volume. Alternatively, flowers may have a
limit to amount of nectar produced over a given period,

and then we would expect a negative correlation be-
tween amount of nectar in a flower at a given time and
production of new nectar following removal. Using
both the 2DKS test and traditional regression tech-
niques, we tested these expectations in mountain cran-
berry (Vaccinium erythrocarpum), with initial nectar
volumes measured by removing all nectar early in the
morning (0600–0800) and new nectar production mea-
sured in the three hours that followed (on flowers
bagged to exclude pollinators; E. A Marschall and L.
Real, unpublished data). All example data sets are
available in ASCII format from the second author.

RESULTS

Simulated data

When x and y were distributed independently in sim-
ulated data sets, DBKS did not differ significantly from
values generated from re-randomized distributions
(0.03 6 0.008 [mean DBKS 6 1 SD]; Fig. 2a). Out of
these 100 simulations, only five had nonrandom pat-
terns (P , 0.05; 2DKS test), as expected for random
data. In simulated data sets in which variance of y was
severely restricted at x . 10 (syb

2 5 0.01 3 sya
2), all
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FIG. 3. Sensitivity (i.e., P(DRAN . DBKS)) of the 2DKS
test to nonrandom patterns in simulated data, in which stan-
dard deviation of y (syb) varied from values of 1 (highly
constrained) to 10 (identical distribution of y over the entire
range of x) when x . 10. Ten replicate data sets were tested
at each level of variance (N 5 250 points each, generating a
total of 100 data sets).

FIG. 4. (a) Relationship between the number of shad/m3

captured in offshore zones and number of sunfish/m2 seined
in inshore areas of four Ohio reservoirs across several years
(N 5 22 lake-years). (b) Relationship between morning nectar
volume and nectar produced during three hours following
nectar removal in mountain cranberry (N 5 114 measure-
ments). Symbols representing overlapping values are offset
slightly to demonstrate how points are distributed on the
graph. The values producing DBKS are denoted by l.

TABLE 1. Results of linear (Y 5 b1X 1 b0 + «) and nonlinear (Y 5 exp[2b1X 1 b0] + «) regressions for example data sets.

Data set Regression r2 df F P

Ameletus vs. Leuctra (Fig. 1) linear
nonlinear

0.012
0.028

1, 71
2, 71

0.85
9.74

0.36
, 0.05

Shad vs. sunfish (Fig. 4a) linear
nonlinear

0.18
0.75

1, 21
2, 21

4.6
53.3

, 0.05
, 0.05

Nectar (Fig. 4b) linear
nonlinear

0.039
0.043

1, 113
2, 113

4.6
93.9

, 0.05
, 0.05

100 tests were different from random (mean DBKS 5
0.13 6 0.01; P 5 0.0002 for all tests; Fig. 2b). DBKS

occurred at x values in the range 8.4–11.4 in these tests
(mean DBKS 5 9.8 6 0.6).

Assessing the sensitivity of the 2DKS test to changes
in the magnitude of the restriction of variance in y, we
found all patterns were detected as nonrandom below
syb 5 5 (2DKS test; P 5 0.0002 for all tests; Fig. 3).
As the restricted standard deviations exceeded 5 (i.e.,
.25% of unrestricted variance), an increasing propor-
tion of the 2DKS tests failed to detect the simulated
nonrandom pattern (Fig. 3).

Examples

In five of six tests, traditional regression produced
poor fits for the three example data sets (r2 ranged from
0.012 to 0.18; Table 1), though all relationships were
significant when nonlinear regression was applied (Ta-
ble 1). Only for the shad–sunfish relationship did non-
linear regression produce a significant and satisfactory
fit (r2 5 0.75, Table 1). Though the nonlinear regression
results suggested that densities of Leuctra and Ameletus
were weakly related (Table 1), the 2DKS test results
revealed that the pattern did not differ from one ex-
pected if the univariate distributions for both species

were generated independently (DBKS 5 0.04; P 5 0.42;
Fig. 1). In reservoirs, we could reject the null hypoth-
esis of independence of shad and sunfish density (DBKS

5 0.18; P 5 0.002; Fig. 4a); DBKS occurred when x 5
8.8 shad/m3. In Vaccinium, initial morning nectar vol-
ume and nectar production through midmorning were
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related (DBKS 5 0.07; P 5 0.02; Fig. 4b), with DBKS

occurring when initial volumes were 2.5 mL.

DISCUSSION

Traditional tools used to assess patterns in bivariate
data (e.g., regressions and traditional correlation anal-
yses) are only appropriate for particular kinds of data.
For example, traditional correlation analyses are built
on the assumption that an underlying linear correlation
exists between two variables. And regression analyses
are appropriate for data in which there is a functional
relationship between x and y over the entire range of
observed values of these variables. Indeed, though re-
gression results for our example data were often sig-
nificant, generally poor regression model fits to the
data, plus the lack of a functional relationship at some
range of values of the limiting factors, support our view
that such approaches are inappropriate for these kinds
of data. Hence, our intention is not to suggest an al-
ternative approach to traditional techniques, but rather
to offer a tool (i.e., the 2DKS test) that will allow us
to analyze these different kinds of data in which (1)
we do not expect a linear correlation between two vari-
ables, and (2) we expect that any functional relationship
between the variables breaks down over some range of
values of one of the variables, and thus we expect high
variance in the other variable across this range.

The 2DKS test detected nonrandom patterns in sim-
ulated, bivariate data, in which a fixed factor con-
strained variance beyond a threshold point. Of course,
our ability to detect these nonrandom patterns depend-
ed on the relative constraint of variance of y beyond
the threshold. In simulations in which variance of y at
values of x . 10 was 0.01 of unconstrained variance,
DBKS consistently occurred at values of x close to that
threshold point. Hence, if changes in variance occur at
relatively discrete points, the 2DKS test will detect
these fixed threshold points. When biotic or abiotic
factors control responses only beyond some critical lev-
el of these factors, this test may be valuable to detect
and estimate the threshold level. More commonly,
though, variance of a dependent variable may not be
constrained at some fixed threshold value of the in-
dependent variable. Rather, the bivariate distributions
will vary in complex ways, generating shapes that de-
viate substantially from normal bivariate distributions.
Because the 2DKS test is distribution-free (Peacock
1983; Fasano and Franceschini 1987), it should be ro-
bust to nonrandom patterns in bivariate distributions
common to ecological systems.

Extending the utility of the 2DKS test beyond sim-
ulated data, we determined whether bivariate distri-
butions from ecological systems were produced ran-
domly. As with our simulated data, low densities of
Ameletus and Leuctra were common whereas high den-
sities were relatively rare. Though Leuctra densities
appeared to decline when Ameletus was present, the
2DKS test demonstrated that this pattern could easily

have arisen from their independent univariate distri-
butions. Thus, the author cannot conclude that inter-
specific interactions between these benthic insects
caused observed densities of Leuctra. Other factors,
perhaps chemical cues from fishes in upstream pools,
contributed to observed distributional patterns (Din-
gledine 1996). In our view, the 2DKS test allowed us
to objectively determine that this bivariate distribution
was not different from random and, subsequently, to
pursue other potential ecological mechanisms.

Unlike invertebrates in streams, field distributions of
reservoir fishes and nectar produced by flowers likely
were not generated by chance. In Ohio reservoirs, ex-
perimental and field evidence suggest that densities
.10 age-0 shad/m3 may limit growth and survival of
sympatric age-0 sunfishes (Stein et al. 1995, Dettmers
and Stein 1996, Dettmers et al. 1996, Garvey et al.
1998). Though our nonlinear regression explained sig-
nificant variance in the shad–sunfish relationship, we
believe that this model may be misleading because it
implies a continuous relationship, whereas in reality
shad and sunfish abundances may be unrelated for den-
sities ,10 age-0 shad/m3. In support of this view, the
2DKS test detected DBKS when x 5 8.8 shad/m3, sug-
gesting that shad may only constrain the mean and
variance of sunfish densities beyond this abundance.
In cases such as these, the 2DKS test may be appro-
priate for identifying threshold levels in ecological
data. In contrast, the significant bivariate distribution
produced by initial nectar volume and nectar produc-
tion probably was not generated when nectar produc-
tion was constrained beyond some discrete, fixed abun-
dance. This distribution probably arose as a result of
some limit to total nectar production per flower in a
given morning and among-flower variance in the mag-
nitude of this production. Finding statistical signifi-
cance in this relationship between these variables gives
us cause to further pursue the underlying processes.

Our examples demonstrate the efficacy of the 2DKS
test for exploring patterns within complex ecological
data sets. This procedure is computationally simple,
requiring relatively short times to perform the test and
associated 5000 re-randomizations (e.g., ,10 min for
a data set with 250 observations). As noted by Thomson
et al. (1996), who explored associations between vari-
ables in complex spatial data, tests for identifying pat-
terns in many bivariate data are largely descriptive.
They suggested, without providing examples, that the
2DKS test should provide a robust quantitative test for
bivariate distributions. Indeed, this test worked well
with bivariate data common to ecological systems. We
caution that this test probably will not perform well
with data distributed in a fashion that produces mul-
tiple, equivalent points of maximum difference. This
may occur when points occur as highly clumped patch-
es uniformly distributed in the x–y plane.

Though we only provided tests of independence for
bivariate distributions from single samples, the 2DKS
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test can be used to compare bivariate distributions from
two samples as well. This two-sample test can be quite
useful when comparing distributions generated by two
experimental treatments or testing theoretical or sim-
ulated distributions with actual observations. Because
ecological relationships often extend beyond two-di-
mensional distributions, this test can be modified to
compare three-dimensional distributions, again pro-
ducing statistically robust results (Fasano and Fran-
ceschini 1987).
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