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INTRODUCTION

The primary goal of this paper is to apply transfer theory to the study of simple

groups. More specifically, we may use the results of transfer theory to determine

whether or not certain numbers occur as orders of simple groups. Of course Sylow’s

Theorems are very useful in such determinations. We may aim to discover if trans-

fer theory can provide more information in certain cases. One technique used to

determine whether or not a group is simple is to search for a homomorphism having

a proper, nontrivial kernel. Transfer theory is based on this idea and provides tools

for establishing when the commutator subgroup is proper.

Chapter 1 will provide all the definitons and results that will be necessary in

presenting transfer theory.

In Chapter 2 we will give a summary of transfer theory as it is given in Algebra:

A Graduate Course by Martin Isaacs. Several examples will appear that will help

illustrate the theory.

In Chapter 3 we will make many calculations to investigate how useful transfer

theory can be in making certain claims about simplicity. More specifically, a com-

plete analysis of the existence of simple groups for every possible order (from 1 to

200) will be given. An examination of certain orders beyond 200 will also be given.

For those orders in which simple groups do not exist, the method of proof will be

given. The aim is to see whether or not these proofs can be simplified with the use
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of transfer theory. We may also like to know whether or not transfer theory is

necessary in such proofs.
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CHAPTER 1

BACKGROUND

Definition. Let G be a group and let p be a prime.

1. A group of order pα for some α ≥ 0 is called a p-group. Subgroups of G which

are p-groups are called p-subgroups.

2. If G is a group of order pαm where p does not divide m, then a subgroup of

order pα is called a Sylow p-subgroup of G.

3. The set of Sylow p-subgroups of G will be denoted by Sylp(G) and the number

of Sylow p-subgroups of G will be denoted by np(G).

Theorem 1.1. (Sylow’s Theorem)

Let G be a group of order pαm, where p is a prime not dividing m.

1. Sylow p-subgroups of G exist, i.e. Sylp(G) 6= ∅.

2. If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there

exists g ∈ G such that Q ≤ gPg−1, i.e., Q is contained in some conjugate of

P . In particular, any two Sylow p-subgroups of G are conjugate in G.

3. The number of Sylow p-subgroups of G is of the form 1 + kp, i.e., np(G) ≡ 1

(mod p). Further, np(G) is the index in G of the normalizer NG(P ) for any

Sylow p-subgroup P , hence np(G) divides m.
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Corollary 1.2. Let P be a Sylow p-subgroup of G. Then the following are equivalent:

1. P is the unique Sylow p-subgroup of G, i.e., np(G) = 1

2. P is normal in G

3. P is characteristic in G

4. All subgroups generated by elements of p-power order are p-groups, i.e., if X

is any subset of G such that |x| is a power of p for all x ∈ X, then 〈X〉 is a

p-group.

Definition. A subgroup H of a finite group G is called a Hall subgroup of G if its

index in G is relatively prime to its order: (|G : H|, |H|) = 1. (See [2])

Theorem 1.3. Let H < P , where P is a finite p-group. Then NP (H) > H.

Definition. Let G be a group. We define the commutator of x, y ∈ G to be

[x, y] = x−1y−1xy. The subgroup generated by all the commutators of G is called

the commutator subgroup or the derived subgroup of G and is denoted by G′ or

[G,G].

Remark. It can be shown that the derived subgroup is the unique smallest normal

subgroup of G such that the corresponding factor group is abelian.

Definition. A group G is solvable if ther exists a finite collection of normal sub-

groups G0, G1, . . . , Gn such that

1 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

and Gi+1/Gi is abelian for 0 ≤ i < n.
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Remark. It is clear that abelian groups are solvable.

A group G is nilpotent if there exists a finite collection of normal subgroups

G0, G1, . . . , Gn, with

1 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

and such that

Gi+1/Gi ⊆ Z(G/Gi)

for 0 ≤ i < n.

Remark. It is easy to see that abelian groups are nilpotent and that nilpotent

groups are solvable.

Theorem 1.4. A finite p-group is nilpotent

Definition. Set Z0(G) = 1 and inductively define Zi(G) by the equation

Zi(G)/Zi−1(G) = Z(G/Zi−1(G)) for i > 0. The collection {Zi(G) | i ≥ 0} is

called the ascending or upper central series of G.

Definition. Let G1 = G, G2 = [G,G], G3 = [G2, G], and in general, Gi = [Gi−1, G]

for i > 1. We have G = G1 ⊇ G2 ⊇ G3 ⊇ · · · . The lower or descending central

series of G is the set of subgroups Gi.

Theorem 1.5. Let G be any group and suppose n ≥ 1. Then the following are

equivalent:

1. Gn+1 = 1.

2. Zn(G) = G.
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Furthermore, G is nilpotent if and only if 1 and 2 hold for some integer n.

[1]

Theorem 1.6. A finite group G is solvable if and only if for every divisor n of |G|

such that (n, |G|
n

) = 1, G has a subgroup of order n. (or a Hall subgroup)

[2]

The group Dn will be useful in illustrating the theory with examples. We will

let Dn denote the dihedral group of order 2n. Dn is sometimes referred to as the

group of symmetries of a reguar n-gon with n ≥ 3. Dn is generated by two elements.

We will denote the generators by r (a rotation of order n) and f (a flip of order 2).

The following gives the group presentation of the dihedral group of order 2n:

Dn = 〈r, f | rn = f 2 = 1, rf = fr−1〉

6



CHAPTER 2

TRANSFER THEORY

Most of the following material is an adaptation of [1].

Definition. If H ⊆ G, then a right transversal T for H in G is a set of right coset

representatives for H in G.

Now, G acts on the set of right cosets of H in G by right multiplication. If T

is a right transversal for H in G, then this action gives a right action of G on T .

For t ∈ T and g ∈ G, we define t · g to be the unique element of T that lies in the

right coset Htg.

Lemma 2.1. Let H ⊆ G and suppose that T is a right transversal. If t ∈ T and

x, y ∈ G, then

1. t · 1 = t,

2. (t · x) · y = t · (xy), and

3. tx(t · x)−1 ∈ H.

Proof. Statements 1 and 2 clearly hold since right multiplication by group elements

on right cosets gives a group action. t · x ∈ Htx, and so 3 now follows immediately.

Suppose H is a subgroup of G of finite index. tg(t · g)−1 ∈ H for each t ∈ T

and g ∈ G. So we can define a map π : G→ H by
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π(g) =
∏
t∈T

tg(t · g)−1.

Note that in the definition of π, we have not specified any particular order

in which to carry out the multiplication. This will not be problematic since our

intentions are to compose π with the canonical homomorphism from H into H/M

where M �H with H/M abelian.

Definition. Let H ⊆ G have finite index and suppose M �H with H/M abelian.

The transfer from G to H/M is the map v : G → H/M given by v(g) = Mπ(g),

where

π(g) =
∏
t∈T

tg(t · g)−1

and T is a right transversal for H in G.

Example 2.2. Consider the group G = D3 generated by the rotation r and the flip

f .

(a) Let H = 〈r〉, M = 1. We will compute the transfer from D3 into H/M =

〈r〉. T = {1, f} gives a transversal for 〈r〉 in D3. In this case the transfer v :

D3 → 〈r〉 is defined for g ∈ D3 by v(g) = π(g) =
∏
t∈T

tg(t · g)−1. We have

v(1) = (1 · 1)−1(f(f · 1)−1) = ff−1 = 1. We have v(r) = (r(1 · r)−1)(fr(f ·

r)−1) = (r(1)−1)(frf−1) = (r)(frf) = fr−1rf = f 2 = 1. So v(r) = 1. We see

that v(r2) = ((r2)(1 · r2)−1)((fr2)(f · r2)−1) = (r2)(fr2(f · r2)−1) = r2fr2f−1 =

r(rf)r2f = r(fr−1)r2f = rfrf = fr−1rf = f 2 = 1. So v(r2) = 1. Similarly, v(f) =

(f(1 · f)−1)(f 2(f · f)−1) = (ff−1)(f 2) = 1. Also, v(fr) = (fr(1 · fr)−1)(ffr(f ·
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fr)−1) = fr(f−1)(ffr) = frfr = 1. v(fr2) = (fr2(1 · fr2)−1)(ffr2(f · fr2)−1) =

(fr2f)(r2) = 1. Hence, we see that the transfer map in this case is trivial.

(b) Now we will compute the transfer map in the case where G = D3, H = 〈f〉,

and M = 1. T = {1, r, r2} gives a right transversal for 〈f〉 in D3. Again, the transfer

v : D3 → 〈f〉 is defined for g ∈ D3 by v(g) = π(g) =
∏
t∈T

tg(t · g)−1. We have v(1) =

(1 ·1)−1(r(r ·1)−1)(r2(r2 ·1)−1) = rr−1r2(r2)−1 = 1. We have v(r) = (r(1 ·r)−1)(r2(r ·

r)−1)(r3(r2 · r)−1)) = (rr−1)(r2(r2)−1) = 1. Thus, v(r) = 1. Likewise, v(r2) =

(r2(1 · r2)−1)(r3(r · r2)−1)(r4(r2 · r2)−1) = (r2(r2)−1)(r(r−1)) = 1. Hence, v(r2) = 1.

We have v(f) = (f(1 · f)−1)(rf(r · f)−1)(r2f(r2 · f)−1) = (f)(rf(r2)−1)(r2f(r−1)) =

frf 2r−1 = f. Therefore, v(f) = f . We see that v(fr) = (fr(1 · fr)−1)(rfr(r ·

fr)−1)(r2fr(r2 · fr)−1) = (frr−1)(rfr)(r2fr(r2)−1) = frfr3fr2 = fr3 = f. So

v(fr) = f . Finally, v(fr2) = (fr2(1 · fr2)−1)(rfr2(r · fr2)−1)(r2fr2(r2 · fr2)−1) =

(fr3)(rfr2(r2))(r2fr2) = frfr3fr2 = frf 2r2 = f . Thus, v(fr2) = f . So we see

that the transfer map in this case is non-trivial. The transfer map is often times

trivial, and we seek conditions to ensure that it is not.

Now we give the somewhat suprising result that the transfer is independent of

the choice of transversal. It will be convenient to write x ≡ y mod M if x, y ∈ H

with Mx = My.

Theorem 2.3. Let S and T be right transversals for H in G and let M �H with

H/M abelian. Assume |G : H| < ∞. Then for g ∈ G, we have
∏
t∈T

tg(t · g)−1 ≡∏
s∈S

sg(s · g)−1 mod M , and so the transfer map v : G → H/M is independent of

the transversal used to calculate it.
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Proof. Let t ∈ T . There exists s ∈ S such that Ht = Hs. This implies that there

exists ht ∈ H such that htt ∈ S. This element is unique for if there exists h′ ∈ H

such that h′t ∈ S, then we have Hh′t = Ht = Hs. We also have Hhtt = Ht.

Therefore, Hhtt = Hh′t. Since htt, h
′t ∈ S, we have htt = h′t. Hence, ht = h′. So

for each t ∈ T , there is a unique element ht ∈ H such that htt ∈ S. Also, as t runs

over T , the elements htt run over S. Since H(htt)g = H(t · g), we can see that the

unique element of S in this coset is ht·g(t · g). It follows that (htt) · g = ht·g(t · g).

Taking advantage of the fact that H/M is abelian, we see that
∏
s∈S

sg(s · g)−1 ≡∏
t∈T

httg(ht·g(t · g))−1 ≡
∏
t∈T

httg(t · g)−1h−1
t·g ≡

∏
t∈T

tg(t · g)−1
∏
t∈T

ht
∏
t∈T

h−1
t·g mod M .

Now, t · g runs over T as t does, so we have (
∏
t∈T

ht)
−1 ≡

∏
t∈T

h−1
t·g mod M . Hence,∏

t∈T

tg(t · g)−1 ≡
∏
s∈S

sg(s · g)−1 mod M . The proof is now complete.

The following is necessary if we are going to make much use of the transfer

map.

Theorem 2.4. The transfer map v : G→ H/M is a homomorphism.

Proof. Let x, y ∈ G. We need to show that π(xy) ≡ π(x)π(y) mod M . Taking

advantage of the fact that H/M is abelian and since t · x runs over T as t does, we

have π(y) =
∏
t∈T

ty(t · y)−1 ≡
∏
t∈T

(t · x)y((t · x) · y)−1 ≡
∏
t∈T

(t · x)y(t · xy)−1 mod M .

Hence, π(x)π(y) ≡
∏
t∈T

tx(t·x)−1
∏
t∈T

(t·x)y(t·xy)−1 ≡
∏
t∈T

tx(t·x)−1(t·x)y(t·xy)−1 =∏
t∈T

txy(t · xy)−1 mod M . Therefore, π(xy) ≡ π(x)π(y) mod M . The proof is now

complete.

Example 2.5. Let G = 〈g〉 be a cyclic group of order n. Suppose k is a divisor
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of n. Let H = 〈gk〉, and let M = 1. The set T = {1, g, g2, . . . , gk−1} gives a right

transversal for 〈gk〉 in 〈g〉. For i 6= k − 1, we see that gi+1 is the element of T

lying in the coset 〈gk〉gig. That is, gi · g = gi+1. If i = k − 1, we have gi · g = 1.

Thus, v(g) = π(g) =
∏
t∈T

tg(t · g)−1 = (
k−2∏
i=0

gig(gi · g)−1)(gk−1g(gk−1 · g)−1) =

(
k−2∏
i=0

gi+1(gi+1)−1)(gk−1g(gk−1 · g)−1) = (gk−1g(gk−1 · g)−1) = gk−1g = gk. Therefore,

v(g) = gk. For any x ∈ G = 〈g〉, x = gj for some j ∈ {0, 1, . . . , n− 1}. Since v is a

homomorphism, v(x) = v(gj) = (v(g))j = gkj = xk. Thus, for all x ∈ G, v(x) = xk.

Example 2.6. Let p be an odd prime and let G = Z×p be generated by g. (Note

that G is cyclic of order p−1.) Let H = {1,−1} and let M = 1. Set p∗ = (p−1)/2.

(a) Since G is cyclic of order p−1 where p is odd, G contains only 1 element of

order 2. That is, −1 is the only element of G of order 2. We have (gp
∗
)2 = gp−1 = 1.

Therefore, gp
∗

= −1. So H = 〈gp∗〉. By example 2.5, v(gj) = gjp
∗

= (−1)j. For

a ∈ G, a = gj for some j. We see that a is a square (modulo p) if and only if j is

even. And j is even if and only if v(a) = 1. Thus v(a) = (a
p
), the Legendre symbol.

(b) It is not hard to see that T = {1, 2, . . . , p∗} gives a transversal for H =

{1,−1} in G = Z×p (where p∗ = (p−1)/2). We will now compute the transfer v using

this transversal. Let LPR(x) denote the least positive residue of x modulo p. For

a ∈ G and t ∈ T , we see that t·a = LPR(ta) if LPR(ta) < p∗. Also, t·a ≡ −ta (mod)

p if LPR(ta) ≥ p∗. So for all t ∈ T such that LPR(ta) < p∗, we have ta(t ·a)−1 = 1.

So let m(a) denote the number of t ∈ T such that LPR(ta) ≥ p∗. Then we see that

v(a) = (−1)m(a). So combining the result of part (a) and the fact that the transfer

is independent of the transversal used to calculate it, we have (a
p
) = (−1)m(a). This
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is known as Gauss’s Lemma and is the key step in proving the Law of Quadratic

Reciprocity. For a = −1 and m(a) = p∗ we have (−1
p

) = (−1)(p−1)/2.

The transfer map is not always surjective as we have seen in Example 2.2

(part a). The following lemma and corollaries provide conditions under which the

transfer is surjective. This will give us some information on the kernel of the transfer

homomorphism.

Lemma 2.7. Let G = HK be abelian with H ∩K = 1. Let M = 1. For g = hk,

the transfer is given by v(g) = h|K|.

Proof. Let K be the transversal for H in G. Let g = hk. For t ∈ K we have t·g = tk

since Htg = Hhtk = Htk. Therefore, v(g) =
∏
k∈K

tg(t · g)−1 =
∏
k∈K

thk(tk)−1 =

h|K|.

Corollary 2.8. Let G = HK be abelian with H ∩K = 1. Let M = 1. If |H| and

|K| are relatively prime, then the transfer v : G→ H is surjective.

Proof. Since (|H|, |K|) = 1, there are integers s and t with s|H| + t|K| = 1. Let

h ∈ H. Then by Lemma 2.7, v(ht) = ht|K| = h1−s|H| = h since h|H| = 1. Thus, v is

surjective.

Corollary 2.9. Let G be abelian and P a Sylow p-subgroup. Then the transfer

v : G→ P is surjective

Proof. G is abelian so we can write G as a direct sum of cyclic groups of order qi

for various primes q. P is the sum of those with q = p. Let M be the sum of those
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with q 6= p. Then G = PM and P ∩M = 1. Thus, it follows from Corollary 2.8

that v is surjective.

Computation of the transfer v(g) turns out to be particularly easy if g ∈ Z(G).

The following application exploits this fact.

Theorem 2.10. Let G be finite and suppose a Sylow p-subgroup of G is abelian.

Then p does not divide |Z(G) ∩G′|.

Proof. Let P ∈ Sylp(G) and let T be a right transversal for P in G. Let M = 1

(trivial subgroup), and consider the transfer homomorphism v : G → P . Suppose

z ∈ Z(G) ∩ P ∩ ker(v). Let t ∈ T . Then Ptz = Pzt = Pt. So we have t · z = t.

Hence, tz(t · z)−1 = z. Therefore, v(z) =
∏
t∈T

tz(t · z)−1 =
∏
t∈T

z = z|G:P | = 1. This

implies that |z| divides |G : P |. But z ∈ P , so |z| is a power of p. Further, p does

not divide |G : P |. So we must have z = 1. Therefore, Z(G) ∩ P ∩ ker(v) = 1.

Now, v(G) is abelian, and G/ker(v) ∼= v(G). The group G/G′ is the largest abelian

quotient of G. So it follows that G′ ⊆ ker(v). Therefore, P ∩ Z(G) ∩ G′ = 1.

Since Z(G) ∩ G′ is normal in G, P (Z(G) ∩ G′) < G. We have |P (Z(G) ∩ G′)| =

|P ||Z(G)∩G′|
|P∩Z(G)∩G′| = |P ||Z(G)∩G′|. P is a Sylow p-subgroup of G, so it follows that p does

not divide |Z(G) ∩G′|. The proof is now complete.

Corollary 2.11. Let G have a cyclic Sylow p-subgroup. If G ∼= Γ/M , where Γ is

finite and M ⊆ Z(Γ) ∩ Γ′, then p does not divide |M |.

Proof. Let P ∈ Sylp(Γ). Now, M � Γ, so P/(P ∩M) ∼= PM/M . It follows that

PM/M is a p-subgroup of Γ/M . We have |Γ/M : PM/M | = |Γ|
|PM | . Also, P < PM ,
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so it follows that p does not divide |Γ/M : PM/M | = |Γ|
|PM | . Therefore, PM/M

is a Sylow p-subgroup of Γ/M . Sylow p-subgroups are isomorphic, so every Sylow

p-subgroup of Γ/M is cyclic (since G has a cyclic Sylow p-subgroup). Therefore,

PM/M is cyclic. Hence, P/(P ∩M) is cyclic. Now, M ⊆ Z(Γ)∩Γ′, so it follows that

P ∩M ⊆ Z(P ). Now, P ∩M �P , and Z(P ) �P . So it follows that P/Z(P ) ∼= (P/

P ∩M)/(Z(P )/P ∩M). Further, P/P ∩M is cyclic, so (P/P ∩M)/(Z(P )/P ∩M)

is cyclic. Hence, P/Z(P ) is cyclic. Therefore, P is abelian. By Theorem 2.10, it

follows that p does not divide |Z(Γ)∩Γ′|. Since M < Z(Γ)∩Γ′, it now follows that

p does not divide |M |.

The following lemma is critical in the study of transfer theory.

Lemma 2.12. (Transfer Evaluation)

Let M � H ⊆ G with |G : H| < ∞ and H/M abelian, and let T be a right

transversal for H in G. Then for each g ∈ G, there exists a subset T0 ⊆ T and

positive integers nt for t ∈ T0 such that

1.
∑

nt = |G : H|,

2. tgntt−1 ∈ H for all t ∈ T0, and

3. π(g) ≡
∏
t∈T0

tgntt−1 mod M .

Also, if |g| <∞, then

4. each nt divides |g|.
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Proof. G acts by right multiplication on the set of distinct right cosets of H in G.

This action gives a corresponding right action of G on T . If t ∈ T , g ∈ G, then t · g

is the unique element of T that lies in the right coset Htg. It follows that 〈g〉 acts

on T under the same action and decomposes T into orbits. Letting T0 be a set of

representatives for these orbits and letting nt denote the size of the orbit containing

t, we see that
∑
t∈T0

nt = |T | = |G : H|. So part 1 follows. Now consider t ∈ T0.

Let [t] denote the orbit containing t (under the action of 〈g〉 on T ), and let 〈g〉t

denote the stabilizer of t. Then nt = |[t]| = |〈g〉 : 〈g〉t|. So we have nt|〈g〉t| = |g|.

So part 4 follows. Now, 〈g〉 is abelian, so 〈g〉t � 〈g〉. For t ∈ T0 the map that sends

t · gi to 〈g〉tgi is a bijection from [t] onto 〈g〉/〈g〉t. The group 〈g〉/〈g〉t is cyclic, and

|〈g〉/〈g〉t| = |[t]| = nt. From the bijection given above and the fact that 〈g〉/〈g〉t

is a cyclic group generated by 〈g〉tg we can list the elements of [t] explicitly as t,

t · g, t · g2, . . . t · gnt−1. So we see that the permutation induced by g on the orbit

containing t is an nt-cycle. It follows that t · gnt = t. We have Ht = Htgnt . This

implies that tgntt−1 ∈ H. Hence, part 2 now follows. Now, consider the elements

of T in the orbit containing t. The contribution of these elements to the product

π(g) =
∏
t∈T

tg(t · g)−1 is
nt−1∏
i=0

(t · gi)g(t · gi+1)−1 = tgntt−1. So it now follows that

π(g) ≡
∏
t∈T0

tgntt−1 mod M . So part 3 follows, and the proof is now complete.

Example 2.13. Let G = D6, H = 〈f〉, and M = 1. Let T = {1, r, . . . , r5} be a

transversal for H in G.

(a) 〈f〉 acts on T , decomposing T into orbits. Since frif = ffr−i = r−i for

0 ≤ i ≤ 5, we see that ri · f = r−i. So the action of 〈f〉 on T decomposes T into
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the four orbits: {1}, {r, r5}, {r2, r4}, and {r3}. Let T0 = {1, r, r2, r3}. Then n1 = 1,

nr = 2, nr2 = 2, and nr3 = 1. By Lemma 2.12, we have v(f) =
∏
t∈T0

tfntt−1 =

(f)(r3fr−3) = ffr−3r−3 = r6 = 1. So v(f) = 1.

(b) Now consider the action of 〈r3〉 on T . Here we see that ri · r3 = r3+i.

So this action decomposes T into three orbits: {1, r3}, {r, r4}, {r2, r5}. Letting

T0 = {1, r, r2}, we see that n1 = nr = nr2 = 2. Since (r3)nt = 1 for all t ∈ T0, we

see that v(r3) =
∏
t∈T0

t(r3)ntt−1 = 1. So v(r3) = 1.

Corollary 2.14. (Schur) Let |G : Z(G)| = m < ∞. Then the map g 7→ gm is a

homomorphism from G into Z(G).

Proof. We prove this corollary by showing that this map is the transfer map v :

G → Z(G). Let g ∈ G. By the Transfer Evaluation Lemma we have that v(g) =

π(g) =
∏
t∈T0

tgntt−1. We have tgntt−1 ∈ Z(G). So we have tgntt−1t = t2gntt−1. But

tgnt = t2gntt−1 implies that tgntt−1 = gnt . Therefore, v(g) =
∏
t∈T0

gnt = gΣnt = gm.

The proof is now complete.

One of our primary considerations will be the transfer of a group G into P/P ′,

where P is a Sylow p-subgroup of G. The kernel of the transfer homomorphism

v : G → P/P ′ will be useful in proving nonsimplicity theorems. If v : G → P/P ′

is surjective and P is a Sylow p-subgroup of G, then v(P ) is a Sylow p-subgroup

of P/P ′. Since P/P ′ is a p-group, v(P ) = v(G). Thus, P ⊂ ker(v) implies that

ker(v) = G. Therefore, P ∩ ker(v) is proper in P if and only if ker(v) is proper in

G. So if we want to know if ker(v) is proper in G, it suffices to compute P ∩ ker(v).
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We will see that this turns out to be the focal subgroup of P , which is given by the

following definition.

Definition. Let H ⊆ G. Then the focal subgroup of H in G is FocG(H) = 〈x−1y |

x, y ∈ H and x, y are G− conjugate〉.

Definition. We say that two conjugacy classes of H are fused in G if both are

contained in the same G-conjugacy class. To say that there is no fusion in H means

that if two elements of H are G-conjugate, then they are H-conjugate.

Let x, h ∈ H and consider [x, h] = x−1xh = x−1h−1xh ∈ H ′. Then x and

y = h−1xh are clearly G-conjugate. So x−1y = x−1h−1xh = [x, h] ∈ FocG(H). So

we see that H ′ ⊆ FocG(H).

Lemma 2.15. Let H be a subgroup of G. If there is no fusion in H, then FocG(H) =

H ′.

Proof. If there is no fusion in H and if x, y ∈ H and x, y are G-conjugate, then

x, y are H-conjugate. So y = h−1xh for some h ∈ H. This implies that x−1y =

x−1h−1xh = [x, h] ∈ H ′. Thus, FocG(H) ⊆ H ′. We have shown above that H ′ ⊆

FocG(H). This completes the proof.

Example 2.16. Let G = D3

(a) Let H = 〈r〉. Then H is abelian, so the H-conjugacy classes of H are

{1}, {r}, and {r2}. But r and r2 are conjugate in G since frf−1 = r2. Thus, the

two classes {r} and {r2} are fused in G since they are contained in the same G-
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conjugacy class. Since r and r2 are conjugate in G, r−1r2 = r ∈ FocG(H). Therefore,

FocG(H) = H.

(b) Let H = 〈f〉. Then H is abelian, so the H-conjugacy classes of H are {1},

and {f}. Now, 1 and f are not conjugate in G since g(1)g−1 = 1 for all g ∈ G. So

in this case there is no fusion and we see that FocG(H) = 1.

Theorem 2.17. (Focal subgroup)

Let G be finite. Suppose H ⊆ G is a Hall subgroup and let v : G → H/H ′ be

the transfer map. Then FocG(H) = H ∩G′ = H ∩ ker(v).

Proof. Let x, y ∈ H with y = xg for some g ∈ G. Then x−1g−1xg = x−1y = [x, g] ∈

G′. Therefore FocG(H) ⊆ H ∩ G′. We also have that G/ker(v) ∼= v(G) ⊆ H/H ′.

Therefore, G/ker(v) is abelian. Hence, G′ ⊆ ker(v). So we have H ∩ G′ ⊆ H ∩

ker(v). So to complete the proof, we just need to show that H ∩ ker(v) ⊆ FocG(H).

So assume g ∈ H ∩ ker(v) and let m =
∑

nt = |G : H|. Using the Transfer

Evaluation Lemma and the fact that H/H ′ is abelian, we have π(g) ≡
∏
t∈T0

tgntt−1 ≡

gm
∏
t∈T0

g−nttgntt−1 mod H ′. Now, each gnt ∈ H, and tgntt−1 ∈ H by the Transfer

Evaluation Lemma. Therefore, each factor g−nttgntt−1 ∈ FocG(H). And g ∈ ker(v),

so v(g) = H ′π(g) = H ′gm
∏
t∈T0

g−nttgntt−1 = H ′. Now, let h1 ∈ H ′. Then h1 =

h2g
m

∏
t∈T0

g−nttgntt−1 for some h2 ∈ H ′. So we have gm = h−1
2 h1(

∏
t∈T0

g−nttgntt−1)−1.

Since H ′ ⊆ FocG(H), it follows that gm ∈ FocG(H). Since H is a Hall subgroup,

its index is relatively prime to its order. As g ∈ H, it follows that m = |G : H| is

relatively prime to |g|. Now, 〈gm〉 ≤ 〈g〉 and |〈gm〉| = |gm| = |g|
(|g|,m)

= |g| = |〈g〉|.

Hence, 〈g〉 = 〈gm〉 ⊆ FocG(H). Therefore, g ∈ FocG(H). Hence, H ∩ ker(v) ⊆
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FocG(H). The proof is now complete.

Corollary 2.18. Let P ∈ Sylp(G) and suppose there is no fusion in P . then G′∩P =

P ′.

Proof. Since there is no fusion in P , Lemma 2.15 states that FocG(P ) = P ′.

Corollary 2.18 and the following lemma can be combined to provide more con-

ditions under which the transfer v : G→ P/P ′ is surjective.

Lemma 2.19. Let M � H < G with H/M abelian. Let v : G → H/M be the

transfer. Suppose A is a subgroup of G such that the following are true:

1. A�G

2. A ⊆ ker(v)

3. A ∩H = M .

We have maps

v̄ : G/A→ H/M

ϕ : H/M → AH/A

ṽ : G/A→ AH/A.

Here v̄ is the map induced from v, ϕ is the usual isomorphism and ṽ is the transfer

map from G/A into its subgroup AH/A. Then it follows that (ϕv̄)(Ag) = ṽ(Ag)[A:M ].

Proof. The following will be used frequently throughout the proof:

For h ∈ H and a ∈ A, there exist a′, a′′ ∈ A such that ah = ha′ and ha = a′′h.
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This follows easily from the fact the A is normal in G.

Step 1. Let S ⊆ G be such that {As : s ∈ S} is a transversal for AH/A in

G/A. Let B ⊆ A be a transversal for M in A. Then BS is a transversal for H in G.

To see this, let g ∈ G. There is an s ∈ S such that Ag ∈ (AH/A)As. Therefore,

Ag = (Ah)(As) = Ahs for some h ∈ H. So for some a ∈ A,

g = ahs = ha′s.

Thus, g ∈ Ha′s. Now, a′ ∈Mb for some b ∈ B since B is a transversal for M in A.

So g ∈ HMbs = Hbs. We have shown that G ⊆
⋃
b∈B
s∈S

Hbs. For uniqueness, suppose

Hb1s1 = Hb2s2. Let g ∈ Hb1s1. Then for some h ∈ H, g = hb1s1 = b′′1hs1. Then

Ag = Ahs1 = (Ah)(As1) ∈ (AH/A)(As1)

Similarly, Ag ∈ (AH/A)As2. Since {As : s ∈ S} is a transversal for AH/A in G/A,

we have s1 = s2. Thus, Hb1 = Hb2. Then b1b
−1
2 ∈ H ∩ A = M , and Mb1 = Mb2.

Since B is a transversal for M in A, b1 = b2. This completes the proof of Step 1.

Step 2. Suppose s · g = b0s0. Then we have

1. For each b ∈ B there exists b1 ∈ B such that bs · g = b1s0.

2. As · Ag = As0

Since Hsg = Hb0s0, we have sg = h0b0s0 for some h0 ∈ H. Then

bsg = bh0b0s0 = h0b
′b0s0.
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Now b′b0 ∈ A = ∪Mb, so there exist b1 ∈ B, m ∈M such that b′b0 = mb1. So

Hbsg = Hh0mb1s0 = Hb1s0

Therefore, bs · g = b1s0. We have sgs−1
0 = h0b0. Let h ∈ H and write hh0b0 = ahh0

for some a ∈ A. Then hh0 = a−1hh0b0 = a−1hsgs−1
0 . We have hh0s0 = a−1hsg.

So Ahh0s0 = Ahsg. Thus, (Ahh0)(As0) = (Ah)(AsAg). Since h was arbitrary,

(AH/A)AsAg = (AH/A)As0. Therefore, As · Ag = As0.

Step 3. Now, v̄(Ag) = v(g) and (ϕv̄)(Ag) = Av(g). Further, AM = A since

A ∩H = M implies that M ⊆ A. So we have

(ϕv̄)(Ag) = A
∏
s∈S
b∈B

(bsg)(bs · g)−1

Fix s ∈ S. Since BS is a transversal for H in G, we may write s · g = b0s0. By Step

2 we can write bs · g = α(b)s0, where α(b) ∈ B. As in the proof of Step 2, write

sg = h0b0s0 for some h0 ∈ H. Then

∏
b∈B

(bsg)(bs · g)−1 =
∏
b∈B

bsgs−1
0 α(b)−1

=
∏
b∈B

bh0b0α(b)−1.

Now we can change the order of multiplication keeping the same h0 (but changing

elements in A ⊇ B). So this product looks like a∗h
|B|
0 , for some a∗ ∈ A. The same

trick shows that

(h0b0)|B| = h0b0h0b0 · · · = a†h
|B|
0 ,
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for some a† ∈ A. So we have

∏
b∈B

(bsg)(bs · g)−1 = a∗(a†)−1(h0b0)|B| = a∗(a†)−1(sgs−1
0 )|B|.

Thus,

(ϕv̄)(Ag) = A
∏
s∈S

(sgs−1
0 )|B|,

where s · g = b0s0.

Lastly, from Step 2 part 2,

ṽ(Ag) =
∏
s∈S

(AsAg)(As · Ag)−1 =
∏
s∈S

(AsAg)(As0)−1

= A
∏
s∈S

sgs−1
0 .

It now follows that (ϕv̄)(Ag) = ṽ(Ag)|B|. And |B| = [A : M ] since B is a transversal

for M in A. The proof is now complete.

Corollary 2.20. Suppose P is a Sylow p-subgroup of G that has no fusion in G.

Then the transfer v : G→ P/P ′ is surjective.

Proof. The conditions of the previous lemma are met with A = G′, H = P , M = P ′.

The fact that G′ ∩ P = P ′ follows from Corollary 2.18. We continue with the same

notation as the previous lemma and set n = [G′ : P ′]. Now, let ψ : PG′/G′ →

PG′/G′ be given by ψ(x) = xn. Then ψ is a homomorphism since PG′/G′ ⊆ G/G′ is

abelian. The conclusion of the lemma can be written ϕv̄ = ψṽ. Now, ṽ is surjective

by Corollary 2.9. Thus, |G/G′| = |P/P ′||ker(ṽ)|. Therefore, |G
′|

|P ′| = |G|
|ker(ṽ)||P | . In

particular, n = [G′ : P ′] is relatively prime to p. As PG′/G′ ∼= P/P ′ is a p-group, it

follows that ψ is injective and hence surjective. So ψṽ = ϕv̄ is surjective, and as ϕ

is bijective, v̄ is surjective. Since v̄(G′x) = v(x), v is surjective.
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The following lemma will be helpful in computing the focal subgroup and prov-

ing a nice result which will be useful in proving claims involving nonsimplicity.

Lemma 2.21. (Burnside) Let P ∈ SylP (G) and suppose x, y ∈ CG(P ) are conjugate

in G. Then x and y are conjugate in NG(P ).

Proof. Let y = xg for some g ∈ G. Since x, y ∈ CG(P ), we have P ⊆ CG(y) and

P ⊆ CG(x). So we have P g ⊆ CG(x)g. Now we prove that CG(x)g = CG(xg).

Let y ∈ CG(x)g. Then y = g−1g′g for some g′ ∈ CG(x). Then yg−1xg =

g−1g′gg−1xg = g−1g′xg = g−1xg′g = g−1xgg−1g′g = g−1xgy. Therefore, y ∈ CG(xg).

So CG(x)g ⊆ CG(xg). Now suppose g′ ∈ CG(xg). Then g′g−1xg = g−1xgg′.

Therefore, g′ = g−1xgg′g−1x−1g. Now, g′g−1xg = g−1xgg′ implies that gg′g−1xg =

xgg′. This implies that x2gg′g−1x−1 = xgg′g−1xgg−1x−1 = xgg′g−1. Therefore,

xgg′g−1x−1 ∈ CG(x). Hence, g′ ∈ CG(x)g. So CG(xg) ⊆ CG(x)g. It now follows that

P g ⊆ CG(x)g = CG(xg) = CG(y). So P and P g are Sylow p-subgroups of CG(y).

Since Sylow p-subgroups are conjugate, there exists c ∈ CG(y) such that P gc = P .

Therefore, gc ∈ NG(P ) and we have xgc = yc = y. Hence, x and y are conjugate in

NG(P ).

Definition. A subgroup N of a finite group G is said to be a normal p-complement

in G (where p is a prime) if it is a normal subgroup having index a power of p and

order not divisible by p.

Remark. We could also say a normal p-complement is a normal subgroup whose

index is equal to the order of a Sylow p-subgroup of G.

23



The following can be a powerful tool in proving nonsimplicity since it gives a

sufficient condition for a group to have a normal p-complement.

Theorem 2.22. (Burnside) Let P ∈ Sylp(G) and suppose P ⊆ Z(NG(P )). Then G

has a normal p-complement.

Proof. Let x, y ∈ P be conjugate in G. Note that P ⊆ Z(NG(P )) implies that P is

abelian. So x, y ∈ CG(P ), and therefore by Lemma 2.21, y = xn for some element

n ∈ NG(P ). But P ⊆ Z(NG(P )), so we have xn = x. Therefore, x−1y = 1. It

follows that FocG(P ) = 1. By our Focal Subgroup Theorem, P ∩ ker(v) = 1 where

v : G→ P is the transfer map. But ker(v) is normal in G, so Pker(v) is a subgroup

of G of order |P ||ker(v)|
|P∩ker(v)| = |P ||ker(v)|. Since P is a Sylow p-subgroup of G, it follows

that p does not divide |ker(v)|. And |G : ker(v)| = |v(G)| is a p-power since v(G) is

a subgroup of P . Therefore, ker(v) is a normal p-complement for G.

The following corollary is an application of Burnside’s Theorem.

Corollary 2.23. Suppose all Sylow subgroups of G are cyclic (for all primes). Then

G is solvable.

Proof. Let p be the smallest prime divisor of |G|, and let P ∈ Sylp(G). Then

P is normal in NG(P ), so NG(P ) acts by conjugation on P as automorphisms of

P . This action induces a homomorphism σ : NG(P ) → Aut(P ) where ker(σ) =

CG(P ). Therefore, |NG(P ) : CG(P )| divides |Aut(P )|. But P is cyclic, so Aut(P ) ∼=

(Z/|P |Z)×. Hence, |Aut(P )| = φ(|P |), where φ is Euler’s function. We can write

φ(|P |) = (p − 1)pa−1, where pa = |P |. It follows that there is no prime larger
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than p dividing |NG(P ) : CG(P )|. And P is abelian, so P ⊆ CG(P ). Therefore,

|NG(P ) : CG(P )| is not divisible by p. By the choice of p, |NG(P ) : CG(P )| is

not divisible by a prime smaller than p. Hence, |NG(P ) : CG(P )| = 1. Now,

NG(P ) ⊆ CG(P ) implies that P ⊆ Z(NG(P )). It now follows from Theorem 2.22

(Burnside) that G has a normal p-complement N . Further, N is a proper subgroup

of G. So working by induction on |G|, we assume that N is solvable. And G/N is

a p-group, so G/N is solvable. It now follows that G is solvable.

Example 2.24. Burnside’s Theorem can be used to show that certain numbers do

not occur as orders of simple groups. For example, let |G| = 12, 100 = 22 · 52 · 112.

We have n11 ≡ 1 mod 11 and n11 divides 22 · 52. Hence, n11 = 1 and n11 = 100 are

the only possibilities for the number of Sylow 11-subgroups of G. If n11 = 1, then

of course the unique Sylow 11-subgroup of G is normal in G. Suppose n11 = 100.

Let P ∈ Syl11(G). Then n11 = |G : NG(P )| = 100. This implies that |NG(P )| = |P |.

Therefore, P = NG(P ) and P is abelian since its order is a square of a prime. Hence,

P = Z(P ) = Z(NG(P )). By Burnside’s Theorem, G has a normal 11-complement.

So in neither case can G be simple.

Many other potential orders for simple groups can be eliminated by applying

Burnside’s Theorem. Among the integers between 1 and 200, 144 is a particulary

nice example. We will encounter the case of 144 in Chapter 3.
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Corollary 2.25. Let P ∈ Sylp(G) and assume that P is abelian. Let N = NG(P ).

Then G′ ∩ P = N ′ ∩ P .

Proof. P is abelian, so P ⊆ CG(P ). So it follows from Lemma 2.21 (Burnside)

that if x, y ∈ P are conjugate in G, then they are conjugate in N . So we have

FocG(P ) = FocN(P ). But P is a Hall subgroup of N and of G. So it now follows

from the Focal subgroup theorem that G′ ∩ P = N ′ ∩ P .

We may consider whether or not Corollary 2.25 would remain true if we remove

the condition that P is abelian. A MAPLE computation for the simple group of

order 168, generated by (1,2,3,4,5,6,7) and (1,2,3)(4,5,7), gives a Sylow 2-subgroup

P , where N(P ) = P , and N(P )′ ∩ P < G′ ∩ P . Thus, the conclusion of Corollary

2.25 fails in this case.

In certain cases, Corollary 2.25 can help us establish the nonsimplicity of a

group G by considering N in place of G. For instance, suppose P satisfies the

hypotheses of Corollary 2.25, and N has a nontrivial p-group as a homomorphic

image. Let ϕ : N → X be a surjective homomorphism where X is a nontrivial

p-group. Suppose P ⊆ N ′. Since P is a Sylow p-subgroup of N , it follows that

ϕ(P ) is a Sylow p-subgroup of X. Now, X is a p-group, so ϕ(P ) = X. Hence, X

is abelian. So P ⊆ N ′ ⊆ ker(ϕ). It follows that p does not divide |N |
|ker(ϕ)| . This is a

contradiction since N/ker(ϕ) ∼= X, and X is p-power. Therefore P is not contained

in N ′. If P ⊆ G′, then by Corollary 2.25, P = N ′ ∩ P . Hence, P ⊆ N ′. This is

a contradiction. Thus, P is not contained in G′. Therefore, G′ < G. So if G is

non-abelian, G cannot be simple.
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Corollary 2.25 and Theorem 2.10 give us the following corollary.

Corollary 2.26. Let P ∈ Sylp(G) be abelian and write N = NG(P ). Then Z(N) ∩

P ∩G′ = 1

Proof. P is an abelian Sylow p-subgroup of N . By Theorem 2.10, p does not divide

|Z(N)∩N ′|. And Z(N)∩P ∩N ′ ⊆ P implies that |Z(N)∩P ∩N ′| is a power of p.

But Z(N) ∩ P ∩N ′ ⊆ Z(N) ∩N ′ implies that p does not divide |Z(N) ∩ P ∩N ′|.

Therefore Z(N) ∩ P ∩N ′ = 1. By Corollary 2.25, P ∩N ′ = P ∩G′. It now follows

that Z(N) ∩ P ∩G′ = 1.

The Feit-Thompson Theorem states that every group of odd order is solvable.

So a finite non-abelian simple group has even order and therefore, has Sylow-2

subgroups. The classification of simple groups depends heavily on an exhaustive

study of Sylow-2 subgroups. The following is a typical result and gives an application

of Corollary 2.26.

Corollary 2.27. Let G be a finite simple group having an abelian Sylow 2-subgroup

of order 8. Then G contains no element of order 4.

Proof. Let P ∈ Syl2(G) and N = NG(P ). Suppose to the contrary that G has an

element g of order 4. It follows that 〈g〉 is a contained in a Sylow 2-subgroup of

G. Sylow p-subgroups are isomorphic, so it follows that P contains an element of

order 4. Any given abelian group of order 8 is isomorphic to one of the following:

Z8, Z4 × Z2, or Z2 × Z2 × Z2. Since Z2 × Z2 × Z2 contains no element of order

4, P is isomorphic to either Z8, or Z4 × Z2. In either case, P has a characteristic
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subgroup Z of order 2. First suppose that P ∼= Z8. Then P is cyclic, so P has a

unique subgroup, Z of order 2. So it is clear that σ(Z) = Z for any automorphism

σ of P . Now suppose that P ∼= Z4 ×Z2. Then it follows that Z = {x2 | x ∈ P} is a

characteristic subgroup of P of order 2. To see this let σ be an automorphism of P .

Let z ∈ Z. Then z = x2 for some x ∈ P . We have σ(z) = σ(x2) = (σ(x))2 ∈ Z. So

σ(Z) ⊆ Z. And σ(Z) cannot be trivial since σ is injective. So σ(Z) = Z. Therefore,

Z is a characteristic subgroup of P of order 2. Since Z is a characteristic subgroup

of P and P � N , Z � N . It follows that Z ⊆ P ∩ Z(N). To see this, let z ∈ Z.

Clearly, 1 ∈ P ∩ Z(N). So assume z 6= 1. We know z ∈ P . So we need to show

that z ∈ Z(N). So let n ∈ N . Since Z �N , it follows that nZn−1 = Z. Therefore,

nzn−1 ∈ Z. But z 6= 1, so nzn−1 6= 1. Hence, nzn−1 = z since |Z| = 2. It now

follows that z ∈ Z(N), and so Z ⊆ P ∩Z(N). By Corollary 2.26, Z(N)∩P ∩G′ = 1.

It follows that Z ∩ G′ = 1. Therefore, G′ is a proper subgroup of G. And G′ is

non-trivial and normal in G. This is a contradiction since G is simple.

The following theorem from Frobenius gives several necessary and sufficient

conditions for a finite group to have a normal p-complement. Unlike some of our pre-

vious results, the following statements do not require an abelian Sylow p-subgroup.
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Theorem 2.28. (Frobenius)

Let P ∈ Sylp(G). Then the following are equivalent:

1. G has a normal p-complement.

2. NG(U) has a normal p-complement for all p-subgroups U ⊆ G with U > 1.

3. NG(U)/CG(U) is a p-group for all p-subgroups U ⊆ G.

4. There is no fusion in P .

We should comment here that the restriction U > 1 in statement (2) is not

essential, however, (2) implies (1) would be redundant without it. If U > 1 is a

p-subgroup, a subgroup of the form NG(U) is said to be p-local in G. We could

say that (2) =⇒ (1) says that the existence of a normal p-complement in G is

determined “locally”. Condition (3) says that whenever an element of G whose

order is not divisible by p is in the normalizer of a p-subgroup of G, it is also

in the centralizer. These elements are called the p-regular elements and do not

act nontrivially on p-subgroups in G. We should also remark that the implication

(3) =⇒ (2) is not necessarily true unless (3) is assumed for all p-subgroups U . The

implications (1) =⇒ (2) and (2) =⇒ (3) are not too difficult to prove. The most

difficult implications to prove in Frobenius’s Theorem are (3) =⇒ (4) and (4) =⇒

(1).

The following lemma is key to the proof that (3) implies (4) in Frobenius’s

Theorem.
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Lemma 2.29. Let G be finite and assume NG(U)/CG(U) is a p-group for each p-

subgroup U ⊆ G. Let S, T ∈ Sylp(G) and write D = S ∩ T . Then T = Sc for some

element c ∈ CG(D).

Proof. Suppose the result is false. Choose two Sylow p-subgroups S and T of G

with D = S ∩ T as large as possible such that for all c ∈ CG(D), T 6= Sc. Note

that S 6= T . Let N = NG(D). Then N ∩ S ⊆ S, so N ∩ S is a p-subgroup of

N . Therefore, N ∩ S ⊆ S0 for some S0 ∈ Sylp(N). Similarly, N ∩ T ⊆ T0 for some

T0 ∈ Sylp(N). And S0 is a p-subgroup of G, so S0 ⊆ S1 for some S1 ∈ Sylp(G).

Sylow p-subgroups are conjugate, so T0 = Sn0 for some n ∈ N . Let T1 = Sn1 . So

T1 ∈ Sylp(G) and T0 ⊆ T1. Since S 6= T , it follows that D is a proper subgroup of

S. We have S ∩ S1 ⊇ S ∩ S0 ⊇ S ∩ N = NS(D) > D. (The fact that NS(D) > D

follows from Theorem 1.3.) In a similar fashion T1 ∩T > D. By our choice of S and

T , it follows that S1 = Sa for some a ∈ CG(S∩S1) ⊆ CG(D). Also, T = T b1 for some

b ∈ CG(T1∩T ) ⊆ CG(D). Now, S0CG(D) is a subgroup of N since CG(D) is normal

in N . Let |N | = pαm where p does not divide m. By our hypotheses, N/CG(D) is

a p-group. This implies that |CG(D)| = pβm where β ≤ α. In addition, S0 ∩CG(D)

is a p-subgroup of CG(D) since S0 ∈ Sylp(N). So |S0 ∩ CG(D)| = pγ where γ ≤ β.

Hence, |S0CG(D)| = |S0||CG(D)|
|S0∩CG(D)| = pαpβm

pγ
≥ |N |. It now follows that N = S0CG(D).

Therefore, n = sc where s ∈ S0 ⊆ S1 and c ∈ CG(D). So T1 = Ssc1 = Sc1. It follows

that Sacb = Scb1 = T b1 = T, and acb ∈ CG(D). We now have a contradiction to our

choice of S and T . The proof is now complete.

The following corollary gives the implication (3) =⇒ (4) in Frobenius’s The-
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orem.

Corollary 2.30. Let P ∈ Sylp(G) and assume that NG(U)/CG(U) is a p-group for

all p-subgroups U ⊆ G. Then there is no fusion in P .

Proof. Let x, y ∈ P with y = xg for some g ∈ G. We have y = xg ∈ P g. So

y ∈ P ∩ P g. Since P, P g ∈ Sylp(G), by Lemma 2.29 we have P gc = P for some

element c ∈ CG(P ∩ P g) ⊆ CG(y). Now, P � NG(P ) and CG(P ) � NG(P ). So

PCG(P ) is a subgroup of NG(P ), with |PCG(P )| = |P ||CG(P )|
|P∩CG(P )| . But P ∩ CG(P ) ⊆ P

and P ∩CG(P ) ⊆ CG(P ) implies that P ∩CG(P ) has p-power order and |P ∩CG(P )|

divides |CG(P )|. Now, NG(P )/CG(P ) is a p-group and P ∈ Sylp(NG(P )) implies

that |P ||CG(P )|
|P∩CG(P )| ≥ |NG(P )|. It follows that NG(P ) = PCG(P ). Also, gc ∈ NG(P )

since P gc = P . So we may write gc = ua where u ∈ P and a ∈ CG(P ). Now xu ∈ P ,

so a ∈ CG(xu). We have xu = xua = xgc = yc = y. And u ∈ P , so we have shown

that x and y are P -conjugate. Hence, there is no fusion in P .

The following theorem gives the implication (4) =⇒ (1) in Frobenius’s Theo-

rem.

Theorem 2.31. Let P ∈ Sylp(G) and assume that there is no fusion in P . Then G

has a normal p-complement.

Proof. Let K � G be minimal such that G/K is a p-group. (It may occur that

K = G.) We just need to show that p does not divide |K|. Suppose that p divides

|K : K ′|. Assume that |K : K ′| = pαm where p does not divide m. The group

K/K ′ is abelian, so we can write it as a direct product of cyclic subgroups of prime-
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power order. Let H1 be the product of the p-power factors and H2 the product of

the factors whose orders divide m. Then K/K ′ ∼= H1 × H2 where |H1| = pα and

|H2| = m. If (x, y) ∈ H1 ×H2, (x ∈ H1, y ∈ H2) then |(x, y)| = lcm(|x|, |y|). So we

see that H2 = {z ∈ K/K ′ | zm = 1}. Now if σ is an automorphism of H1×H2, then

zm = 1 implies that σ(z)m = 1. So σ maps H2 into H2. Hence, K/K ′ has a proper

characteristic subgroup of p-power index. Denote this subgroup by H/K ′. K � G

implies that K/K ′ � G/K ′. We have H/K ′ is a characteristic subgroup of K/K ′.

Also, K/K ′ � G/K ′. Therefore, H/K ′ � G/K ′. Hence, H � G. So H is a normal

subgroup of G smaller than K having p-power index in G. This is a contradition

to the definition of K. So it follows that p does not divide |K : K ′|. Now, let

Q = P ∩K. Since K�G, it follows that PK is a subgroup of G with |PK| = |P ||K|
|P∩K| .

If Q /∈ Sylp(K), then p would divide |K|
|P∩K| contradicting the fact that |PK| divides

|G| since P ∈ Sylp(G). Therefore, Q ∈ Sylp(K). Suppose Q is not contained in K ′.

Let q ∈ Q, q /∈ K ′. Consider the element qK ′ ∈ K/K ′. Clearly, |qK ′| divides |q|.

Also, q has p-power order, and q /∈ K ′. So |qK ′| = pb, for some b ≥ 1. But |qK ′|

divides |K/K ′| which contradicts the fact that p does not divide |K/K ′|. Hence,

Q ⊆ K ′. By the Focal Subgroup Theorem, Q∩K ′ = FocK(Q). We have Q = Q∩K ′

since Q ⊆ K ′. Hence, Q = FocK(Q). On the other hand, suppose x, y ∈ Q are

K-conjugate. Then x and y are elements of P that are G-conjugate. Since there

is no fusion in P , y = xu for some u ∈ P . Therefore, x−1y = [x, u] ∈ [Q,P ]. So

Q = FocK(Q) ⊆ [Q,P ]. It follows that Q ⊆ [Q,P, P, . . . , P ] ⊆ P n for all positive

integers n. But P is nilpotent, so by Theorem 1.5 it follows that some term P n of
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its lower central series is trivial. This forces Q = 1. Hence, p does not divide |K|.

The proof is now complete.

Proof of Frobenius Theorem:

Proof. Suppose (1) is true and let N be a normal p-complement in G. Let H ⊆ G

be any subgroup. We will show that H has a normal p-complement, and this will

prove (2). It is easy to verify that H ∩ N � H, and |H ∩ N | is not divisible by p.

Since H/H ∩N ∼= HN/N , we have that |H : H ∩N | = |HN : N |. Also, |HN : N |

divides |G : N |, which is a p-power. Hence, H ∩ N is a normal p-complement in

H. This proves (2). Now assume (2) and let U ⊆ G be a p-subgroup. If U = 1,

then NG(U)/CG(U) is a p-group. So we may assume U > 1. Let M be a normal

p-complement for NG(U). Since p does not divide the order of any element of M

and U is a p-subgroup, M ∩U = 1. Now suppose m ∈M and let u ∈ U . Since both

M and U are normal in NG(U), uMu−1 = M and mUm−1 = U . So umu−1 = m′

and mum−1 = u′ for some m′ ∈ M and u′ ∈ U . Now mum−1u−1 = u′u−1 ∈ U

and umu−1m−1 = m′m−1 ∈ M . We have (m′m−1)−1 = mum−1u−1 ∈ M . So

mum−1u−1 ∈ M ∩ U = 1 implies that mu = um. Hence, m ∈ CG(U). We have

shown that M ⊆ CG(U). Thus |NG(U) : CG(U)| divides |NG(U) : M |, and is

therefore, p-power. This proves (3). The fact that (3) implies (4) was Corollary

2.30. (4) implies (1) was given by Theorem 2.31. The proof of Frobenius’s Theorem

is now complete.

The following corollary is a nice application of Frobenius’s Theorem.
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Corollary 2.32. Let |G| = pam, were p is prime and p does not divide m. Suppose

that (m, pe − 1) = 1 for all integers e with 1 ≤ e ≤ a. Then G has a normal

p-complement.

Proof. Suppose to the contrary that G does not have a normal p-complement. By

Frobenius’s Theorem, there exists a p-subgroup U ⊆ G such that NG(U)/CG(U)

is not a p-group. Now, NG(U)/CG(U) is isomorphic to a subgroup of Aut(U). It

follows that Aut(U) contains an element σ of prime order q where q divides m.

Let V = {u ∈ U | uσ = u}. It is easy to see that V is a subgroup of U . Since

σ is not the identity V is a proper subgroup of U . For φ ∈ Aut(U) and u ∈ U ,

φ · u = φ(u) gives an action of Aut(U) on U . This gives an action of 〈σ〉 on U . Let

〈σ〉x denote the stabilizer of x ∈ U − V under the action of 〈σ〉 on U . Note that

〈σ〉x is a subgroup of 〈σ〉. Since |〈σ〉x| divides q and x /∈ V , 〈σ〉x = 1. It follows

that all the elements of U − V lie in orbits of size q under 〈σ〉. Hence, q divides

|U |− |V | = |V |(|U : V |−1). Since q does not divide |V |, q divides |U : V |−1. Now,

|U : V | = pe for some exponent e with 1 ≤ e ≤ a. This is a contraction. Therefore,

G has a normal p-complement.

Corollary 2.33. If |G| = 2k for some odd integer k greater than 1, then G is not

simple.

Proof. Suppose |G| = 2k for some odd integer k greater than 1. Then 2 does not

divide k and (k, 1) = 1. By Corollary 2.32, it follows that G has a normal subgroup

of order k. Thus, G is not simple.
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Corollary 2.34. If G is simple with |G| = 8m, then one of 2,3, or 7 must divide

m.

Proof. Suppose G is simple with |G| = 8m and none of 2,3, or 7 divide m. (Note

that m must be greater than 1) Then |G| = 23m where 2 does not divide m. We

have (m, 1) = (m, 3) = (m, 7) = 1. By Corollary 2.32, it follows that G has a normal

subgroup of order m. This contradicts the simplicity of G. Hence, one of 2,3, or 7

must divide m if G is a simple group of order 8m.
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CHAPTER 3

COMPUTATIONS

Before we begin a lengthy analysis that will involve disproving existence of

simple groups for orders from 1-200 (in which they do not occur), we should give

some basic results that follow from Sylow’s Theorems. These results will make the

task more convenient and immediately eliminate potential orders.

Proposition 3.1. If |G| = pq for primes p and q with p < q, then G is not simple

Proof. By Sylow’s Theorems, nq ≡ 1 mod q and nq divides p. It clearly follows that

nq = 1. Therefore, a Sylow q-subgroup of G is normal.

The two propositions that follow are from [3].

Proposition 3.2. If G is a finite group and H is a proper subgroup of G such that

|G| does not divide |G : H|!, then H contains a nontrivial normal subgroup of G. In

particular, G is not simple.

Proof. G acts by left multiplication on the set X of left cosets of H in G, inducing a

permutation representation of G into the symmetric group on X. This permutation

representation α : G→ SX is defined by α(g) = σg where σg : X → X is defined for

xH ∈ X by σg(xH) = gxH. If g ∈ ker(α), then σg(xH) = xH for all xH ∈ X. In

particular, σg(H) = gH = H. Hence, g ∈ H. So ker(α) ⊆ H. Therefore, ker(α) is a

normal subgroup of G contained in H. And G/ker(α) is isomorphic to a subgroup

of SX which has order |G : H|!. Hence, |G|
|ker(α)| divides |G : H|!. Since |G| does not

divide |G : H|!, ker(α) is nontrivial. It now follows that G is not simple.
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Proposition 3.3. If a finite non-abelian simple group G has a subgroup of index n,

then G is isomorphic to a subgroup of An.

Proof. Let H be a subgroup of index n in G. Consider the non-trivial homomor-

phism from G into Sn from the proof of Proposition 3.2. Since G is simple and

the kernel of a homomorphism is a normal subgroup, we have an injective homo-

morphism from G into Sn. Therefore, G is isomorphic to a subgroup of Sn. Any

subgroup of Sn consists of all even permutations, or half of the elements are even

permutations and half of the elements are odd permutations. If G were isomorphic

to a subgroup of Sn of the latter type, then the even permutations of this subgroup

would form a subgroup of index 2. Subgroups of index 2 are normal. Therefore,

G would have a proper, non-trivial normal subgroup. Hence, G is isomorphic to a

subgroup of Sn consisting entirely of even permutations. It now follows that G is

isomorphic to a subgroup of An.

Proposition 3.4. If P and P ′ are Sylow p-subgroups of order p, then P ∩ P ′ = 1

Proposition 3.5. p-groups have non-trivial centers.

The integers 2 and 3 are primes, so of course 2 and 3 occur as orders of simple

groups. Neither Z4 nor Z2 × Z2 is simple, so 4 is not the order of a simple group.

[Skipping n=5, 6, 7, 8, 9, 10 ,11 brings us to:]

n = 12: By Sylow’s Theorems, a group of order 12 has a subgroup of index 3. 12

does not divide 3!. So by Proposition 3.2, 12 does not occur as the order of a simple
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group.

[Skipping n=13, 14, 15, 16, 17 brings us to :]

n = 18: n3 ≡ 1 (mod 3) and divides 2. Thus, n3 = 1 and G is not simple.

n = 20: n5 ≡ 1 (mod 5) and divides 4. Therefore, n5=1 and G is not simple.

[Skipping n=21, 22, 23 brings us to:]

n = 24: Any group of order 24=23 · 3 has a subgroup of index 3, and 24 does not

divide 3!. It follows from Proposition 3.2 that 24 is not the order of a simple group.

[Skipping n=25, 26, 27 brings us to:]

n=28: n7 ≡ 1 (mod 7) and divides 4. Thus, n7=1 and G is not simple.

[Skipping n=29 brings us to:]

n=30: If n3=1 or n5=1, then G is simple. Suppose not. Then n3 = 10 and n5 = 6.

This gives 10 · 2 = 20 elements of order 3 and 6 · 4 = 24 elements of order 5. But

G has only 30 elements. This is a contradiction. Thus, n3=1 or n5=1. So G is not

simple.

[Skipping n=31, 32, 33, 34, 35 brings us to:]

n = 36 = 22 · 32: Any group of order 36=22 · 32 has a subgroup of index 4, and 36
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does not divide 4!=24. Hence, 36 does not occur as the order of a simple group.

[Skipping n=37, 38, 39 brings us to:]

n = 40 = 23 · 5: n5 ≡ 1 (mod 5) and divides 8. Hence, n5 = 1 and G is not simple.

n = 42 = 2 · 3 · 7: n7 ≡ 1 (mod 7) and divides 6. So n7 = 1 and G is not

simple.

n=44=22 · 11: n11 ≡ 1 (mod 11) and divides 4. Thus, n11 = 1 and G is not

simple.

n=45=32 · 5: n5 ≡ 1 (mod 5) and divides 9. So n5 = 1 and G is not simple.

[Skipping n=46, 47 brings us to:]

n = 48: Any group of order 48=24 · 3 has a subgroup of index 3. Since 48 does not

divide 3!, It follows from Proposition 3.2 that 48 does not occur as the order of a

simple group.

[Skipping n=49 brings us to:]

n = 50 = 2 · 52: n5 ≡ 1 (mod 5) and divides 2. Hence, n5 = 1 and G is not simple.

[Skipping n = 51 brings us to:]
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n = 52 = 22 · 13: Clearly a Sylow 13-subgroup is normal. So G is not simple.

n = 54 = 2 · 33: A Sylow 3-subgroup is normal, so G is not simple.

[Skipping n=55 brings us to:]

n = 56: There are a couple approaches we may take in dealing with 56. We may

make a counting argument or we may apply Burnside’s Theorem. First we make a

counting argument. So assume G is a simple group of order 56=23 ·7. Then we must

have n7 = 8 and n2 = 7. The 8 Sylow 7-subgroups account for 48 elements of order

7. Just 1 Sylow 2-subgroup will give 8 new elements, which gives us all the elements

of G. But there are 7 Sylow 2-subgroups. This is a contradiction. Therefore, 56 is

not the order of a simple group. Now consider another approach. Suppose G is a

simple group of order 56=23 · 7. Let P ∈ Syl7(G). We must have n7 = 8. It follows

that |NG(P )| = 7. Therefore P = NG(P ). And P is abelian, so P = Z(P ). Hence,

P = Z(P ) = Z(NG(P )). It follows from Burnside’s Theorem that G has a normal

subgroup of order 8, contradicting the simplicity of G.

[Skipping n=57, 58, 59, 60 (A5 is simple), 61, 62 brings us to:]

n = 63 = 32 · 7: n7 ≡ 1 (mod 7) and divides 9. Therefore, n7 = 1 and G is not

simple.

[Skipping n=64, 65 brings us to:]
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n = 66 = 2 · 3 · 11: n11 ≡ 1 (mod 11) and divides 6. So n11 = 1 and G is not simple.

n = 68 = 22 · 17: Clearly a Sylow 17-subgroup is normal. So G is not simple.

[Skipping n=69 brings us to:]

n = 70 = 2 · 5 · 7: n7 ≡ 1 (mod 7) and divides 10. Thus, n7 = 1 and G is not simple.

[Skipping n=71 brings us to:]

n = 72 = 23 · 32: n3 ≡ 1 mod 3 and n3 divides 8. So if |G| = 72, n3 = 1 or n3 = 4.

If n3 = 1, the Sylow 3-subgroup of G is normal. Suppose n3 = 4. Let P be a Sylow

3-subgroup of G. Then NG(P ) is a proper subgroup of G, and |G| does not divide

n3! = 4! = |G : NG(P )|!. By Proposition 3.2, NG(P ) contains a nontrivial normal

subgroup of G. It now follows that G is not simple. So no group of order 72 is

simple.

[Skipping n=73, 74 brings us to:]

n = 75 = 3 · 52: n5 ≡ 1 (mod 5) and divides 3. Therefore, n5 = 1 and G is not

simple.

n = 76 = 22 · 19: Clearly a Sylow 19-subgroup is normal. So G is not simple.

[Skipping n=77 brings us to:]
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n = 78 = 2 · 3 · 13: n13 ≡ 1 (mod 13) and divides 6. So n13 = 1 and G is not simple.

n = 80: Suppose |G| = 80 = 24 · 5. By Sylow’s Theorem, G has a subgroup of

order 16. Since 80 does not divide 5!, Proposition 3.2 states that G is not simple.

So no group of order 80 is simple.

[Skipping n=81, 82, 83 brings us to:]

n = 84 = 22 · 3 · 7: n7 ≡ 1 (mod 7) and divides 12. Thus, n7 = 1 and G is not

simple.

[Skipping n=85, 86, 87 brings us to:]

n = 88 = 23 · 11: Clearly a Sylow 11-subgroup is normal. So G is not simple.

n = 90 = 2 · 32 · 5: Here n3=1 or 10 and n5=1 or 6. We cannot count elements

since the Sylow 3-subgroups have order 9. Assume n3 = 10 and n5 = 6. Then a

Sylow 3-subgroup has index 10 in G, and a Sylow 5-subgroup has index 18 in G.

The normalizer of a Sylow 3-subgroup has index 10 in G, and the normalizer of a

Sylow 5-subgroup has index 6 in G. Now, | G |= 90 divides 6!, 10!, and 18!. So we

cannot use Proposition 3.2 here. So transfer theory is necessary here. Indeed, G is

not simple by Corollary 2.33.

[Skipping n=91 brings us to:]
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n = 92 = 22 · 23: Clearly a Sylow 23-subgroup of G is normal. So G is not simple.

[Skipping n=93, 94, 95 brings us to:]

n = 96 = 25 · 3: Any group of order 96 has a subgroup of order 32. This subgroup

has index 3 in G. Since 96 does not divide 3!, G is not simple by Proposition 3.2.

Therefore, no group of order 96 is simple.

n = 98 = 2 · 72: A Sylow 7-subgroup of G is normal. Hence, 98 does not occur

as the order of a simple group.

n = 99 = 32 · 11: A Sylow 11-subgroup is normal. So G is not simple.

n = 100 = 22 · 52: n5 ≡ 1 (mod 5) and divides 4. Thus, n5 = 1 and G is not

simple.

n = 102 = 2 · 3 · 17: n17 ≡ 1 (mod 17) and divides 6. Therefore, n17 = 1 and

G is not simple.

n = 104 = 23 · 13: n13 ≡ 1 (mod 13) and divides 8. Thus, n13 = 1 and G is

not simple.

n = 105 = 3 · 5 · 7: We can prove that no group of order 105 is simple in a
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couple ways. Suppose |G| = 105 Then n3 = 1 or 7, n5 = 1 or 21, n7 = 1 or 15. If

G is simple, then G has 7 Sylow 3-subgroups, 21 Sylow 5-subgroups, and 15 Sylow

7-subgroups. Any two Sylow 3-subgroups must intersect in the identity. The same

holds true for the Sylow 5-subgroups and the Sylow 7-subgroups. So the 7 Sylow

3-subgroups account for 14 non-identity elements of G. The 21 Sylow 5-subgroups

give 84 new non-identity elements. The 15 Sylow 7-subgroups account for 90 more

elements of G. This contradicts the fact that G has only 105 elements. Therefore,

G must contain either a normal Sylow 3-subgroup, a normal Sylow 5-subgroup, or

a normal Sylow 7-subgroup. Hence, no group of order 105 is simple.

Alternatively, we could just apply Corollary 2.32 with p=3 to see that no group

of order 105 is simple. With p=3, Corollary 2.32 states that a group of order 105

has a normal subgroup of order 35.

[Skipping n=106, 107 brings us to:]

n = 108 = 22 · 33: By Sylow’s Theorems, G has a subgroup of index 4. Because 108

does not divide 4!, it follows from Proposition 3.2 that G is not simple. Hence, 108

does not occur as the order of a simple group.

n = 110 = 2 · 5 · 11: n11 ≡ 1 (mod 11) and divides 10. So n11 = 1 and G is

not simple.

[Skipping n=111 brings us to:]
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n = 112 = 24 · 7: Suppose G were a simple group of order 112. Necessarily then G

is non-abelian. By Sylow’s Theorems, G has a subgroup of index 7. By Proposition

3.3, G is isomorphic to a subgroup of A7. But |G|=112 does not divide |A7|=2520.

This is a contradiction. Therefore, 112 does not occur as the order of a simple group.

n = 114 = 2 · 3 · 19: n19 ≡ 1 (mod 19) and divides 6. Thus, n19 = 1 and G is

not simple.

[Skipping n=115 brings us to:]

n = 116 = 22 · 29: Clearly a Sylow 29-subgroup is normal. So G is not simple.

n = 117 = 32 · 13: n13 ≡ 1 (mod 13) and divides 9. So n13 = 1 and G is not

simple.

[Skipping n=118, 119 brings us to:]

n = 120 = 23 · 3 · 5: This is a somewhat difficult case. Suppose G is a simple

group of order 120. Then we must have n5 = 6. Let P ∈ Syl5(G). It follows

that |G : NG(P )| = 6. The group G acts by left multiplication on the 6 left

cosets of NG(P ) in G. This action induces a homomorphism ϕ : G → S6 with

ker(ϕ) ⊆ NG(P ). The kernel of a homomorphism is a normal subgroup, so ker(ϕ)

is trivial. Hence G ∼= ϕ(G) ⊆ S6. Let ϕ(G) = H. A6 �S6 and H ⊆ S6, so it follows

that HA6 is a subgroup of S6 having order |H||A6|
|H∩A6| = |H||S6|

2·|H∩A6| . It follows that H ∩A6
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has index 1 or 2 in H. The group H is simple, so H ∩ A6 cannot have index 2 in

H. Hence, H ∩A6 = H. So it follows that H ⊆ A6. Now, |A6 : H| = 360
120

= 3. Since

|A6| does not divide |A6 : H|!, it follows from Proposition 3.2 that A6 is not simple.

This is a contradiction since An is simple for all n ≥ 5. It now follows that no group

of order 120 is simple.

[Skipping n=121, 122, 123 brings us to:]

n = 124 = 22 · 31: A Sylow 31-subgroup is normal. So G is not simple.

[Skipping n=125 brings us to:]

n = 126 = 2·32 ·7: Then n7 ≡ 1 mod 7 and n7 divides 18. Hence, the only possibility

for n7 is 1. So the Sylow-7 subgroup of G is normal. Therefore, no group of order

126 is simple.

[Skipping n=127, 128, 129 brings us to:]

n = 130 = 2 · 5 · 13: n13 ≡ 1 (mod 13) and divides 10. So n13 = 1 and G is not

simple.

n = 132 = 22 · 3 · 11: Suppose G is a simple group of order 132. Then we must

have n11 = 12. If n3 were 4, Proposition 3.2 would give a contradiction. It follows

that n3 = 22. n11 = 12 and n3 = 22 gives 164 non-identity elements of G, thereby

contradicting the order of G. It now follows that no group of order 132 is simple.

46



[Skipping n=133, 134 brings us to:] n = 135 = 33 · 5: n5 ≡ 1 (mod 5) and di-

vides 27. The only possibility for n5 is 1. So a Sylow 5-subgroup of G is normal.

Hence, G is not simple.

n = 136 = 23 · 17: Here we see that a Sylow 17-subgroup is normal. So G is

not simple.

n = 138 = 2 · 3 · 23: n23 ≡ 1 (mod 23) and divides 6. So n23 = 1 and G is

not simple.

n = 140 = 22 · 5 · 7: n7 ≡ 1 (mod 7) and divides 20. The only possibility for

n7 is 1. So the Sylow 7-subgroup of G is normal. Therefore, 140 is not the order of

a simple group.

[Skipping n=141, 142, 143 brings us to:]

n = 144: The case of 144 provides a nice illustration of how useful transfer theory

can be. First we prove that 144 is not the order of a simple group using only Sylow’s

Theorems and counting arguments. The proof is adapted from [3]. So assume G is

a simple group of order 144 = 24 · 32. Then n3 = 4 or 16 and n2 ≥ 3. n3 cannot be

4 by Proposition 3.2. So n3 = 16. Suppose every pair of Sylow 3-subgroups of G

had only the identity in common. Then the Sylow 3-subgroups would give 128 non-
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identity elements. The Sylow 2-subgroups of G would produce more than 16 new

elements of G, contradicting the order of G. Hence, there exists H1, H2 ∈ Syl3(G),

with |H1 ∩ H2| = 3. H1 and H2 have order 9, so both are abelian. Therefore,

H1 ∩H2 is normal in both H1 and H2. So NG(H1 ∩H2) contains both H1 and H2.

Consider the set H1H2. We see that H1H2 is contained in NG(H1 ∩H2). Therefore,

|NG(H1 ∩H2)| ≥ |H1H2| = |H1||H2|
|H1∩H2| = 27. Let k = |NG(H1 ∩H2)|. So we know that

k ≥ 27 and k is a multiple of 9 dividing 144. Hence, k ≥ 36 which implies that

|G : NG(H1 ∩ H2)| ≤ 4. Proposition 3.2 now gives a contradiction. It now follows

that 144 does not occur as the order of a simple group.

Burnside’s Theorem provides a much simpler argument. If |G| = 144 = 24 · 32,

Let P ∈ Syl3(G). Since P has order 9, P is abelian. Therefore, P = Z(P ). Since

n3 = 16, |NG(P )| = 9. Hence, P = NG(P ). So Z(NG(P )) = Z(P ) = P . By

Burnside’s Theorem, G has a normal subgroup of order 16. Hence, G is not simple.

[Skipping n=145, 146 brings us to:]

n = 147 = 3 · 72: n7 ≡ 1 (mod 7) and divides 3. So n7 = 1 and G is not simple.

n = 148 = 22 · 37: n37 ≡ 1 (mod 37) and divides 4. Thus, n37 = 1 and G is

not simple.

n = 150 = 2 · 3 · 52: Let |G| = 150. Then G has a subgroup of index 6, and

150 does not divide 6!=720. By Proposition 3.2, G is not simple. The simplicity of
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G is also given by Corollary 2.33. Hence, no group of order 150 is simple.

n = 152 = 23 · 19: n19 ≡ 1 (mod 19) and divides 8. Hence, n19 = 1 and G is

not simple.

n = 153 = 32 · 17: n17 ≡ 1 (mod 17) and divides 9. Therefore, n17 = 1 and G

is not simple.

n = 154 = 2 · 7 · 11: n11 ≡ 1 (mod 11) and divides 14. So n11 = 1 and G is

not simple.

[Skipping n=155 brings us to:]

n = 156 = 22 · 3 · 13: n13 ≡ 1 (mod 13) and divides 12. So n13 = 1 and G is not

simple.

[Skipping n=157, 158, 159 brings us to:]

n = 160 = 25 · 5: Let |G| = 160. Then G has a subgroup of index 5 and 160 does

not divide 5!=120. By Proposition 3.2, G is not simple. So 160 is not the order of

a simple group.

[Skipping n=161 brings us to:]

n = 162 = 2 · 34: n3 ≡ 1 (mod 3) and divides 2. So n3 = 1 and G is not simple.
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n = 164 = 22 · 41: n41 ≡ 1 (mod 41) and divides 4. Thus, n41 = 1 and G is

not simple.

n = 165 = 3 · 5 · 11: n11 ≡ 1 (mod 11) and divides 15. So n11 = 1 and G is

not simple.

[Skipping n=166, 167, 168, (it is known that there is a simple group of order 168),

169 brings us to:]

n = 170 = 2 · 5 · 17: n17 ≡ 1 (mod 17) and divides 10. So n17 = 1 and G is not

simple.

n = 171 = 32 · 19: n19 ≡ 1 (mod 19) and divides 9. Thus, n19 = 1 and G is

not simple.

n = 172 = 22 · 43: It is easy to see that a Sylow 43-subgroup is normal. So G

is not simple.

n = 174 = 2 · 3 · 29: n29 ≡ 1 (mod 29) and divides 6. So n29 = 1 and G is

not simple.

n = 175 = 52 · 7: If |G| = 175 it is easy to see that the only possibility for n7
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is 1. So the Sylow 7-subgroup of G is normal. Therefore, 175 does not occur as the

order of a simple group.

n = 176 = 24 · 11: n11 ≡ 1 (mod 11) and divides 16. So n11 = 1 and G is not

simple.

[Skipping n=177, 178, 179 brings us to:]

n = 180: This is another case that can be simplified with the use of Burnside’s

Theorem. Suppose G is a simple group of order 180=22 · 32 · 5. Then we have

n5 = 6 or 36 and n3 = 10. (n3 cannot be 4 by Proposition 3.2) First sup-

pose n5 = 36. This will give 144 elements of order 5. If each pair of the Sylow

3-subgroups intersects in just the identity, we will have 80 new non-identity ele-

ments in G. This contradicts the order of G. So there are Sylow 3-subgroups

H1 and H2 in G where |H1 ∩ H2| = 3. By the same argument used for the case

of 144, we have |NG(H1 ∩ H2)| ≥ |H1H2| = 9·9
3

= 27. Since |NG(H1 ∩ H2)| di-

vides 180, |NG(H1 ∩ H2)| = 9 · k where k ≥ 3 and k divides 20. It follows that

|NG(H1 ∩ H2)| ≥ 36. So |G : NG(H1 ∩ H2)| ≤ 5. Proposition 3.2 now gives a

contradiction. Therefore, we can assume that n5 = 6. Since n5 = 6, we know that

the normalizer of a Sylow 5-subgroup of G has index 6. By Proposition 3.3, G is

isomorphic to a subgroup of A6. We also know that the order of the normalizer

of a Sylow 5-subgroup of G has order 30. Since every group of order 30 has an

element of order 15, G contains an element of order 15. (Every group of order 30
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has a subgroup of order 15) But A6 has no element of order 15. We have arrived

at a contradiction. It now follows that 180 is not the order of a simple group. The

preceding proof was adapted from [3].

We now show that a contradiction to the claim that n5 = 36 can be arrived at

much quicker with the use of Burnside’s Theorem. Suppose |G| = 180 = 22 · 32 · 5

where G is simple. Suppose n5 = 36 and let P be a Sylow 5-subgroup of G. Then

P is cyclic, and hence, abelian. So P = Z(P ). n5 = 36 implies that |NG(P )| = 5.

Hence, NG(P ) = P . We have P = Z(P ) = Z(NG(P )). It now follows from Burn-

side’s Theorem that G has normal subgroup of order 36, contradicting the simplicity

of G.

n = 182 = 2 · 7 · 13: Let |G| = 182. Then it is easy to see that the only possi-

bility for n7 is 1. Therefore, the Sylow 7-subgroup of G is normal. Hence, no group

of order 182 is simple.

[Skipping n=183 brings us to:]

n = 184 = 23 · 23: n23 ≡ 1 (mod 23) and divides 8. Hence, n23 = 1 and G is not

simple.

[Skipping n=185 brings us to:]

n = 186 = 2 · 3 · 31: n31 ≡ 1 (mod 31) and divides 6. Therefore, n31 = 1 and G is

not simple.
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[Skipping n=187 brings us to:]

n = 188 = 22 · 47: n47 ≡ 1 (mod 47) and divides 4. So n47 = 1 and G is not simple.

n = 189 = 33 · 7: n7 ≡ 1 (mod 7) and divides 27. The only possibility for n7

is 1. So a Sylow 7-subgroup of G is normal. Hence, G is not simple.

n = 190 = 2 · 5 · 19: n19 ≡ 1 (mod 19) and divides 10. Thus, n19 = 1 and G

is not simple.

n = 192 = 26 · 3: By Sylow’s Theorems, G has a subgroup of index 3. 192 does not

divide 3!. By Proposition 3.2, G is not simple.

[Skipping n=193, 194 brings us to:]

n = 195 = 3 · 5 · 13: n13 ≡ 1 (mod 13) and divides 15. Thus, n13 = 1 and G is not

simple.

n = 196 = 22 · 72: n7 ≡ 1 (mod 7) and divides 4. Hence, n7 = 1 and G is not

simple.

n = 198 = 2 · 32 · 11: n11 ≡ 1 (mod 11) and divides 18. So n11 = 1 and G is

not simple.
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n = 200 = 23 · 52: n5 ≡ 1 (mod 5) and divides 8. Therefore, n5 = 1 and G is

not simple.

The fact that none of the integers from 201 through 239 occur as orders of

non-abelian simple groups is not difficult to prove. 240 provides an interesting case.

Suppose G is a simple group of order 240=24 · 3 · 5. It follows that n5 = 6 or 16. If

n5 = 6, then G has a subgroup of index 6. By Proposition 3.3, G is isomorphic to a

subgroup of A6. But 240 = |G| does not divide 360=|A6|. This is a contradiction.

Therefore, n5 = 16. Now, let P ∈ Syl5(G). We have |NG(P )| = 15. This implies

that NG(P ) is cyclic, and we have Z(NG(P )) = NG(P ). Hence, P ⊆ Z(NG(P )). By

Burnside’s Theorem, G has a normal subgroup of order 48. This is a contradiction.

Therefore, 240 is not the order of a simple group. Transfer theory can be applied

to the case of 252=22 · 32 · 7. Suppose G is a simple group of order 252. Then it

follows that n7 = 36. If P is a Sylow p-subgroup of G, then |NG(P )| = 7. Therefore,

P = NG(P ). Since P is abelian, P = Z(P ) = Z(NG(P )). By Burnside’s Theorem,

G has a normal subgroup of order 36. This is a contradiction. Hence, 252 does not

occur as the order of a simple group.

The following propositon will be helpful in proving a claim that will help us

disprove existence of non-abelian simple groups for particular orders. Most of the

following material has been adapted from [2].

Proposition 3.6. (Frattini) Let G be a finite group, let H be a normal subgroup of

G and let P be a Sylow p-subgroup of H. Then G = HNG(P ) and |G : H| divides
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|NG(P )|.

Proof. H �G, so HNG(P ) is a subgroup of G. Let g ∈ G. We have P g ⊆ Hg = H.

Since P, P g ∈ Sylp(H), there exists x ∈ H such that P g = P x. Therefore, gx−1 ∈

NG(P ). It follows that g ∈ NG(P )x, and so g ∈ NG(P )H = HNG(P ). (Recall that

H � G.) We have shown that G ⊆ NG(P )H. Thus, G = NG(P )H = HNG(P ). It

follows from the second isomorphism theorem that |G : H| = |NG(P ) : NG(P )∩H|.

Hence, |G : H| divides |NG(P )|.

Suppose G is a simple group of order n with a proper subgroup of index k.

Then we have shown above that G is isomorphic to a subgroup of Sk. Before we

present the next two propostions we should comment that if this is the case, then

we identify G with its isomorphic copy contained in Sk and simply view G as a

subgroup of Sk.

Proposition 3.7. If G has no subgroup of index 2 and G ⊆ Sk, then G ⊆ Ak.

Proof. Suppose to the contrary that G is not contained in Ak. Then Ak is a proper

subgroup of GAk, and |GAk| = |G||Ak|
|G∩Ak|

= |G||Sk|
2|G∩Ak|

. G is not contained in Ak, so half

the elements of G are even permutations and half the elements of G are odd. It

follows that |G ∩ Ak| = 1
2
|G|. This implies that |G||Sk|

2|G∩Ak|
= |Sk|. Hence, GAk = Sk.

By the second isomorphism theorem, 2=|Sk : Ak| = |GAk : Ak| = |G : G ∩ Ak|.

So G ∩ Ak is a subgroup of index 2 in G. This is a contradiction. It follows that

G ⊆ Ak.

Proposition 3.8. If P ∈ Sylp(Sk) for some odd prime p, then P ∈ Sylp(Ak) and
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|NAk(P )| = 1
2
|NSk(P )|.

Proof. Suppose P ∈ Sylp(Sk) for some odd prime p. By Propositon 3.7, P ⊆ Ak.

Hence, P ∈ Sylp(Ak). By Proposition 3.6, Sk = NSk(P )Ak. So it follows thatNSk(P )

is not contained in Ak. So half the elements of NSk(P ) are even permutations and

half are odd permutations. Therefore, NSk(P )∩Ak = NAk(P ) is a subgroup of index

2 in NSk(P ). It now follows that |NAk(P )| = 1
2
|NSk(P )|.

The following observation may help us eliminate some potential orders of non-

abelian simple groups.

Suppose G is a simple group of order n containing a proper subgroup of index

k. Then as we have noted above, we may write G ⊆ Sk. Assume further that k = p

or k = p + 1 where p is a prime. It follows that p2 does not divide k!, so Sylow

p-subgroups of G are Sylow p-subgroups of Sk. It is clear that

the no. of Sylow p-subgroups of Sk=
the no. of p-cycles

the no. of p-cycles in a Sylow p-subgroup

=k(k−1)···(k−p+1)
p(p−1)

. This gives the index in Sk of the normalizer of a Sylow p-subgroup

of Sk. Hence, |NSk(P )| = p(p− 1) in the case of k = p or p+ 1. We also have that

|NG(P )| divides p(p− 1).

The above results may be applied to the case of 264=23 · 3 · 11. Suppose G is

a simple group of order 264. Then it follows that n11 = 12. By Proposition 3.7,

G ⊆ A12. If P is a Sylow 11-subgroup of G, then we see that |NG(P )| = 22. By our

above observation and Proposition 3.8, |NA12(P )| = 1
2
|NS12(P )| = 1

2
11(11− 1) = 55.

However, NG(P ) ⊆ NA12(P ), and 22 does not divide 55. This is a contradiction. It

now follows that 264 does not occur as the order of a simple group.
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The case of 396=22 · 32 · 11 is an interesting example. Suppose G is a simple

group of order 396. We have n11 = 12. If P is a Sylow 11-subgroup of G, then it

follows that |NG(P )| = 33. By our above observations, G ⊆ S12, P ∈ Syl11(S12),

and |NS12(P )| = 110. However, NG(P ) ⊆ NS12(P ). This implies that 33 divides

110. This is a contradiction. It follows that 396 does not occur as the order of a

simple group.

We now show that this proof can be simplified with the use of Burnside’s

Theorem. Suppose G is a simple group of order 396. If P is a Sylow 11-subgroup

of G, then |NG(P )| = 33. Every group of order 33 is cyclic. So it follows that

NG(P ) is abelian. So we have that Z(NG(P )) = NG(P ). Hence, P ⊆ Z(NG(P )).

By Burnside’s Theorem it follows that G has a normal subgroup of order 36. This

is a contradiction. Hence, no group of order 396 is simple.
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