
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

3-2009

Information Leakage Detection in Distributed
Systems using Software Agents
Yung-Chuan Lee
Southern Illinois University Carbondale

Stephen Bishop
Southern Illinois University Carbondale

Hamed Okhravi
Southern Illinois University Carbondale

Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.eduFollow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Lee, Y.-C., Bishop, S., Okhravi, H., & Rahimi, S. (2009). Information leakage detection
in distributed systems using software agents. IEEE Symposium on Intelligent Agents, 2009. IA '09,
128-135. doi: 10.1109/IA.2009.4927510 ©2009 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE. This material
is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights
therein are retained by authors or by other copyright holders. All persons copying this information
are expected to adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Lee, Yung-Chuan, Bishop, Stephen, Okhravi, Hamed and Rahimi, Shahram. "Information Leakage Detection in Distributed Systems
using Software Agents." (Mar 2009).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


Information Leakage Detection in Distributed Systems using
Software Agents

Yung-Chuan Lee, Stephen Bishop, Hamed Okhravi and Shahram Rahimi

Abstract— Covert channel attacks utilize shared resources
to indirectly transmit sensitive information to unauthorized
parties. Current security mechanisms such as SELinux rely on
tagging the filesystem with access control properties. However,
such mechanisms do not provide strong protection against
information laundering via covert channels. Colored Linux [20],
an extension to SELinux, utilizes watermarking algorithms to
“color” the contents of each file with their respective security
classification to enhance resistance to information laundering at-
tacks. In this paper, we propose a mobile agent-based approach
to automate the process of detecting and coloring receptive
hosts’ filesystems and monitoring the colored filesystem for
instances of potential information leakage. Implementation
details and execution results are included to illustrate the merits
of the proposed approach.

I. INTRODUCTION

INFORMATION security has been researched to consid-
erable depth in the ongoing quest to provide users and

corporate entities a more secure computing environment.
Although an extraordinary range of effective approaches have
been developed to mitigate threats to information security,
new threats appear daily. Within the realm of such threats,
among the most difficult to detect and prevent involve
covert channel, or side channel, attacks. A covert channel
is a byproduct of shared resources like memory, network
interfaces, and execution time on computing devices and can
be created and accessed dynamically [19], [20]. Examples
of information leakage can be found in [19], [23]. Because
covert channels are created from shared resources, it is
very difficult to detect and prevent their occurrences. Covert
channel attacks are often employed to bypass conventional
security mechanisms by an authorized insider while leaking
oftentimes sensitive information between processes. It is
common for such attacks to involve the transfer of data
from highly privileged processes to processes which would
otherwise lack the necessary permissions to access such data.

According to a 2006 Global Security survey by Deloitte,
insider fraud and information leakage contribute 28 percent

Yung-Chuan Lee is a PhD candidate and Computer Information Specialist
with the Department of Computer Science, Southern Illinois University,
Carbondale, Illinois, USA (email: ylee@cs.siu.edu).

Stephen Bishop is a Masters student with the Department of Computer
Science, Southern Illinois University, Carbondale, Illinois, USA (email:
sbishop@cs.siu.edu).

Hamed Okhravi is a PhD candidate and Graduate Research Assistant
in Cyber Security with the Information Trust Institute (ITI) and Center
for Reliable and High-Performance Computing (CRHC) at the Department
of Electrical and Computer Engineering (ECE), University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA (email: hamed@crhc.uiuc.edu).

Shahram Rahimi is an Associate Professor and Director of the Undergrad-
uate Program with the Department of Computer Science, Southern Illinois
University, Carbondale, Illinois, USA (email: rahimi@cs.siu.edu).

and 18 percent of internal breaches respectively [16]. The
most critical factor of insider data leakage involves users
with varying permissions and privilege levels as designated
by their respective positions [12]. Kowalski et al., (2008)
indicated that more than half of the insider data breaches
occurred within organizations and that information was ac-
cessed through organizations’ computers. Because internal
security breaches are caused by legitimate and authenticated
users, most conventional security measurements cannot ef-
fectively detect and prevent such activities.

Modern operating systems counter unauthorized accesses
through the use of access control tags, or labels, applied
to subjects (e.g. processes or users) and objects (e.g. files).
These labels are compared with the permissions assigned to
users attempting to access the labeled files. Access is then
granted or denied depending on these permissions. While
this mechanism provides effective access control in most
situations, it is vulnerable to covert channel attacks. Such
attacks enable laundering of the access control tags applied
by the operating system, allowing for arbitrary tag removal
or tag reassignment.

Colored Linux [20] provides an extension to SELinux
based on data watermarking, or coloring. The approach in
Colored Linux is to generate blind watermark signatures for
all files on a filesystem based on each file’s access control
tag. These watermarks are then applied to all files. When file
access is requested, Colored Linux examines the requested
file’s watermark and compares it to the file’s tag. Discrep-
ancies between the watermark and security tag indicate that
an unauthorized modification to the tag has been made and
appropriate measures can then be taken. If the watermark
matches the tag, SELinux access control measures take over
as usual. Furthermore, if adequately robust watermarking
algorithms are used, attempts to remove a watermark will
render the associated file’s contents useless to the attacker.

Colored Linux was implemented primarily through modifi-
cation of the SELinux kernel modules. The main advantage
of their approach is that it does not need any knowledge
of covert channels since the modification of the operating
system is on filesystem kernel to monitor read and write
accesses. On the other hand, while operating system-based
coloring scheme works effectively in a “closed” system (i.e.,
a system in which every machine is running the modified
operating system), it is not as effective in an “open” system
(i.e., a system which is connected to machines with non-
colored operating systems). Unless the borders of an open
system are tighly controlled, an insider can distord water-
marked files beyond recognition (e.g. using encryption) and

978-1-4244-2767-3/09/$25.00 ©2009 IEEE 



leak them to the outside using cross-border covert channels.
To overcome this drawback, we propose an information

leakage detection (ILD) agent system to automate the pro-
cesses of converting a regular machine to colored one. Bene-
fits of such an approach involve the ability to modify and add
detection capabilities in a modular fashion while simultane-
ously providing conditional deployment of such capabilities.
With mobile agents, such dynamism can be realized with
little or no administrative involvement. Furthermore, the
distributed reporting potential of mobile agent networks can
lend itself well to future analysis of information leakage, as
well as the underlying covert channel techniques. The agent
based approach also makes the coloring scheme effective
in an open system which is a hybrid of machines running
modified operating systems and comodity ones. Given com-
parable requirements for a small memory footprint and ease
of integration with relatively low-level system constructs
necessary to accomplish efficient filesystem monitoring, we
have chosen Mobile-C [6] for our mobile agent platform, as
it meets all of our requirements.

In Section 2, related works on information leakage pre-
vention or detection are presented. Section 3 provides an
overview of Colored Linux while our proposed Information
Leakage Detection agent community is discussed in Section
4. Section 5 details several detection methodologies and
their respective limitations. Section 6 provides the proposed
strategies which will be implemented in our system. Section
7 lists the inter-agent communications present in our system.
In Section 8, implementation details and results of the host-
resident agents in our system are examined. Finally, Section
9 provides conclusions and future directions.

II. RELATED WORK

Since most of the studies in security community deal with
preventing outsiders access, there are only a few literatures
that have proposed methodologies to address the issue of
information leakage though insiders. Alawneh and Abbadi
introduced a mechanism to protect shared information among
organizations via Trusted Platform Module (TPM) [1], [2].
By creating master controller and domains for TPM equipped
devices, contents can only be accessed through the allowed
devices. Takesue proposed a scheme to prevent information
leakage through portable devices [22]. A modified i-node
with 1-bit flag bit and 1-bit lock bit imposes authentications
with integrated network location checking between storage
devices and security server, a user can only access the files
when she is inside the company and the authentication is
succeeded. Change and Kim designed a system to prevent
information leakage in ubiquitous computing environment
[5]. The approach utilizes cryptographic algorithms and
authentication methods in agents to secure the sensitive data
during communications. Although these approaches present
potential solutions to insider information threats, none of
them examine the risk of covert channel attacks.

An overview of covert channel attacks are discussed in the
following efforts [3], [18], [27]. A network-based storage
covert channel based on IP time to live (TTL) field is

designed in [21]. A link-layer network-based covert channel
in the MAC protocol based on the splitting algorithm is
proposed in [13]. Cabuk, et. al. have designed and studied
network-based timing channels and mechanisms to disrupt
such channels in [4]. A work by Wang and Lee [26] stud-
ies hardware-based (processor-based) timing channels and
identifies two such channels in typical Simultaneous Multi-
Threaded (SMT) processors.

There are also countermeasures proposed for known covert
channel attacks such as information flow analysis techniques
[24], time-domain anomaly [25], entropy-based approach [9],
data-dependency scheme [17], and store-forward approach
[10], [11]. However, most of these countermeasures work
best for known covert channels. The problem, however, is
that it is impossible to enumerate all covert channels in a
real system. Hence, it is that unknown channels that pose
the greatest threat to the security of the system.

Robust watermarking (coloring) offers a strong binding
between data and its security tag and can detect information
leakage from both insiders as well as through covert channel
attacks. Further, our proposed approach to combine mobile
agents with Colored Linux methodologies is novel.

III. COLORED LINUX

Information luandering through covert channel attacks is
possible because the binding between the data and its security
tag is loose; i.e., the security tag is usually appended to the
end of the file as a bit stream. If such a file leaks through
a covert channel, the tag becomes meaningless and easily
removable. The insight behind Colored Linux is to make
this binding strong by coloring (watermarking) data files. If
the watermarking algorithm is robust, it is impossible for an
attacker to remove the watermark without destroying the data
itself.

Colored linux has a coloring algorithm, “brush”, for each
file type (e.g. one for images, another one for text files, etc.).
The set of all algorithms in the operating system is called
the “brush set”.

The entire filesystem is colored during the initialization.
Upon each access to a file, the color of the file is compared
to its security tag. If there is a discrepancy between the
two, it means that the file has been leaked through a covert
channel and its security tag has been laundered. Note that
Colored Linux knows nothing about the mechanism of covert
communication. However, it can detect any leakage and
prevent any furthure damage by taking appropriate measures.

The watermarking algorithms used in Colored Linux must
be blind; i.e., they should be able to detect the watermark
without needing the original file. This ensures that the
security of the system is not endangered by storing the
original uncolored file in the filesystem.

Colored Linux is implemented by modifying SELinux
hooks. SELinux hooks are invoked whenever a resource
is accessed in order to check the policy. By modifying
these hooks, whenever a file is accessed, the color detecting
algorithm is called to check the color of the file and compare
it with its security tag. If it matches, the control is passed over



to the SELinux engine. Otherwise, the process is terminated
and appropriate logs are created. Colored Linux modules are
called whenever an object is created, accessed, changed, or
its tag is modified.

The assumption in Colored Linux is that there is a bound-
ary beyond which covert communication is very difficult
or impractical (a closed system). Every system inside that
boundary is running color-aware operating system. More-
oever, color awareness is manually installed on all of the
machines inside this boundary. ILD agent based system
address these drawbacks by moving through hosts that are
not color-aware and automating the coloring mechanism.

IV. ILD AGENT SYSTEM

Separation of powers and responsibilities in an agent com-
munity encourages flexibility and encapsulation. As such, our
proposed agent system will be heterogeneous with members
belonging to one of six principle archetypes, each adhering
to unique roles and possessing distinct abilities. Figure 1
depicts the classifications of our Information Leakage De-
tection (ILD) Agent system and the respective agent ranks.
All inter-agent communications will adhere to FIPA Agent
Communication Language (ACL) specifications in order to
maintain communication interoperability between different
agent platforms. Properties and responsibilities of each type
of agent are discussed in following subsections.

Controller 
Agent (CA)

Detection 
Agent (DA)

Monitor Agent 
(MA)

Watermarking 
Agent (WA)

Permission 
Agent (PA)

Environment 
Agent (EA)

Queue Agent 
(QA)

Fig. 1. Agent Classifications and Hierarchy

A. Controller Agents (CA)

Controller Agents are responsible for dispatching subor-
dinate agents and coordinating their respective activities in
a designated network. Additionally, Controller Agents will
coordinate the remote installation of the necessary mobile
agent environment and other required software packages on
target hosts with Environment Agents. Multiple instances of
controller agents can be dispatched to ensure proper coverage
of large networks as well as to accomplish load distribution
for the purposes of performance optimization.

B. Detection Agents (DA)

The main functionality of Detection Agents is to identify
new hosts in the network and to verify the host’s states. In
our initial design, a host’s state will refer to the presence or

absence of SELinux and the Colored Linux infrastructure.
Once determined, a host’s state will be reported to the
Controller Agent to aid in the identification of subsequent
actions.

C. Queue Agents (QA)

To avoid overwhelming Controller Agents and to provide
an orderly approach to dispatching agents to newly discov-
ered hosts, Queue Agents will be useful. As stated above,
when a Detection Agent identifies a new remote host, the
host’s state is reported to a Controller Agent. Rather than
dispatching agents to a new host immediately, it may be
preferred to defer such processing for some time, especially
in the case when many such hosts are reported at once. In
such cases, hosts are reported by Controller Agents to Queue
Agents which prioritize hosts for subsequent processing by,
and at the request of, Controller Agents.

D. Monitor Agents (MA)

Monitor Agents will perform active monitoring on the host
filesystem through the inotify kernel subsystem to identify file
write and creation operations. Details on the inotify kernel
subsystem will be discussed in the next section. When a
write operation or file creation operation takes place, Monitor
Agents notify Watermarking Agents which can then perform
watermark analysis of the file in question. As comparable
capabilities are already present in Colored Linux hosts,
Monitor Agents will only reside in non-Colored SELinux
hosts.

E. Watermarking Agents (WA)

Similar to Monitor Agents, Watermarking Agents shall
only be present on non-Colored hosts, as determined by
Detection Agents. The responsibility of these agents is to
watermark all files on a host’s filesystem and to perform
subsequent watermark analysis at the request of Monitor
Agents.

F. Permission Agents (PA)

A central Permission Agent handles permissions issues
involving Monitor Agents and Watermarking Agents with
their target hosts. Specifically, the Permission Agent should
ensure that such agents are given only those permissions
necessary to perform their respective tasks. In addition, the
Permission Agent ensures that all permissions necessary for
agent environment installation by the Environment Agent are
in place.

G. Environment Agents (EA)

Minimally, Watermarking and Monitor Agents require
the necessary agent environment installed on a target host
in order to reside and function there. Also, depending on
the type of watermarking employed, certain watermarking-
specific software dependencies which may not reasonably be
accommodated by the Watermarking Agents themselves can
exist. Environment Agents will be responsible for handling
all such software dependencies without the intervention of
the target host’s administrator.



DA QA PA

WA EA

Network-Level

Host-Level

MA

CA

Fig. 2. Process flow of our proposed system.

V. DETECTION METHODOLOGIES

Detecting file “write” or “create” operations in a non-
Colored host is the first step towards detecting potential
information leakage. In this section, we examine four can-
didate methods and the feasibility and cost associated with
performing such detection. One method is then selected and
implemented in our proposed approach.

A. Memory Scanning

Memory scanning involves systematic scans of the target
machine’s memory space (accessible via the /dev/mem vir-
tual device). In cooperation with information obtained from
/proc, it would be possible to locate any given process’
memory space in /dev/mem and scan that space for “write”
calls. However, the time cost of a single scan of a system
memory snapshot depends on the number of processes in the
system. As the number of the processes increases, so does the
scanning time. Thus, there is no guarantee that the scanning
time will always be less than a given processes’ execution
time, making this method prone to missed detections.

B. Process Tracing

Process tracing works similarly to the previous method,
with the exception that instead of scanning system memory,
it will use the Process Trace, “ptrace,” system call (as is
used by the “strace” command) to attach to a process and
monitor all system calls, including “write” (and “open” calls
with the create flag set, as is needed by the Monitor Agent).
Sharing the same concept as memory scanning, this method
is susceptible to the same timing issue. Primarily, we must
be aware of process creation and must attach to it with ptrace
before the process issues any system calls (or terminates
itself).

It is unknown how exactly this can be accomplished. A
process polling method may be able to catch all process
creations, however, this will dramatically decrease system
performance. Therefore, the performance overhead makes
this method less appealing.

C. Kernel-Level System Call Hooking

In order to maintain high system performance and mitigate
the time cost associated with “write” and “create” operation
detection, we explored the possibility and feasibility of

detecting such operations via their respective system calls
at the kernel level. While this method would allow for
interception of every such system call easily and efficiently,
several potential obstacles might prevent us from choosing
this method. Machine architectures and kernel versions will
surely differ throughout the network, and thus one pre-
compiled kernel module carried as agent payload will not
be injectable into every target host. It is certainly not rea-
sonable to maintain pre-compiled modules for every possible
architecture combined with every kernel version.

One potential solution would be to carry only the module
source code as payload, build it on the target machine, and
load it into the kernel. While this may overcome differences
in system architectures to some extent, modules for newer
kernel versions are written quite differently from those in-
tended for use in much older kernels.

D. inotify Kernel Subsystem

The inotify kernel subsystem is a standard filesystem event
notification service included in Linux kernels since release
2.6.13 three years ago [14]. This service enables a user
to create applications from system libraries to monitor file
operation events like read, write or delete on a set of specified
files. By default, inotify imposes service limitations of 16384
maximum events per queue, 128 maximum instances per user
and 8192 maximum watches per instance to conserve kernel
memory. We are confident that these limitations will not
present overwhelming obstacles to the initial implementation
of our approach; however, a more comprehensive study on
trade-offs between kernel memory and inotify limitations will
be conducted in the future.

Hence, our file operation detection in Monitor Agent will
utilize the inotify kernel service because it provides not
only stability and performance but is also accessible through
uncomplicated system libraries. Although inotify is not avail-
able in kernel versions prior to 2.6.13, our initial targeted
platform will employ a fairly recent kernel version. We will
later investigate the feasibility of dynamically building and
installing inotify modules in older hosts.

VI. PROPOSED STRATEGIES

The following subsections illustrate the states and process
flow of our system. Process flow is depicted in Figure 2. Each
subsection explains the objectives of each step and how they
can be achieved.

A. Host Discovery

In our proposed agent system, all operations begin with,
and are coordinated by, the Controller Agent. Initially, it is
assumed that all hosts in the network are clean, yet unknown.
A Detection Agent is dispatched to scan the network for
SELinux-based hosts. When the first such host is discovered,
the Detection Agent determines whether or not the newly
found host is “Colored.” If the host is un-Colored, it is
reported to the Controller Agent.



B. Non-Colored Host Queueing

When the first non-Colored, SELinux-based host is iden-
tified and reported by the Detection Agent, the Controller
Agent shall create a Queue Agent and make it aware of the
reported host. All subsequent host reports generated by the
Detection Agent will also be forwarded to the Queue Agent.
Hosts are enqueued, possibly with priorities, by the Queue
Agent. At certain times, the Controller Agent will query the
Queue Agent for a new host, which the Queue Agent will
dequeue and forward to the Controller Agent.

C. Permission Determination and Management

Given a host report from the Queue Agent, the Controller
Agent will create a Permission Agent and assign it to the new
host. The permission agent (using standard Linux remote
management facilities, as a mobile agent environment has
not yet been installed on the target host) will attempt to
determine if the proper permissions are in place for the
successful remote installation of an agent environment on
the target host, and for the proper operation of subsequently
dispatched Watermarking and Monitor agents. If proper
permissions have not been assigned, the Permission Agent is
responsible for coordinating with the target host to establish
the lacking permissions. Once this process has completed, the
Controller Agent remotely installs (with the aid of a helper
Environment Agent) the appropriate agent environment on
the target host.

D. Watermarking Target Hosts

Following the successful installation of the agent environ-
ment on the target host, the Controller Agent dispatches a
Watermarking Agent to the host. Within the host, the Wa-
termarking Agent “colors” all files on the host’s filesystem.
Upon completion of initial coloring, the Watermarking Agent
reports completion to the Controller Agent, and then awaits
subsequent commands. Detection of a newly created file, or
of write operations performed on an existing file, are reported
to the Watermarking Agent by the Monitor Agent, prompting
the Watermarking Agent to analyze and possibly color the
new file. This process continues until the Controller Agent
instructs the Watermarking Agent to terminate.

E. File Creation and Write Monitoring

Once the Watermaking Agent has reported successful
completion of initial coloring to the Controller Agent, a
Monitoring Agent is sent to the newly colored host. This
agent will then use the methods described above in Section
4c, and Section 5c to detect and handle potential instances
of information leakage.

VII. COMMUNICATIONS AMONG AGENTS

In our proposed agent architecture, communications
among agents will follow the FIPA communicative act
specification which is based on the Speech Act Theory to
facilitate communication interoperability between different
agent platforms [8]. The specification defines 22 composite
and macro communicative acts to provide conversational

actions such as INFORM, REQUEST or PROPOSE. Table
I through VI illustrates the communication details of the
processes mentioned in previous section. Figure ?? shows
a sequence diagram of simultaneous message exchanges
between agents in the proposed system.

TABLE I
CONTROLLER AGENT COMMUNICATIONS

From: Controller Agent (CA)

To: Detection Agent (DA)

• Ask the DA to notify CA when the first non-colored host is
found. (REQUEST-WHEN)

• After first host found, ask the DA to notify QA whenever non-
colored hosts are found. (REQUEST-WHENEVER)

To: Queue Agent (QA)

• Ask the QA to insert current non-colored hosts to its queue.
(REQUEST)

• Retrieve the hosts in the QA’s queue. (REQUEST with INFORM)

To: Permission Agent (PA)

• Request PA to prepare target host for agent environment instal-
lation. (REQUEST)

To: Watermarking Agent (WA)

• Ask the WA to watermark the host’s filesystem and report the
completion. (REQUEST-WHEN)

To: Monitor Agent (MA)

• Ask the MA to monitor the target host and notify the CA when
information leakage occurred. (SUBSCRIBE)

To: Environment Agent (EA)

• Ask the EA to check for, and resolve, software dependencies
on the target host which may inhibit the functionality of subse-
quently dispatched agents. (REQUEST)

TABLE II
DETECTION AGENT COMMUNICATIONS

From: Detection Agent (DA)

To: Controller Agent (CA)

• Confirm to CA that network scan to determine non-colored host
is proceeding. (AGREE)

• Notify CA when the first non-colored host is found. (INFORM)
• Confirm to CA that notification to QA about non-colored hosts

can proceed. (AGREE)

To: Queue Agent (QA)

• Ask the QA to insert current non-colored hosts in its queue.
(REQUEST)

VIII. IMPLEMENTATION AND RESULTS

A. Agent Environment

In choosing an appropriate foundation for our agent com-
munity, we considered primarily the associated memory



TABLE III
QUEUE AGENT COMMUNICATIONS

From: Queue Agent (QA)

To: Controller Agent (CA)

• Confirm to CA that queue insertion has been performed.
(AGREE)

• Return the current hosts in queue to CA. (INFORM)

To: Detection Agent (DA)

• Confirm to DA that queue insertion has occurred. (AGREE)

TABLE IV
PERMISSION AGENT COMMUNICATIONS

From: Permission Agent (PA)

To: Controller Agent (CA)

• Confirm to CA to prepare the host for agent environment
installation. (AGREE)

• Notify CA of the result of host preparation. (INFORM)

TABLE V
WATERMARKING AGENT COMMUNICATIONS

From: Watermarking Agent (WA)

To: Controller Agent (CA)

• Confirm with CA to perform watermarking operation. (AGREE)
• Return the result of watermarking operation to CA. (INFORM)

TABLE VI
MONITOR AGENT COMMUNICATIONS

From: Monitor Agent (MA)

To: Controller Agent (CA)

• Confirm with CA to perform queue insertion. (AGREE)
• Notify CA of the occurrence of information leakage. (INFORM)

TABLE VII
ENVIRONMENT AGENT COMMUNICATIONS

From: Environment Agent (EA)

To: Controller Agent (CA)

• Confirm with CA to perform environment checking and depen-
dency resolution. (AGREE)

• Notify CA of all resolved dependencies. (INFORM)

footprint as well as ease of access to system-level constructs.
Mobile-C was hence accepted as our mobile agent frame-
work due to its low memory footprint when compared to
other popular agent architectures. In addition, being fully C-
compliant enables Mobile-C agents to take direct advantage
of the system calls provided by the Linux operating system.
This is especially useful for our purposes as our Monitor
Agent relies on the inotify system.

As a proof-of-concept, Mobile-C agents were developed
to perform initial watermarking (coloring) of a portion of a
filesystem in a Debian-based Linux operating system with
security enhancement, i.e. SELinux, and to detect leakage
of watermarked files within the colored filesystem. These
agents implement the functionality of the Watermarking
and Monitor agents previously described, i.e. the Host-level
agents in our agent community, and identify the feasibility
of our proposed system in whole.

B. Watermarking Algorithms

As different file types require different watermarking
schemes, we focused on image files for our experiments. The
watermarking algorithm utilized is the Dugad [7] algorithm
as implemented in Peter Meerwald’s watermarking library
[15]. This algorithm has many nice properties, especially that
of blindness, which is required for our system. Meerwald’s
library, in turn, depends on the NetPBM library for reading,
writing, and converting images of a variety of formats.

C. Handling Dependencies

External dependencies, such as NetPBM, can be handled
in several ways in mobile agent systems. Ideally, all nec-
essary code can efficiently be carried with the agent itself.
When this is not viable, the agent execution environment can
be made to handle such dependencies. Mobile-C uses Ch,
an embeddable, C99-compliant, C-language interpreter as its
execution environment. Ch allows for the addition of user-
defined packages, each of which may include header files,
dynamically-linked libraries, scripts, and other resources
required by users of the interpreter. In our case, these users
are our Mobile-C agents.

While we aim to implement all watermarking function-
ality within agents, certain dependencies, such as NetPBM,
cannot reasonably be accommodated by agents themselves
and will therefore be added as separate packages to the Ch
execution environment. For these purposes, an Environment
Agent capable of retrieving, building, and installing into
the execution environment packages which are needed by
Watermarking Agents shall be employed. This will be helpful
as new watermarking techniques and information leakage
detection methods are developed which may require large
and complex software suites to function.

D. Implementation of the Watermarking Agent

As described above, the primary role of a Watermarking
Agent is to prepare a filesystem for information leakage de-
tection by watermarking all files with a particular permissions
tag. Such tags essentially identify the sensitivity of a file



and are used in conjunction with permissions assigned to
individual users. A user’s permissions regulate which files
are accessible by the user. Here, accessibility can relate to the
ability of a user to read, write, or execute a file, or perform
any combination of these actions. Information leakage via
covert channels may result in the removal or modification
of traditional permissions tags. The recipient of the leaked
information may alter the tags in order to grant himself
access to the information that he was not intended to possess.
Watermarking embeds the permissions of a file within the file
contents in such a way as to be (ideally) irremovable without
rendering the file contents useless.

Functionally, the Watermarking Agent developed for our
experiments initiates a complete scan of the target filesystem
upon entry into a target host. It does not, however, indiscrim-
inately watermark all files encountered. It could be the case
that the filesystem, or portions of it, is already watermarked
but the agent, agency, or supporting infrastructure was dam-
aged or removed due to some unforeseen circumstance.
Therefore, the Watermarking Agent will attempt to detect
the presence of a watermark in all scanned files prior to
watermarking. If a watermark is not detected, the file is wa-
termarked immediately with a signature corresponding to the
files permissions tag. Conversely, if a watermark is detected,
the Watermarking Agent will compare the watermark with
the file’s permissions tag. If an inconsistency is found, the
file is assumed to have been previously leaked, and is either
quarantined in a secure directory or securely deleted.

Once the initial watermarking phase is complete, the
Watermarking Agent will become dormant. A Watermarking
Agent will be awakened upon receipt of signal from the
Monitor Agent indicating that a new file has been created
and will therefore need to be watermarked1. Algorithm 1
provides a broad representation of the operations performed
by our Watermarking Agent.

E. Implementation of the Monitor Agent

While the Watermarking Agent effectively binds a files
permissions tag to its content, it does not compare the
watermark to the permissions of a user attempting to access
the file. This task is the responsibility of the Monitor Agent.
The Monitor Agent serves the primary role of monitoring the
target filesystem for any file “creation” or “write” operations
and notifying the Watermarking Agent of such events for
subsequent processing. As stated above, the file operation
monitoring is achieved via the inotify kernel subsystem.
Algorithm 2 represents the Monitor Agent operations.

F. Results

Regardless of the type of covert channel through which
information is leaked, the detection methods of [20] effec-
tively prevent any disassociation of the leaked information
content from its designated permissions from being used
by the recipient of the leaked information. If permissions

1For future work, the Watermarking Agent shall be made able to detect
valid changes of permissions tags, and re-watermark files accordingly.

Algorithm 1 Watermark(Directory D)
1: while D has children do
2: di ← child i of D
3: if di is a directory then
4: Watermark(di)
5: else
6: boolean w = DetectWatermark(di)
7: if w = TRUE then
8: Compare watermark of di with permissions tag
9: if Watermark does not match tag then

10: Quarantine or Securely Remove di

11: end if
12: else
13: Watermark di with signature = permissions tag
14: end if
15: end if
16: end while
17: return

Algorithm 2 Monitor()
1: W ← inotify event descriptor
2: for all Target directories di do
3: Add inotify watch descriptor for “write” and “create”

operations within di

4: end for
5: loop
6: f ← Read event from event descriptor W
7: Pass f to Watermarking Agent for Analysis
8: end loop

are altered during leakage, they will no longer match the
information’s embedded watermark. Likewise, if the infor-
mation itself is altered, then the watermark will no longer be
valid. Therefore, to test our proof-of-concept implementation,
permissions alteration and content alteration of monitored
files were performed. Initial tests have been conducted on an
Intel-based machine with Linux kernel version 2.6.24 and
SELinux security extensions enabled.

First, a Watermarking Agent was introduced into our test
environment and performed initial watermarking of a portion
of the filesystem. As this was a proof-of-concept, these
initial tests were conducted only on image files using image
watermarking algorithms found in [15]. Correctness of the
applied watermarks were then manually confirmed using
[15]. Next, a Monitor Agent was introduced and was tested
for functionality by creating new files, and writing to existing
files, in the monitored portion of the filesystem. In all cases,
these operations were correctly detected and communicated
to the Watermarking Agent for subsequent analysis.

With the correctness of the applied watermarks and the
detection capabilities of the Monitor Agent confirmed, cor-
rect detection of instances of information leakage was tested.
Here, cases of security tag alteration and information con-
tent alteration where specifically tested. In the first case,
a scenario involving leakage of information with a high-



level security classification to a user with lower-level security
permissions (i.e. write-down) was simulated by changing
the SELinux security tag of files without altering the files’
content (and therefore not updating the files’ watermarks).
In these cases, the Watermarking Agent correctly identified
a mismatch between the security tag and the embedded
watermarks and quarantined the offending files.

To test the second category of leakage, in which informa-
tion does not change with respect to security classifications
but is instead leaked in such a way as to alter the contents of
the information itself, monitored files were edited in some
small ways (changing a few pixels in watermarked image
files and thus destroying the watermark) without altering
the SELinux security tags. In these cases, the Watermarking
Agent correctly identified the invalid watermarks and quar-
antined the modified files.

Having correctly identified all tested instances of simulated
information leakage, it has been shown that the Agent-
based Information Leakage Detection system described here
is viable and warrants further research and continuing devel-
opment.

IX. CONCLUSION

The primary benefit of an Agent-based Information Leak-
age Detection system lies in the ability to modify and add
detection capabilities, modularize those capabilities, and then
conditionally employ such capabilities at the discretion of
a central control mechanism (in our system, the Controller
Agent). The use of mobile agents as described in this
paper, and in general, reduces the per-host administrative
complexity as once the initial agent environment is properly
installed and configured, all further necessary actions are
performed by the agents themselves. Additionally, mobile
agents are able to provide unique reporting capabilities that,
for the purposes of our research, may benefit the analysis
of information leakage and the underlying covert channels
through which information has been leaked.

While the information leakage detection approach detailed
here is based on the work of [20], future work in this area
may lead to the inclusion of techniques aimed at detecting
and blocking covert channels prior to the occurrence of
information leakage. Given the highly varied nature of covert
channelling methods, detecting all such methods is likely a
matter for which a solution can only be obtained through
the liberal use of techniques rooted deeply in the field of
artificial intelligence.

REFERENCES

[1] M. Alawneh and I.M. Abbadi, “Preventing information leakage between
collaborating organisations”, In Proceedings of the 10th international
Conference on Electronic Commerce, vol. 342, pp. 1-10, 2008.

[2] M. Alawneh and I.M. Abbadi, “Preventing Insider Information Leakage
for Enterprises”, The Second International Conference on Emerging
Security Information, Systems and Technologies, pp. 99-106, 2008.

[3] S. Cabuk, “Network Covert Channels: Design, Analysis, Detection, and
Elimination”, PhD Thesis, Purdue University, 2006.

[4] S. Cabuk , C. Brodley, and C. Shields, “IP covert timing channels:
Design and detection”, In proceedings of the 2004 ACM Conference on
Computer and Communications Security, pp. 178-187, 2004.

[5] H. Chang and K. Kim, Design of Inside Information Leakage Preven-
tion System in Ubiquitous Computing Environment, Lecture Notes in
Computer Science, Springer Berlin, vol. 3483, pp. 128-137, 2005.

[6] B. Chen, H.H. Cheng, and J. Palen, Mobile-C: A Mobile Agent Platform
for Mobile C-C++ Agents. Software - Practice and Experience, John
Wiley and Sons, vol. 36, no. 15, pp. 1711-1733, 2006.

[7] R. Dugad, K. Ratakonda, and N. Ahuja, “A New Wavelet-based
Scheme for Watermarking Images”. In Proceedings of the International
Conference on Image Processing, vol. 2, pp. 419-423, Oct. 1998.

[8] FIPA communicative Act Library Specification. “Foundation for Intel-
ligent Physical Agents”, 2000. http://www.fipa.org/specs/fipa00037/

[9] S. Gianvecchio and H. Wang, “Detecting covert timing channels: an
entropy-based approach”, In Proceedings of the 14th ACM conference
on Computer and communications security, pp. 307-316, 2007.

[10] M.H. Kang, I.S. Moskowitz, and D.C. Lee , “A network Pump”, IEEE
Transactions on Software Engineering, pp. 329-338, 1996.

[11] M.H. Kang, I.S. Moskowitz, and D.C. Lee , “The Pump: A Decade
of Covert Fun”, In Proceedings of the 21st Annual Computer Security
Applications Conference, pp. 352-360, 2005.

[12] E. Kowalski, D. Cappelli, and A. Moore, “Insider Threat Study: Illicit
Cyber Activity in the Information Technology and Telecommunications
Sector”, Tech. Report, National Threat Assessment Center and Carnegie
Mellon Univ., CyLab, January 2008.

[13] S. Li and A. Ephremides, “A covert channel in MAC protocols
based on splitting algorithms”, IEEE Wireless Communications and
Networking Conference, vol. 2, pp. 1168-1173, 2005.

[14] R. Love, “Kernel korner: intro to inotify”. Linux Journal, vol. 8,
November 2005.

[15] P. Meerwald, http://www.cosy.sbg.ac.at/˜pmeerw/Watermarking/.
[16] A. Melek and M. MacKinnon, “2006 Global Security Survey. Research

Report”, Deloitte, 2006. http://www.deloitte.com
[17] P.M. Melliar-Smith and L.E. Moser , “Protection against covert stor-

age and timing channels”, In Proceedings of the Computer Security
Foundations Workshop IV, pp. 209-214, 1991.

[18] J. Millen, “20 years of covert channel modeling and analysis”, In
Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp.
113-114, 1999.

[19] National Computer Security Center. “A Guide to Understanding Covert
Channel Analysis of Trusted Systems”, NCSC-TG-30, November 1993,
http://www.radium.ncsc.mil/tpep/library/rainbow.

[20] H. Okhravi and S. Bak, “Colored Linux: Covert Channel Resistant OS
Information Flow Security”, University of Illinois, Urbana-Champaign.
2008.

[21] H. Qu, P. Su,and D. Feng, “A typical noisy covert channel in the IP
protocol”, In Proceedings of the 38th Annual International Carnahan
Conference on Security Technology, pp. 189-192, 2004.

[22] M. Takesue, “A Scheme for Protecting the Information Leakage Via
Portable Devices”, The International Conference on Emerging Security
Information, Systems, and Technologies, pp. 54-59, 2007.

[23] H. Tanaka, “Information Leakage via Electromagnetic Emanation
and Effectiveness of Averaging Technique”, Information Security and
Assurance, pp. 98-101, 2008.

[24] C. Tsai, V. Gligor and C. Chandersekaran, “On the Identification of
Covert Storage Channels in Secure Systems”, IEEE Transactions on
Software Engineering, vol. 16, no. 6, pp. 569-580, 1990.

[25] C. Wang and S. Ju, “Searching covert channels by identifying mali-
cious subjects in the time domain”, In Proceedings of the Fifth Annual
IEEE SMC Information Assurance Workshop, pp. 68-73, 2004.

[26] Z. Wang and R.B. Lee, “Covert and Side Channels Due to Processor
Architecture”, In Proceedings of the 22nd Annual Computer Security
Applications Conference on Annual Computer Security Applications
Conference, pp. 473-482, 2006.

[27] S. Zander, G. Armitage, P. Branch, “Covert Channels and Coun-
termeasures in Computer Network Protocols”, IEEE Communications
Magazine, vol. 45, issue 12, pp. 136-142, December 2007.


	Southern Illinois University Carbondale
	OpenSIUC
	3-2009

	Information Leakage Detection in Distributed Systems using Software Agents
	Yung-Chuan Lee
	Stephen Bishop
	Hamed Okhravi
	Shahram Rahimi
	Recommended Citation



