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Coherent and Noncoherent  Detection of CPFSK 
WILLIAM 1’. OSBORNE, MEMBER, IEEE, AND iVTICHAEL B. LUNTZ 

Abstract-Continuous phase  frequency  shift  keying  (CPFSK) 
is potentially an attractive  modulation  scheme for use on channels 
whose performance is limited by  thermal noise. In this paper results 
for the performance available with  CPFSK are  given for coherent 
detection and noncoherent  detection with  arbitrary modulation 
indices and  arbitrary observation  intervals. 

This work serves two purposes.  First, it provides  interesting,  new 
results for the  noncoherent  detection of CPFSK  which indicate that 
the performance of such  a  system can be  better  than  the performance 
of coherent  PSK.  Secondly,  it  provides  a  complete  analysis of the 
performance of CPFSK at  high SNR as well as low SNR and thereby 
unifies and extends  the  results  previously  available. 

I 
INTRODUCTION 

N SEVERAL  recent  papers  the  performance gain  avail- 
able  by  multiple  bit  detection of continuous  phase 

frequency  shift keying (CPFSII) signals has been dis- 
cussed. Pelchat et al. have discussed the  distance proper- 
ties  and, hence,  high SNR performance of coherently 
detected CPFSII waveforms for two  and  three  bit obser- 

Theory of the IEEE Communications  Society for publication with- 
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vation  intervals [l]. In addition,  this  paper discusses 
optimum  coherent  demodulation  with infinite observa- 
tion  interval. De:Buda [a] has discussed the  performance 
of coherent CPFSIC with  a  modulation  index of 0.5 and 
given  a self-synchronizing receiver structure for this case. 
lcorney [SI has discussed the use of the Viterbi  algorithm 
for detection of coherent CPFSK  and,  in  particular,  the 
modulation  index 0.5 case studied  by  DeBuda is examined. 
Pelchat  and  Adams [4] have discussed the minimum 
probability of bit  error  noncoherent receiver for the  three- 
bit  observation  interval  and  they  have  shown that  the low 
SNR performance  can  be  estimated  by the average 
matched filter concept. In this  paper receiver structures 
which  minimize the  probability of bit  error for both 
coherent  and  noncoherent  detection for arbitrary  observa- 
tion  intervals  are  presented.  The performance of both  the 
coherent  and  the  noncoherent  demodulators  is  bounded 
employing the average  matched filter concept a t  low SNR 
and employing the union  bound a t  high SNR. This com- 
bination of bounds  forms  a  performance  bound  which  is  a 
good estimate of the performance  available with  these 
reoeivers a t  all SNR’s. 

The  paper is organized  in three  major sections. These  are 
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coherent  detection,  noncoherent  detection,  and  a  sum- 
mary. In  the first two sections the receivers are  presented 
followed by low and high SNR bounds. In the final section 
the results of the first  two  sections are discussed. In  addi- 
tion, the realizability of the various  demodulators  is dis- 
cussed briefly. 

COHERENT  DETECTION OF CPFSK 
The detection  problem to  be addressed in  this  paper con- 

sists of observing n bits of a CPFSK waveform and pro- 
ducing an  optimum decision on  one bit.  In  the coherent 
case, the decision is  made on the first bit  by observing 
the waveform during  this  bit  time  and n - 1 additional 
bit times. The  data  are assumed to be random =ti's and 
the interference is additive  white  Gaussian noise. 

The CPFSK waveform  during the first bit  interval  can 
be expressed as 

exp (6 lT r ( t ) s ( t , l , A )  dt f ( A )  dA ) 
1 =  (3) 

/ A  exp ($ lT r ( t ) s ( t , - 1 , A )  dt f (A)  d A  ) 
where the integral S A  dA is taken  to mean the n - 1 fold 
integral 

L2 6,. .ln da2 da3. * .dun. 

The density of A is  given by, f (A)  = f(a2) f(a3) * - - f ( a n ) ,  
where f (a i )  is the density  function of the  ith  data  bit,  and 
the  data  bits  are assumed to  be  independent.  The  density 
function of the random data  bits  is given by, 

f ( U i )  = +6(Ui - 1) + + 1). (4) 

Using (4) in ( 3 )  and carrying  out  the  integration,  the 
likelihood ratio becomes 

1 =  

exp ("/ r( t )s ( t , - - l ,A)  clt +...+ exp (" / ~ ( t ) s ( t , - l , A , )  dt 
nT nT 

No 0 fi-0 0 

where al is the  data, 8, is the phase of the RF carrier at   the 
beginning of the observation  interval,  and h, the modula- 
tion index,  is the peak-to-peak  frequency  deviation  divided 
by  the  bit  rate.  In accord  with the continuity of phase, the 
waveform  during the  ith  bit  time of the observation  inter- 
val  can  be  written  as 

UiTh(t  - (i - l ) T )  i-l 

T + C aj*h + e,) 
j=1 

( i  - l ) T  5 t 5 iT. (2) 

The objective  is to design a receiver which observes n 
bit  times of data  and uses the  fact  that  the carrier  phase 
during  the  ith  bit  time depends  upon the  data  in  the first 
bit  time  to minimize the probability of bit  error.  For  the 
case of coherent  detection to  be  treated  in  this section, 81 

is  assumed  known and  set  to zero with  no loss of generality. 
In  the next  section the noncoherent  case  is treated where 
in 8, is  assumed to  be a random  variable  uniformly dis- 
tributed between h ~ .  

Let  the signal waveform during the observation  in- 
terval  be  denoted  by s(t,ul,Ak) where A k  represents 
a  particular data sequence,  i.e., i t  represents the n - 1 
tuple { a2,u3* - . ,an] ,  and  the  actual waveform  is  again 
given by (2). The detection  problem  is  then to  observe 
s(t,al,Ak) in noise and produce an  optimum decision as 
to  the polarity of a]. The problem stated  in  this  manner is 
the composite  hypothesis  problem  treated  in [5] and 
other  texts.  This solution is known to  be  the likelihood 
ratio  test  and for the CPFSB waveform the likelihood 
ratio, I, can  be expressed as 

where 
m = 2n-1. 

The receiver structure defined by (5) is  shown in block 
diagram in Fig. 1. The receiver correlates the received 
waveform with  each of the m possible transmitted signals 
beginning  with data 1, then forms the  sum of exp ( c j )  

where c j  is the correlation of the received waveform with 
the  j th  signal  waveform  beginning with a data 1. A  similar 
operation of correlating and summing  for the m possible 
waveforms  beginning with a data -1 is  performed and 
the decision is  based  on the polarity of the difference in 
the two  sums. 

PERFORMANCE OF THE  COHERENT 
DEMODULATOR 

The performance of the  optimum  demodulator shown 
in  Fig. 1 cannot  be  computed  analytically. However, its 
performance  can be  bounded  by  two  bounds. One bound  is 
tight  at high SNR  and  the  other is  tight a t  low SNR. 
These  bounds  taken  as a single  bound are a  reasonably 
good performance  bound at all  values of SNR. 

Upper  Bound on Performance-Low SNR 
The receiver presented  in the previous  section  computes 

sums of random variables of the form 

At low values of Eb/No the  random  variable X l k  can  be 
approximated  by 
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Fig. 1. Block diagram of optimum coherent receiver. 

The mean of A given  a particular sequence 

Using the  approximation of (7) in ( 5 )  the receiver  opera- 
tion a t  low SNR becomes, 

[ ' r ( t )  (x s(t,l,Ak)) $ [' r ( t )  (? s ( t , - l , A k ) ) .  ( 8 )  
m 

k=l  -1 k = l  

The receiver  described  by (8) can  be  thought of as  a 
device which correlates  with  the  average waveform  given 
a data 1 and  average waveform  given  a data -1 and 
makes  a  decision  based  on the  largest of these correlations. 
A block diagram of this receiver is shown  in  Fig. 2. 

The decision  variable, A, for the low SNR receiver  shown 
in  Fig. 2, is a Gaussian  random  variable  and, hence, the 
probability of error  is  computed  using  only the mean  and 
variance of A. The mean of A will depend on the  trans- 
mitted signal and  therefore  the  probability of error will 
also  depend  on the  transmitted sequence. First  the prob- 
ability of error  given a particular  transmitted sequence 
will be computed. 

is given by' 
7lT 

E ( A  I s ( t , l ,A j ) )  = s(t,l ,Aj) ( S ( t , l )  - s( t , - l ) )  dl  
0 

(9) 

where 
m 

S ( t , l )  = S(t,l,Ak). 
k-1 

The variance of A is  independent of a  particular  trans- 
mitted sequence and is given by, 

The probability of error,  given this sequence, is given  by 

E(z )  is used to  denote  the expected value of x. 
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- 
5 (t  1) - z (t - 1 )  

I r 

rn - 
( t r  1 )  = s(t,l, A k )  

k = l  
Fig. 2. Low SNR approxinlatiqn to optimum coherent CPFSK 

recelver. 

where 
r m  1 

The probability of bit error is  given by  averaging over 
the possible transmitted sequences, i.e., 

m 

P(e )  = c P(e I s(t,1,AJ>P(A,). (12) 
+1 

The probability of error can  be  determined  using (11) 
and (13) if expressions are  available for the mean and 
variance of A. The variance of A is  given by (lo),  however, 
to  evaluate (11)  requires an expression for s (t,l)  and 
s ( t ,  - 1).  During  the  kth  bit  time, s ( t ,  1) is  given by  the 
sum of the possible  waveforms which can  be  trans- 
mitted using 2k-2 possible starting phases. Following this 
line of reasoning, the average  waveform,  given a data 1 
in  the first bit,  during  the  kth  bit  time,  can  be expressed as 

ah(t - ( k  - l ) T )  
T 

where O i  is the  ith possible starting  phase for the  kth  bit. 
Expanding the  terms of the form of Cos ( a  f b )  , (13) 

reduces to 

S k ( t , l )  = ~ cos 
1 ( ~ h ( t  - (f - l ) T )  

2k-2 

* COS ( w J  + (k - 20( - 1 ) ~ h ) .  (15) 
8-2 

ol=O 

By combining terms of the form Cos(w,t + ?rh + nah) 
and Cos (w,t + ?rh - nah) in  the  sum  in (15) SS (t,l) can 
be reduced to, 

S k  (t,l) = cos- (7rh) cos (W,t + 7rh) 

.cos(  
ah(t - (k  - l ) T )  

& ( t ,  - 1) can  be  computed by  an analogous  procedure and 
the result  is 

S k  ( t ,  - 1) = Cod-2 (7rh) cos (wct - ah) 

.cos(  ) . (17) 
ah(t - ( k  - 1 ) T )  

Equations  (16)  and  (17) only apply for k 2 2, however, 
the waveform during the first bit  time  is obvious. 

The variance of the decision variable, A, can  be com- 
puted  by using (16) and (17)  in  (10).  The  procedure  for 
this calculation  is to compute the contribution to  the 
variance of the  kth  bit  and  sum over the n bits.  The  result 
of this calculation  is, 

1 - Sinc  (2h) + 0.5( 1 - Cos (2ah) ) (1 + Sinc (2h)  )   COS^"-^ (ah) - 1) 
2 (18) cos2 (ah)  - 1 

1 - (; - 1) T )  ) S k ( t , l )  = F2 cos 

2k-2 

cos (wet + si). (14) 
i=l 

The possible values of ei and  number of times  each  one 
occurs  can best  be seen by referring to  a diagram of the 
phase of the waveform with  respect to  the carrier as a 
function of time.  Such a diagram  is shown in  Fig. 3. By 
inspection of Fig. 3, (14) can  be  rewritten as 

In  order to  complete the computation of the probability 
of error, the mean  output of the  demodulator,. given  a 
particular  input sequence, must  be  computed.  Let  the 
data sequence of the  input signal be al,Ak, then  the  input 
signal  is, 
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Fig. 3. Phase of CPFSK waveforms which are averaged to produce S ( t ,  1) versus time. 

output  and  sum over the observation  interval.  From ( 9 )  
and (16) the  contribution  to  mean  output  due  to  the  ith 
input  bit, Ei, can  be  written  as, 

- 2  Sin (irh) Cosi-+ (ah)  

.Cos (aht/T) Sin (wet) dt. (20) 

Carrykg  out  the  integration  in (20)' Ei becomes, 

E .  - - Sin (ah)  Cosi+ 
T 

' - 2  2ah 

- (cos (ei) - cos (2ahai + si) ) ]  ( 2 1 )  

where 
i-1 

ei = aha+ 
j=1 

Equation ( 2 1 )  is good only for i > 1 and  for i = 1 E, 
is given by 

T 
2 

E1 = - (1 - Sinc (2h ) ) .  ( 2 2 )  

Upper  Bound  on  Performance-High S N R  

The  equations  presented  above can be used to  evaluate 
a bound  on the performance of CPFSK  at  low SNR's. 
These will be used  in  conjunction  with the union  bound 
which is  tight  at high SNR's to provide the composite 
bound. The  probability of error for the  optimum receiver 
is overbounded  by 

where xlz is output of the correlator  matched to  the signal 
s (t: 1,A 1 ) .  Further, 

where 

1 nT 
p ( Z , j )  = - s ( t , - l , A l ) s ( t , l , A j )  dt. 

nEb 

The  correlation coefficient p(Z,  j )  can  be  evaluated  by 
using ( 1 9 )  for the signal waveforms, integrating one bit 
a t  a  time,  and.summing  the  results over the  observation 
interval.  Carrying  out  this process, p ( 1 ,  j )  can  be  written  as 

where the a's are  the  data  bits At, the b's are  the  data  bits 
Ai, and where al = 1 and bl = - 1. 

Lower  Bound on Performance 
A lower bound on the performance of the coherent 

CPFSK receiver can  be  obtained  by  supposing that for 
each  transmitted sequence the receiver needs  only to 
decide  between that sequence and  its  nearest neighbor. 
This receiver will perform at least  as well as  the receiver 
which  does not know  which of two  sequences was trans- 
mitted  but  must  compare  with  all possible sequences. The 
performance of this receiver is  a lower bound to the per- 
formance of the  optimum receiver presented  in the previous 
section. This lower bound  on the probability  error  in the 
CPFSK receiver can  be  written  as, 

Pr (€1 2 5 z=1 Q (?$ ( 1  - p * ( Z ) ) ) " )  (27) 

where p*(  I )  = maximum of p(Z,  j) over  all j. 

Numerical  Results-Coherent  Case 

In  the previous  section  three  bounds  on the performance 
of a  coherent CPFSK system  with  observation in'terval of 
length of n were  presented. The average  matched filter 
bound is an upper  bound  on performance,  which, by its 
construction,  should  be an approximation to  the  true per- 
formance at low SNR. The  union  bound is an upper  bound 
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Eb/No IN dB 

Fig. 4. Bounds on performance of CPFSK. 

which  is  known to  be  tight  at high SNR,  and  the  bound 
given by (27) is a  lower bound on  performance at  any 
SNR. 

In  order to  illustrate  the  use of these  bounds to estimate 
performance of coherent CPFSN systems  all  three were 
evaluated  and  plotted for an observation  interval of five 
bits  and  modulation  index, h, of 0.715. These  results  are 
plotted  in  Fig. 4. From  Fig. 4 it can  be seen that  the 
composite  upper  bound  constructed by  taking  the  smaller 
of the average  matched filter bound  and  the  union  bound 
converges to  the lower bound at high SNR  and,  in  fact, for 
error rates less than  these  are  essentially  equal.  The 
composite  upper  bound  is  within 1.5 dB of the lower bound 
at all  SNR’s showing that  the composite bound is a good 
approximation to  the  true receiver performance a t  all 
SNR’s  and is tight  at high  SNR’s.  Fig. 4 illustrates  the 
“goodness” of the  three  bounds only for one set of param- 

eters, however, the author’s  use of these  bounds  in  several 
cases has shown  similar  results, i.e., the composite upper 
bound  is a good  approximation to  true receiver per- 
formance a t  all  SNR’s.  Further evidence of this is shown 
in  the  noncoherent  section  in  the form of a comparison of 
computer  simulation  results  with  this  bound. 

The modulation  index of 0.715 was selected for evalua- 
tion because in [a] it was  shown that  the maximum  value 
of the minimum  distance  over all transmitted words for a 
CPFSK signal was  achieved by using this  modulation 
index. In  Fig. 5 the  performance’ of CPE’SII with  this 
modulation  index  versus the  length of the observation 
interval  is  illustrated.  The  curves  in  Fig. 5 are  the com- 
posite  upper  bound  results for the various  observation 
intervals.  The  results show that  little gain  is  available  by 
using  observation  intervals  longer than  three  bits  at  any 
SNR. Again, this  behavior  is  a  characteristic of CPFSK 
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systems  independent of modulation  index, i.e., in  other 
cases investigated the gain  achieved by using an  interval 
of more than  three  bits is very  small. As has  already  been 
pointed  out  in [a], but is  again  illustrated  in  Fig. 4, 

phase  must  be  taken  and also in  that  the decision is per- 
formed  on the  middle  rather  than  the first bit.  Performing 
first the  expectation over  all transmitted sequences as 
was  done to  obtain ( 5 ) ,  the likelihood ratio becomes, 

,- m‘ 

CPFSK  with a modulation  index of 0.715 does  perform 
better  than  coherent PSI<. 

NONCOHERENT  DETECTION OF CPFSH 
In this  section the detection of CPFSN when the  carrier 

phase  is  unknown will be discussed. Specifically, this sec- 
tion will discuss observing 2n + 1 bits of a CPFSK wave- 
form  and  making decisions on  the n + 1st  (middle)  bit.2 

The  CPFSIi waveform  was  described by (2) as 

s ( t )  = (2P)1‘2 cos 
(airh( t  - (i - 1 ) T )  

T 

+ r h  a j  + el] (i - l ) T  < t < iT 
i=l 

j=1 

( 28) 

Let  the observed  waveform be  denoted by S(t,a,+l,Ak,ei) 
where A denotes  the 2n tuple (al,a2, - - .,a,,a,+z. - - u ~ , + ~ ] .  
This  notation  is similar to  that used in  the  previous sec- 
tion. It differs in that  the  initial  phase ei is  also an inde- 
pendent  variable.  Here, it is  assumed that  the ai are 
equally  probably . to be f l  and  are  independent.  The 
phase 81 is assumed  uniformly distributed between f r .  
A receiver is to  be designed to  make decisions on the 
n + 1st bit, Le., decide the  polarity of It is desired 
to find the receiver structure which  minimizes the prob- 
ability of decision error.  The  statistic which must  be 
computed for this composite  hypothesis  test  is the likeli- 
hood ratio which  can be expressed  as, 

where 
m’ = 2 z n .  

The average  over the  random  phase yields, as  is well 
known, the zero-order  modified  Bessel  function.  After 
performing this  average  the likelihood function  may  be 
written 

where 

Z l i 2  = ( J  T(t)S(t,l,Ai,O) dt + r ( t ) s  t,l,Ai, - at >’ ( J  ( 3 >’ 
and 

The  correlator references are  the  inphase  and  quadrature 
components of a constant  amplitude waveform. Thus, for 
a data 1 in  the  middle  bit  interval,  they  may be written  as 

s(t,Ai,O) + j s  t,Ai, - = (2P)lI2 expj[wot + & ( t ) ]  ( a) 
( 3 2 )  

where 4i(t)  is the  phase  trajectory of the  continuous  phase 
waveform.  Therefore,  the  quantity zi2 may  be  written  in 
complex notation  as 

zi2 = 2P I 1 r ( t )  expj[wot 3. & ( t ) ]  dt 12. (33) 

1 =  

This likelihood ratio differs from the one  given  in (3) A similar expression may  be  written  for a data - 1 in the 
in  that  an  additional  expectation over the  random  initial middle  bit  interval. A block  diagram of the receiver which 

~ ~~ ~~ 

z I t  be shown that  the  magnitltde of the complex correlation computes  this likelihood ratio  is shown in  Fig- 6. This 
between two CPFSK waveforms corresponding to  data differing receiver correlates  the received signal r ( t )  with  inphase 
in o d y  one bit is a minimum when the difference bit is in the middle. 
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Eb/No IN dB 

Fig. 5. Upper bounds on CPFSK performance. 

and  quadrature  components of each of the possible trans- m’ m‘ 

mitted signals. For each  possible signal the receiver forms c { 1 + $ Z1P} > c (1 + NO2 Z-l? } (35) 
the  root  sum  square of the inphase  and  quadrature com- i=l i=l 

ponents  and weights this  root  with  an Io( * ) nonlinearity.  implies  a ‘(1” was transmitted.  Upon simplification this 
The  sum of these  numbers  for  all  signals  with  a data one  processor  becomes 
in  the middle bit  interval is  compared  with the  sum for  all 
signals with a data - 1 in  the middle bit  interval. 

Noncoherent  Receiver  Performance 

1 

m’ decide 1 m’ c XI? < c 2-li. (36) > 
6 1  decide -1 i=l 

No closed  form analytical  solution for the performance 
of the noncoherent  receiver  exists.  However, as is the 
case  for the coherent  receiver, the performance of the 
receiver may  be  bounded.  This  bound, which is tight at 
high and low SNR  may  be  determined  analytically.  The 
bounds  on the performance of the  noncoherent receiver 
are  constructed in  a manner similar to  that used to analyze 
the coherent  receiver in  the previous  section. 

Low SNR Bound 
The low SNR approximation to  the optimum  receiver 

makes  use of the  fact  that for  small  arguments 

It may  be shown that  the low SNR approximation 
processor  described by (36) is  mathematically  equivalent 
t o  a pair of complex correlators.  One  correlator has  as  its 
reference the average of all transmitted waveforms con- 
taining a data 1 in  the  center  bit  interval  The  other 
correlator  reference  is the average of all  waveforms with a 
data - 1 in  that  bit  interval.  Thus, a test equivalent to 
(36) is 

where 

& ( X )  = 1 + x2/4. (34) 
m‘ 

s ( t , l )  = exp [jmot + + l i ( t ) ]  

Making  this  approximation  in (31) , describing the  opti- 
mum processor,  yields the low signal-to-noise  processor and 

i=l 
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z - l l  

m' 

s ( t , - l )  = C exp [ j u d  + + - d t ) ] .  

The performance of this  test  may be  computed  by  applying 
the results of Stein for the solution of the general binary 
noncoherent  problem [SI. 

If z1 and zz are  two complex Gaussian  variables  with 

i=l 

. M I  = E(z l )  
M ,  = E(z2) 

u2 = Var (21) = Var (22) 

and 

1 
P = > E C ( Z l  - M l ) * ( Z 2  - MZ)] 

s ~ t , - l , A  ' 1 1 )  

' 2  

Fig. 6. Optimum noncoherent  receiver. 

then 

Pr ( I  zz l 2  > I z1 1 2 )  = 4 [l - Q ( b1/2,a1/2) + Q ( ~ l / ~ , b l / ~ ) ]  

(38) 

where 

The minus of the f sign  is used with a and  the plus is 
used with b. The function Q (z,y) is the  Marcum Q function 
defined by 
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3 ( t J )  
Q(z,y) = lrn exp (- y) l o (zw)w dw (40) = COS sh ( t  - iT) (cos sh) i--l exp ( 

jsh)  

where lo( ) is the modified Bessel function.  For  a  given ~ ( t , - l ) J  
input signal  waveform, cos (mot + 8 ( t ) ) ,  the received T 5 t 5 (i + l ) T  (42) 
signal is r ( t )  = cos (mot + e ( t ) )  + n(t) .  The variables 
z1 and Z2, are  the  result of correlating r ( t )  with s ( t ,  - 1) and where the + sign in  the exponential  implies s ( t ,  1).  

Upon  reversing the  time axis, it is  found by  symmetry 
(39) considerations that during the  ith  bit  interval preceding 

tlhe  middle bit  the  average waveform  is 

s ( t , l )  . Hence, the  variables  required  to  evaluate 
become, 

= ””/ [ s(t,-1) pdt ,  
2 

and 

= - / ~ * ( t , - l ) s ( t , l )  NO 2 dt. 

s(t,-l) = S ( t , l )  = cos sht(c0s sh)”’ 

(i - l ) T  5 t 5 iT. (43) 

These  equations  may  be  used to compute u2 and p. Using 
(42) and (43) the integrals  in (41) can  be written as, 

and 

= - 

Upon  performing the  indicated  integrations  and simplify- 
ing, it is found that 

The complex  correlator  references s (1, - 1) and 3 ( t , l )  
may  be found  in  a manner similar to  that used in  the 
coherent case. It is  assumed that all  possible  signals have 
zero phase at   the beginning of the middle bit  and  that 
time t = 0 corresponds to  the beginning of the middle bit 
interval.  For  continuous  phase FSK with a modulation 
index of h, during the middle bit  the signal  is  exp ( f j sh t )  
where the plus  sign is used  for a data one  and  the  minus 
used  for a data - 1. During the next  bit  interval  the 
average  waveform is half the  sum of the two  possible 
waveforms, or 

S ( t , l )  = [exp ( , jsh(t  - T ) )  + exp ( - j sh ( t  - T))]  

-exp ( j s h )  T 5 t 5 2T 

for  a data one in  the middle interval  and 

s(t ,- l)  = [exp ( j s h ( t  - T))  + exp ( - j s h ( t  - 7’)) 

.exp ( - j sh )  T 5 t 5 2T 

for  a - 1. In general,  during the  ith  bit  interval,  after  the 
middle bit,  the  average waveforms are 

and 

(1 + sinc 2h) (1 + exp (-j2sh)) 
1 - C O P  (sh) 

1 - cos2 (sh) 

+ exp ( - j h )  sinc h . 1 
The mean outputs, MI and M z ,  are  dependent  upon  the 
input signal. Let  the  input  bit sequence  be { b i ]  with the 
index  ranging  from -n to n. The middle bit is,  therefore, 
bo. Computation of M 1  and is  performed in  the  same 
nlanner as before by computing  the  contribution  due to 
each bit  interval.  Thus for bo = 1 

n 

ill? = 2 exp ( -jsh b-k )  cos &(cos sh) 
i-1 

i= 1 k = l  

n 

exp ( -jb-;sht) dt + 1 + exp ( - jsh bk)  
i-1 

i=l k=l  
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and 
n i-1 

M1 = exp ( -jah b - k )  cos aht (cos nh) i-l 
i=l k=l I,’ 

n + exp (-j2nh) C exp ( -jah b k )  

i-1 

i=l k=1 

- I,’ cos nht(cos nh) exp ( -jbirht) dt. (47) 

In  the above  equations,  the  sum CiSyxi is  defined to  be 
zero. Evaluating  the  integrals of these  equations yields 

M 2  = A 1  + 1 + A 2  

and 

Ml = Al + exp ( -jab) sinc h + exp ( -j2nh) (48) 

where 
n 

A, = (cos ah) i-l exp ( -jah C b k  j 
i-1 

i=l k-1 

(1 + sinc ( h )  exp ( -jahb-i j ) 

and 

Az = (cos ah) i-l exp ( -jah C bk)  
n i-1 

i=l k=l 

(1 + sinc ( h )  exp (-jnhbij) .  (49) 

When  these  equations  are  evaluated  on  a  digital  computer, 
a bound  on the  optimum receiver a t  low SNR is  obtained. 
This  bound  is  equivalent to  the average  matched filter 
bound  shown  in Fig. 4 for the  coherent receiver. In the 
next  section  a  union  bound will be  found  which,  when 
combined with  the  average  matched filter bound, will 
yield a  composite  bound  similar to  that shown  in  Fig. 5. 

The  demodulator using the  strategy of (52) could also 
choose the  largest of all zki and  then classify the  largest  as 
corresponding to  a  data 1 or a data - 1. A decision error 
is made if, given  a  one was transmitted, one of t,he zPli 
was  largest.  Although an exact  evaluation of the perform- 
ance of this  detector is not possible, the union  bound will 
give a  tight performance estimate a t  reasonably  high  SNR. 

Suppose that a 2n + 1 bit  transmitted word  is  observed 
and  that  the middle  bit  is  a  data 1. The  transmitted 
sequence, exclusive of the  middle  bit,  is  indicated  by  the 
index k so that  an error  is  made if a t  least one of the 
{ x-lj] is greater  than z l k .  Then by the union bound 

Pr (Error 1 Sequence k Transmitted) 5 Pr (xWlj > Z l k ) .  

7n’ 

j-1 

( 5 3 )  
The average  probability of error  may now be  computed  by 
averaging  over  all  transmitted sequences  containing  a  one 
in  the middle bit  interval, 

Pr ( E )  = 5 Pr ( E  I sequence k was transmitted) 
nl. h.=l 

or 
1 m’ m’ 

Pr ( E )  5 - C Pr (z-lj > z l k ) .  (54) 
m‘ k=l ill 

In (54) the  computation of the bounding  performance 
of the  detector described by ( 5 2 )  has been  reduced to  a 
binary  error  probability problem for which the solution is 
known [C]. For this  situation  the  probability of error is 

Pr (z-lj > X l k j  ,= 1/2[1 - Qb1’2,a1’2) + Q(a1’2,b1’2j] 

( 5 5 )  

whcrc 

High XNR Bound 

The high SNR  bound  may  be  found  by  noting  that for 
large  arguments 

c lO(4 * lo(z2) ( 50) 
i 

where 22 is the largest of the  set {xi}. With  this  approxima- 
tion,  the  optimum  detector described by (31) becomes 

Decide 1 

Io ( i o  - ZlZ ) De,$e -1 I o  ($ ‘-lk) (51) 

where zlz is  the  largest of (z l i )  and 2-lk is the largest of 
( ~ - ~ i ] .  Because lo( ) is  a  monotonic  function, (51) is 
equivalent to  the  test 

Decide 1 

x11  2-lk. (52) 
Decide -1 

and S/2N is the SNR of z l k .  The  value of p is  the correla- . 
tion  between the  transmitted waveforms  corresponding to 
sequence j ,  with  a  data - 1 in  the middle bit  interval,  and 
sequence k,  with  a  data 1 in  the  bit  interval,  and is given by 

1 Zn+1  k-1 

where { b k ]  is  the  kth  bit sequence, with bn+l = I ,  and 
{ a k }  is the  jth  bit sequence,  with an+] = - 1. 

Numerical Results-Noncoherent  Case 
The  equations  presented  in  this  section for the bounding 

performance of the noncoherent receiver have been 
evaluated  on  a  digital  computer for three  bit  and five bit 
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Eb/No 

Fig. 7 .  Performance of noncoherent CPFSK receiver. 

observation  intervals  for FSK with h = 0.715. The results 
are  plotted  in  Fig.  7. Also plotted  in  Fig. 7  is the non- 
coherent  detection  performance for binary  orthogonal 
signals and  the  coherent  detection performance for  anti- 
podal signals. These  two curves  represent the  best per- 
formance possible with single bit demodulation.  Demodu- 
lation  by observing five bits is seen to outperform PSI< 
for Eb/N, greater than 8 dB.  The performance of a de- 
modulator  observing three  bits  is  within l dB of the 
performance of a  coherent  demodulator  for  probability of 
error less than lov3. In  either case, five bit or three  bit 
observation  intervals, the demodulator  performance sig- 
nificantly exceeds the performance of a single bit non- 
coherent  demodulator. 

The performance  bounds  for the multi-bit  observation 
demodulator  are  tight at high and low SNR. It is  felt 
that  the bound is tight  at all signal-to-noise ratios. In  

Fig. 8 the computed  bound  is compared with a  digital 
computer  simulation of the  optimum receiver. The maxi- 
mum difference between the bound and  the simulation is 
about 1 dB  at   an Et,/No of 4 dB.  This  demonstrates  the 
quality of the bounding  techniques  employed for the 
analysis of CPFSII. 

SUMMARY 
In  the previous two sections the  structure  and  the per- 

formance of coherent and noncoherent  receivers for 
CPFSIi which minimize probability of bit  error  have 
been  presented. The performance of the receivers was 
overbounded by employing the concepts of the union 
bound and  the average  matched filter bound. In  both 
cases the joint  bound  was  shown to  be a good estimate of 
the  actual performance  available  with CPE'SK systems. 
In  particular  for the noncoherent case a  digital  computer 
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Eb/No IN dB 

Fig. 8. Comparison of computed  bound and simulation  results. 

simulation shows the differences between the bound and 
the  actual performance to  be less than 1 dB  at  any  SNR 
and  much less for most  SNR’s.  Similarly,  in the coherent 
case a lower bound was shown to differ from this composite 
upper  bound by  about 1.5 dB worst  case and, hence, 
demonstrated  the goodness of the bound  for  this case. 

The equations  presented  serve to  consolidate the per- 
formance  calculations  for CPFSK  systems  in  that  they 
provide  a  technique  for  computing  performance which is 
applicable  for  all  SNR’s,  all  modulation  indices and all 
observation  intervals. The equations  contain  all of the 
previously  published  results and,  in  addition, allow the 
interested  reader to investigate the performance of 
CPFSK systems  with  parameters for which previous 
results are  not available. 

The specific numerical  results  presented  for  a  modulation 
index of 0.715 employing  coherent and noncoherent  detec- 

tion  serve to answer  some  questions about CPFSK and 
to  demonstrate  several  points. In  [l] the question of 
improving the performance of CPFSK at low SNR’s by 
employing an observation longer than  three  bits was 
raised. This question  is  answered by  the results  in Fig. 5. 
There  is  improvement  in  performance a t  low SNR by 
allowing longer observation  intervals, however, the im- 
provement  beyond a three  bit  interval  is minor. In  fact, 
for engineering purposes the  three  bit  interval  appears  to 
be  the  optimum  length for  coherent receivers since the 
gain  beyond this  length is minimal and  the complexity of 
the receiver grows rapidly  with the length of t he   i n t e r~a l .~  

The specific results  presented  for  noncoherent  detection 
of CPFSK show a new and  rather  interesting  result. For a 

half, there is no gain beyond observation intervals of one and two 
a For modulation indices which are integers or integers plus a 

bits, respectively. 
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modulation  index of 0.715 and a five bit  observation 
interval noncoherent CPFSK  can  outperform coherent 
PSI<. This  result raises the question of whether or not 
0.715 is the best  deviation  ratio for  noncoherent Cl’FSK 
systems. The answer  is no; for example, the  equations 
will show 2.7 to  be  slightly  better. It does appear  that 
0.715 is the  best compromise between bandwidth  and 
performance,  i.e., i t  is  a local optimum for performance 
and it is the local optimum  with  the smallest  modulation 
index. 

The results  presented  above  show that  an observation 
interval of five bits  is essentially  optimum  for  noncoherent 
detection.  A  comparison of Fig. 4 and Fig. 7 shows that 
the coherent receiver and  the five bit noncoherent receiver 
are  equivalent  in performance to within 0.5 dB.  This 
shows that extending the observation  interval to  more 
than five bits cannot  improve  the performance of the 
noncoherent  receiver  by  more than 0.5 dB. 

This  paper  and previous  results  show that  with coherent 
detection CPFSK can  outperform  coherent  PSI< which is 
a t  present  ‘the  favored  modulation  technique for use  on 
thermal noise limited  channels.  However, at this  time 
there is no  simple  technique  for  obtaining the reference 
signals  required for coherent  detection of CPFSK from 
the received  waveform  for the modulation  index (0.715) 
which produces the  best performance or for any modula- 
tion indices  except  integers and integers  plus one-half. 
This poses an interesting  research  question and limits the 
practical significance of the coherent  results a t  present. 

In  this paper it was also  shown that noncoherent  detec- 
tion of CPFSIi can  perform  slightly better  than coherent 
PSH. This  result combined  with the  fact  that  CPFSIi 
has a power spectrum which is superior to  PSI< in  terms 
of percent power contained  in  a  given  bandwidth should 
make CPFSK with  noncoherent  detection an  attractive 
modulation  scheme for channels whose performance  is 
limited by  thermal noise. The noncoherent receiver does 
not possess the synchronization  problems of the coherent 
structure  and it is  realizable  using  available technologies 
such  as  surface wave devices and digital  filters. 
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