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Abstract
In soybean (Glycine max L. Merr.) combining resistance 
to cyst nematode (SCN; Heterodera glycines I.) with high 
seed yieldremains problematic. Molecular markers linked 
to quantitative trait loci (QTL) have not provided a solution. 
Sets of markers describing a collection of favorable 
alleles (linkats) may assist plant breeders seeking to 
combine both traits. The objective of this analysis was 
to identify linkats in genomic regions underlying seed 
yield and root SCN resistance QTL. Used were groups of 
cultivars selected from a single recombinant inbred (RIL) 
population derived from ‘Essex’ by ‘Forrest’ (ExF). The 
yield was measured at four locations. SCN resistance 
was determined in greenhouse assays. The mean seed 
yield was used to define 3 groups (each n = 30), high, 
medium and low. SCN resistance formed 2 groups 
(SCN resistant (n = 21) and SCN susceptible (n = 69)). 
Microsatellite markers (213) alleles were compared with 
seed yield and root SCN (Hetrodera glycines) resistance 
using mean analysis. The number, size and position of 

potential linkats were determined. Loci, genomic regions 
and linkats associated with seed yield were identified on 
linkage group (LG) K and with root resistance to SCN e 
on LG E, G, and D1b+W. A method to identify co-localized 
genomic regions is presented.

Introduction
Soybean [Glycine max (L.) Merr.] is one of the world’s 
major crops (Singh and Hymowitz, 1999) grown 
commercially for its oil (16%) and protein content (42%). 
Seed yield has doubled over the last 30 years largely 
by selection of superior adapted cultivars (Specht et 
al., 2001). However, in the same period soybean has 
proven susceptible to many diseases that reduce yields. 
Breeders have struggled to combine high seed yield with 
resistance to soybean cyst nematode (SCN; caused by 
Heterodera glycines I.) due to linkage drag and other 
unknown factors (Mudge et al., 2001; Yuan et al., 2002; 
Concibido et al., 2004; Kopisch-Obuch et al., 2005). In 
contrast high seed yield has been readily combined 
with resistance to diseases like soybean sudden death 
syndrome (SDS; Hnetkovsky et al., 1996; Meksem et al., 
1999; Prabhu et al., 1999; Iqbal et al., 2001).

In soybean and other plant species, the majority 
of economically important agronomic traits like seed 
yield are controlled in a quantitative fashion (Mansur 
et al., 1993, 1996). Molecular markers have been used 
extensively to construct genetic and linkage maps (Song 
et al., 2004; Zhang et al., 2004; Kassem et al., 2006) and 
to identify quantitative trait loci (QTL) underlying valuable 
traits (Yuan et al., 2002; Kopisch-Obuch et al., 2005; 
Kassem et al., 2006, 2007a,b). However, simple selection 
of loci for SCN resistance combined with high seed yield 
has not eliminated the negative relationship between the 
traits when cyst pressure is low.

Possible explanations for the negative relationship 
between resistance to SCN and seed yield are sought. 
One possibility is that introgression of the genes for 
resistance to SCN has disrupted linkats, a collection 
of favorable alleles that are linked (Demarly, 1979). 
In SCN susceptible soybean cultivars large regions 
where recombination rarely occurs have been detected 
(Lorenzen et al., 1996; Stefaniak et al., 2005). However, 
the cultivars with the highest seed yield tend to have 
more than the mean number of recombination events 
on several linkage groups (C2, L and M). A second 
possibility is that the genes for resistance to SCN are 
themselves unfavorable to seed yield so that selection 
of new linkats at other genomic locations are needed 
to ameliorate those negative effects (Lark et al., 1995; 
Yuan et al., 2002). Indeed there is strong evidence that 
the resistance allele of major gene for resistance to SCN 
(rhg1) is rigidly co-inherited with an allele on linkage 
group M, because embryo or pollen in-viability results 
from breaking this association (Webb et al., 1996). Even 
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when those alleles are co-inherited negative effects on of 
rhg1 on plant growth and development can be observed 
(Yuan et al., 2002; Kopisch-Obuch et al., 2005; Ruben et 
al., 2006). Both the rhg1 and Rhg4 loci contain several 
candidate genes, but both include receptor-like kinases 
that appear likely to play a role in root development (Afzal 
and Lightfoot, 2007).

Recent studies on analysis of soybean genomes 
(Obermayer and Greilhuber, 1999; Brown-Guedira et 
al., 2000; Grant et al., 2000; Shoemaker et al., 1996, 
2002; Alkharouf and Mathews, 2004; Shultz et al., 2006) 
showed that the genome duplicated twice and regions of 
conserved homeology remain (Shoemaker et al., 1996; 
Grant et al., 2000; Blanc and Wolfe, 2004; Choi et al., 
2004; Shultz et al., 2007; Schlueter et al., 2007). The 
major genes for resistance to SCN on linkage groups A2 
(Rhg4) and G (rhg1) both have 2 or more homeologous 
regions where conserved synteny is observed (Campbell 
et al., 2007; Afzal and Lightfoot, 2007). Therefore, it is 
likely that regions separate from the loci underlying 
seed yield and resistance to SCN can be affecting those 
trait but would escape detection by normal method 
of QTL map development and locus based detection 
of epistasis.

The objective of this study was to identify interactions 
between linkats and loci underlying seed yield and SCN 
resistance. The analysis identified significant patterns of 
association between alleles at 213 microsatellite DNA 
markers, soybean genome structures and mean yield. 
Prediction was made of the genome structure capable of 
combining yield with disease resistance.

Materials and methods

Genetic material
The genotypes used in this study were the ExF96 
population described by Lightfoot et al., 2006. The marker 
data used was the 213 microsatellite markers from 
Kassem et al., (2006). Markers were arranged in map 
order. Trait data were as described in Yuan et al., 2002 
for seed yield and in Kassem et al., 2006 for resistance to 
SCN Hg Type 0.

Data classification
The groups were selected by ranking the genotypes for 
yield and disease resistance analysis. For seed yield 
two equal groups of 30 genotypes with lowest yield and 
highest yield were used. For disease resistance two 
groups were defined female index reported for five plants 
challenged with 2000 eggs of SCN Hg type 0 (race3; 
Yuan et al., 2002). The two groups are resistant (FI<10) 
and susceptible (FI>10) with 21 and 69 genotypes 
respectively.

Statistical analysis
The ranked genotypes were used to count the number of 
alleles corresponding to each marker in map order. Allelic 
chains (multiple As or Bs) and recombination events 
(A juxtaposed to B) were counted. The means for each 
genotype corresponding to A, AA, AAA, AAAA, AAAAA, B, 
BB, BBB, BBBB, BBBBB, BA, AB, values were calculated. 
The 12 numbers obtained were then subjected to mean 

analysis to determine whether phenotype groups differed 
significantly. The number of allelic chains on each of the 
chromosome of the genomic structure were calculated 
and compared.

The mean was the sum of all the scores divided by 
the number of scores. The formula in summation notation 
is μ = ΣX / N, where μ is the population mean and N is the 
number of scores. Since the scores were from a sample, 
then the symbol M refers to the mean and N refers to the 
sample size. The formula for M is the same as the formula 
for μ. The mean is a good measure of central tendency 
for roughly symmetric distributions but can be misleading 
in skewed distributions since it can be greatly influenced 
by extreme scores. Therefore, distributions were tested 
for normality.

Results and discussion

Marker allele segregation
The data set used was identical to that reported in Kassem 
et al., (2006). There were 12, 958 Forrest alleles and 12, 
823 Essex alleles at all markers in the data set. That 
difference was not significant. Further Chi square showed 
no significant deviations for the expected 1:1 segregation 
ratio at any of the 240 markers used (heterogeneous 
scores were excluded). Therefore, segregation was 
not biased at any locus or across the whole data set. 
Recombination events showed evidence for non random 
distribution across linkage groups whether measure 
directly (not shown) or as linkats of Essex alleles (Fig. 
1) or Forrest alleles (Fig. 2). Linkat and recombination 
frequencies were significantly different in some genotype 
groups and some linkage groups (see below).

Correlation among traits
SCN resistance and seed yield in non-SCN infested 
locations were not negatively correlated (r = 0.12, p = 0.1; 
Supplemental Fig. 1). The negative correlation may have 
been lost due to a low but significant yield loss to SCN 
in environments considered non-infested. Cysts were 
present but at less than 10 cyst per 100 cm3 of rooting 
soil.

Disease resistance
Linkats were found on linkage groups (LG) A2, E, D1b 
and G that were significantly different between the SCN 
resistant and susceptible phenotype groups (n = 21 and 
n = 69) compared to the overall population distribution. 
There was a significant increase in the number and 
length of chains of Forrest alleles associated with the 
SCN susceptible group at LG E (p = 0.0001) and D1b 
(p = 0.01; Supplental Table 1). Conversely, there was a 
significant increase in the number and length of chains of 
Essex alleles associated with the SCN susceptible group 
at LG A2 (p = 0.045) and G (p = 0.009) and a significant 
decrease on LG E (p = 0.0005) and D1b (p = 0.05; 
Supplemental Table 2). Equally recombination events 
were depressed among the SCN resistant lines at these 
LGs. Compared to the population as a whole there was a 
significant increase in the number of recombination event 
at LG G and concomitant decrease in the numbers and 
lengths of chains of Forrest alleles associated with the 
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SCN resistant set. Considering only long linkats, those 
of more than 3 alleles, there was a significant decrease 
in the number and length of chains of Essex allele’s as 
among the SCN susceptible lines on LGs A2 (p = 0.015), 
G (p = 0.0067), and M (p = 0.029). Long linkats of Forrest 
alleles were found in the disease susceptible group on 
LG D1b (p = 0.012) and LG E (p = 0.0002). Overall linkats 
and recombination events frequencies appeared to be 
similar in frequency across all LG of the two phenotypic 
sets but not at the particular linkage groups associated 
with Rhg genes (A2, G and M) present in Forrest and two 
linkage groups not known to have effects on resistance to 
SCN HG Type 0 (E and D1b).

Seed yield
Linkats were found on LG I and K that were significantly 
different between the high yield and low yield phenotype 
groups (n = 30). There was a significant increase 
(p = 0.0098) in the number and length of chains of 
Essex alleles associated with the high yield group at 
LG K but a decrease on LG I (p = 0.03; Supplemental 
Table 3). Conversely, LG I showed a significant increase 
(p = 0.002) in the number and length of linkats of Forrest 
alleles and a significant decrease on LG K (p = 0.00003; 
Supplemental Table 4). Longer linkats of 3 or more alleles 
showed a similar pattern with a significant increase 
(p = 0.0026) in the number and length of chains of Essex 

Fig 2 
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Fig. 2. Linkat distribution of Forrest alleles across the 20 linkage groups of soybean within the genotype groups for high yield, low yield, resistance to SCN 
and susceptibility to SCN. Chromosomes are numbered 1 to 20.

Fig. 1. Linkat distribution of Essex alleles across the 20 linkage groups of soybean within the genotype groups for high yield, low yield, resistance to SCN 
and susceptibility to SCN. Chromosomes are numbered 1 to 20.
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alleles associated with the high yield group at LG K but a 
decrease on LG I (p = 0.018). Also in the high yield group 
long linkats significantly increased on LG C1 (p = 0.026) 
and significantly decreased LG L (p = 0.03) Conversely, 
LG I showed a significant increase (p = 0.002) in the 
number and length of linkats of Forrest alleles and a 
significant decrease on LG K (p = 0.0003) for both mean 
and long linkats. Equally recombination events were 
depressed among both the high and low resistant lines 
at these LGs. Overall linkats and recombination events 
frequencies appeared similar in frequency across all LG 
of the two phenotypic sets except particular LG I and K 
previously associated with seed yield.

Discussion
Genome architecture associated with yield was detected 
in the ExF population. Most impressively the markers 
revealed a very strong linkat to QTL association between 
yield on genetic linkage group K and I. Both LGs were 
shown to contain QTL for seed yield (Yuan et al., 2002; 
Kassem et al., 2007a). In Williams by Essex there were 
more recombination events and smaller linkats on LG K 
among high yielding cultivars compared to the population 
as a whole (Stephaniak et al., 2005). Linkage group I did 
not differ in linkat size or recombination events in that 
study. The beneficial allele for the LG K QTL was from 
Essex (Yuan et al., 2002; Kassem et al., 2006; 2007a) and 
so the association with long linkats of Essex alleles may 
indicate a locus with several underlying genes distributed 
over a large region of the genome. Equally the beneficial 
allele for the LG I QTL was from Forrest (Yuan et al., 
2002; Kassem et al., 2007a) and so the association with 
long linkats of Forrest alleles may indicate a locus with 
several underlying genes distributed over a large region 
of the genome. Several other yield QTL were detected 
on LG A2, C1, C2, J. and N but they were not associated 
with linkats or recombination frequency variation (Lark 
et al., 1995; Kassem etal., 2006; Guzman et al., 2007). 
Such loci might be underlain by single genes, small gene 
clusters or sets of epistatic loci.

Genome architecture was associated with SCN 
resistance but not only at loci known to encompass 
QTL (LG A2, G and M; Meksem et al., 2001; Webb et 
al., 1995). Linkats of Forrest alleles detected on linkage 
groups E and D1b in the SCN susceptible group and 
their absence from the SCN resistant group might be 
related to selection for loci that ameliorate the effect of 
the resistance loci, like that on LG M (Webb et al., 1995). 
Equally the decrease in the number and length of chains 
of Essex alleles associated with the SCN resistant group 
around the QTL bearing regions of LG A2 and G might 
indicate the loci are multigenenic. However, over the 
entire genome linkats of Forrest alleles were not more 
abundant than expected.

The low incidence of polymorphism between Essex 
and Forrest resulted in a paucity of markers in some 
regions (C1, J). Gaps between markers in individual maps 
undoubtedly caused important linkats to be missed.. 
However, marker density was quite high on most of the 
LG reported to contain linkats here (A2, C2, G, I, K). 
With continued expansion of soybean yield QTL studies; 
additional markers need to be tested in the gaps (Shultz 

et al., 2007). Further studies can be made by testing the 
same QTL in a different population and re-examining yield 
QTL identified without examining the effect of linkats (Orf 
et al., 1999a; 1999b; Yuan et al., 2002; Kabelka et al., 
2004; Smalley et al., 2004; Guzman et al., 2007).
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Supplemental Fig. 1. Correlation between mean seed yield in non-infested locations and resistance to SCN Hg Type 0.
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Supplemental Table 1.  Linkats of Forrest alleles in SCN resistant and susceptible groups.

Disease Resistant Disease Susceptible Ratio Probability Linkage Groups

B 2.9048 3 0.96825 0.422409 A1

6.4286 5.6087 1.1462 0.18244 A2

5.2857 5.0435 1.048 0.34566 B1

4.1429 4.3913 0.94342 0.318569 B2

1.381 1.6957 0.81441 0.151028 C1

12.81 13.957 0.91782 0.256559 C2

8.2857 8.0435 1.0301 0.843459 D1a

3.9524 5.7391 0.68867 0.03494 D1b

7.5238 8.0435 0.93539 0.363385 D2

4.3333 7.0435 0.61523 0.000105 E

6.619 6.913 0.95747 0.382829 F

13.19 10.696 1.2333 0.029528 G

3.9524 4.087 0.96707 0.39344 H

4.1905 5.5217 0.75891 0.044905 I

2.5238 2.4348 1.0366 0.434052 J

5.6667 4.5217 1.2532 0.110741 K

4.381 4.6522 0.9417 0.325899 L

3.4762 2.913 1.1933 0.157233 M

7.0952 6.3913 1.1101 0.258952 N

3.3333 3.8261 0.87121 0.278682 O

BB 2 2.0435 0.97872 0.469067 A1

4.4762 3.8696 1.1568 0.207282 A2

2.9524 2.7826 1.061 0.399137 B1

2.381 2.5652 0.92817 0.384325 B2

0.7619 0.86957 0.87619 0.373186 C1

10.095 11.913 0.84741 0.1666 C2

6.1429 5.6957 1.0785 0.361802 D1a

2.0476 4.3478 0.47095 0.01442 D1b

5.2857 6.1739 0.85614 0.286717 D2

2.9048 5.8261 0.49858 9.52E-05 E

5 5.3043 0.94262 0.379111 F

8.9524 7.2609 1.233 0.123539 G

2.6667 2.3913 1.1152 0.324406 H

2.1429 3.5217 0.60847 0.028879 I

1.5714 1.7826 0.88153 0.341171 J

3.9524 2.6957 1.4662 0.093804 K

2.5238 2.6522 0.9516 0.415432 L

2.619 2.087 1.255 0.18487 M

5.2857 4.4783 1.1803 0.23432 N

2.381 2.6087 0.9127 0.39237 O
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Disease Resistant Disease Susceptible Ratio Probability Linkage Groups

BBB 1.4286 1.4783 0.96639 0.461257 A1

3.1905 2.7391 1.1648 0.265637 A2

1.4286 1.6087 0.88803 0.372965 B1

1.5714 1.6087 0.97683 0.473989 B2

0.57143 0.65217 0.87619 0.390453 C1

8.2857 10.609 0.78103 0.103437 C2

4.7143 4.2174 1.1178 0.332715 D1a

1.4762 3.6087 0.40906 0.012039 D1b

4.0952 5.2609 0.77843 0.227161 D2

2.2857 5 0.45714 0.000236 E

4 4.1304 0.96842 0.443994 F

6.8095 5.5217 1.2332 0.175974 G

1.9524 1.7826 1.0952 0.388278 H

1.381 2.2174 0.62278 0.083346 I

1 1.3478 0.74194 0.06936 J

2.9524 1.6522 1.787 0.498311 K

1.4762 1.4783 0.9986 0.223272 L

2.0476 1.6087 1.2728 0.363838 M

3.7619 3.3913 1.1093 0.390396 N

1.8095 2 0.90476 O

Supplemental Table 2. Linkats of Essex alleles in SCN resistant and susceptible groups.

Disease Resistant Disease Susceptible Ratio Probability Linkage Groups

A 2.0952 2 1.0476 0.422409 A1

4.5714 5.3913 0.84793 0.09122 A2

4.7143 4.9565 0.95113 0.34566 B1

3.8571 3.6087 1.0688 0.318569 B2

1.619 1.3043 1.2413 0.151028 C1

8.1905 7.0435 1.1628 0.256559 C2

6.7143 6.9565 0.96518 0.42173 D1a

6.0476 4.2609 1.4193 0.03494 D1b

10.476 9.9565 1.0522 0.363385 D2

5.6667 2.9565 1.9167 0.000105 E

5.381 5.087 1.0578 0.382829 F

6.8095 9.3043 0.73186 0.029528 G

3.0476 2.913 1.0462 0.39344 H

6.8095 5.4783 1.243 0.044905 I

2.4762 2.5652 0.96529 0.434052 J

5.3333 6.4783 0.82327 0.110741 K

4.619 4.3478 1.0624 0.325899 L

2.5238 3.087 0.81757 0.157233 M

5.9048 6.6087 0.89348 0.258952 N

3.6667 4.1739 0.87847 0.27294 O

Supplemental Table 1. Continued
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Disease Resistant Disease Susceptible Ratio Probability Linkage Groups

AA 1.2381 0.69565 1.7798 0.439645 A1

2.4286 1.9565 1.2413 0.045902 A2

2.3333 2 1.1667 0.180328 B1

2.1905 2 1.0952 0.122986 B2

1 0.73913 1.3529 0.077726 C1

5.5238 2.0435 2.7031 0.371286 C2

4.2857 2.3913 1.7922 0.408344 D1a

4.4286 1.3913 3.183 0.050755 D1b

8.1429 1.8696 4.3555 0.484954 D2

4.1429 1.1739 3.5291 0.000569 E

3.7143 1.6087 2.3089 0.400358 F

2.8571 3.5217 0.81129 0.009315 G

1.8095 1.5217 1.1891 0.190319 H

4.5714 2.0435 2.2371 0.084048 I

1.7143 0.65217 2.6286 0.361069 J

3.381 2.1304 1.587 0.165115 K

2.9048 1.7391 1.6702 0.334952 L

1.5238 0.78261 1.9471 0.06368 M

4.1429 1.8261 2.2687 0.279609 N

2.9048 0.86957 3.3405 0.427126 O

AAA 0.71429 0.73913 0.96639 0.472415 A1

1.1905 2.2174 0.53688 0.015323 A2

1.3333 1.7826 0.74797 0.247604 B1

1.2381 0.69565 1.7798 0.064673 B2

0.52381 0.34783 1.506 0.214849 C1

4.0476 3.7826 1.0701 0.428494 C2

3.2381 3.3043 0.97995 0.475663 D1a

3.2857 2.1304 1.5423 0.07594 D1b

6.5714 6.7391 0.97512 0.452025 D2

3.381 1.2174 2.7772 0.000449 E

2.619 2.4783 1.0568 0.433379 F

1.5238 4.0435 0.37686 0.006658 G

1.3333 0.82609 1.614 0.120642 H

3.0952 2.3478 1.3183 0.16673 I

1.1429 1.5652 0.73016 0.219074 J

2.2381 3.1304 0.71495 0.175415 K

1.9524 1.6957 1.1514 0.34399 L

0.85714 1.7826 0.48084 0.029304 M

2.9524 3.3043 0.89348 0.364264 N

2.381 2.1304 1.1176 0.368596 O

Supplemental Table 2. Continued
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Supplemental Table 3. Linkats of Essex Alleles in high and low yield groups.

Low Yield High Yield Ratio Probability Linkage Group

A 2.1667 2 1.0834 0.315483 A1

5.4667 5.4 1.0124 0.067664 A2

5.1333 5.0667 1.0131 0.37792 B1

3.5333 4 0.88333 0.138334 B2

1.6 1.2333 1.2973 0.058823 C1

10.5 8.6 1.2209 0.299318 C2

6.9333 7.9333 0.87395 0.102217 D1a

5.1333 5.4333 0.94478 0.293946 D1b

10.033 8.8333 1.1358 0.382622 D2

2.6 2.9667 0.87639 0.448725 E

6.2667 6.1333 1.0218 0.349282 F

11.1 9.7667 1.1365 0.376234 G

3.3333 3 1.1111 0.141052 H

6.4667 4.8667 1.3288 0.054894 I

3.0667 2.5667 1.1948 0.140526 J

4.5 7.2333 0.62212 1.16E-05 K

3.9333 4.6333 0.84892 0.065702 L

2.7667 3.1667 0.87369 0.166634 M

6.7667 6.9333 0.97597 0.218238 N

4.9 4.4 1.1136 0.315148 O

5.31 5.2083 1.02843 Mean

AA 1.0952 0.80952 1.3529 0.221378 A1

3.381 2.619 1.291 0.10773 A2

2.7619 3.5238 0.78378 0.1583 B1

1.9048 1.9524 0.97562 0.468098 B2

1.1429 0.71429 1.6001 0.108101 C1

8.381 6.619 1.2662 0.172517 C2

4.7143 5.3333 0.88394 0.313992 D1a

3.8095 4.7143 0.80807 0.199123 D1b

7.619 6.1429 1.2403 0.16879 D2

1.7143 1.7143 1 0.5 E

4.8571 3.9524 1.2289 0.215976 F

7.8571 7 1.1224 0.305542 G

2.0952 1.619 1.2941 0.221589 H

4.4286 2.9524 1.5 0.032979 I

2.2381 2.2857 0.97917 0.468454 J

2.8571 5.1429 0.55554 0.009804 K

2.2381 2.9524 0.75806 0.178496 L

2.381 2.2857 1.0417 0.436078 M

5.1905 5.0952 1.0187 0.469325 N

2.4762 2.7619 0.89656 0.317056 O

3.6571 3.50952 1.07985 Mean
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Low Yield High Yield Ratio Probability Linkage Group

AAA 0.83333 0.6 1.3889 0.227018 A1

2.1667 2.3 0.94204 0.395092 A2

1.9333 2 0.96665 0.460807 B1

1.1 1.0667 1.0312 0.465053 B2

0.73333 0.3 2.4444 0.026908 C1

5.7667 5.0667 1.1382 0.304805 C2

3.5 4.2333 0.82678 0.211233 D1a

2.5 3.1333 0.79788 0.209991 D1b

6.6333 5.4 1.2284 0.14822 D2

1.3 1.6 0.8125 0.253408 E

3.4333 3.4333 1 0.5 F

5.4667 4.8333 1.131 0.309594 G

1.5667 1.2 1.3056 0.207928 H

3.1 1.8333 1.6909 0.018296 I

1.7333 1.5667 1.1063 0.359631 J

1.6667 3.9333 0.42374 0.002573 K

1.0333 2.0667 0.49998 0.028137 L

1.4333 1.5333 0.93478 0.407889 M

3.5667 4.4 0.81061 0.186029 N

2.6333 2.4667 1.0675 0.396604 O

2.68999 2.6483 Mean

Supplemental Table 3. Continued

Supplemental Table 4. Linkats of Forrest alleles in high and low yield groups.

Low Yield High Yield Ratio Probability Linkage Group

B 2.8333 3 0.94443 0.339754 A1

5.5333 5.6 0.98809 0.447336 A2

4.8667 4.9333 0.9865 0.455683 B1

4.4667 4 1.1167 0.178333 B2

1.4 1.7667 0.79244 0.084969 C1

10.5 12.4 0.84677 0.100339 C2

8.0667 7.0667 1.1415 0.148827 D1a

4.8667 4.5667 1.0657 0.357885 D1b

7.9667 9.1667 0.86909 0.163227 D2

3.4 3.0333 1.1209 0.232472 E

7.7333 7.8667 0.98304 0.450061 F

8.9 10.233 0.86974 0.165103 G

3.6667 4 0.91668 0.238494 H

4.5333 6.1333 0.73913 0.006745 I

1.9333 2.4333 0.79452 0.146559 J

6.5 3.7667 1.7256 9.48E-05 K

5.0667 4.3667 1.1603 0.090635 L

3.2333 2.8333 1.1412 0.19872 M

6.2333 5.9667 1.0447 0.393425 N

3.1 3.4333 0.90292 0.328974 O

SEM 2.435599 2.796534 0.212329

SUM 104.8 106.5664 1.007498 MEAN
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Low Yield High Yield Ratio Probability Linkage Group

BB 1.9 1.8667 1.0178 0.471703

3.4667 3.7 0.93695 0.340583

2.8667 2.8 1.0238 0.45589

2.8 2.3333 1.2 0.218565

0.6 1.1 0.54545 0.035078

8.0333 10 0.80333 0.095882

5.6333 4.7667 1.1818 0.188766

3.2 3.1333 1.0213 0.468363

6.2 7.1 0.87324 0.238981

2.3667 2.2333 1.0597 0.411216

5.9667 6.0333 0.98896 0.473981

5.4333 6.9 0.78743 0.133041

2.2667 2.8 0.80954 0.146998

2.2667 4.0333 0.562 0.00263

1.4333 1.7333 0.82692 0.244333

4.8333 1.9667 2.4576 2.98E-05

3.0333 2.5 1.2133 0.154261

2.4333 2.0333 1.1967 0.206271

4.1 4.3 0.95349 0.418899

1.9333 2.1667 0.89228 0.370876

SEM 1.901279 2.271715 0.388184

SUM 70.7666 73.4999 1.01758 MEAN

BBB 1.2667 1.2 1.0556 0.430955

2.4667 2.5667 0.96104 0.426163

1.8333 1.5 1.2222 0.257691

2 1.6 1.25 0.224322

0.3 0.76667 0.3913 0.018609

6.5 8.3333 0.78 0.105269

4.1667 3.4667 1.2019 0.211313

2.3333 2.3667 0.98589 0.482938

5 5.9333 0.8427 0.22218

1.9667 2 0.98335 0.478212

4.5667 4.4 1.0379 0.42911

3.7 5.5333 0.66868 0.060731

1.5667 1.9667 0.79661 0.213927

1.1667 2.7667 0.42169 0.002201

1.0333 1.1667 0.88566 0.367227

3.5333 1.2 2.9444 0.000314

1.7333 1.3667 1.2682 0.202926

1.9667 1.4667 1.3409 0.146063

2.8 3.1333 0.89363 0.350178

1.5333 1.6333 0.93877 0.5

SEM 1.956247 0.51542 0.168429

MEAN 1.043521

Supplemental Table 4. Continued
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