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DISCRETE ANALYSIS OF
A COMPOSITE VIDEO SIGNAL

Frank F. Carden, William P. Osborne and Alton L. Gilbert
Electrical Engineering Department

New Mexico State University, Las Cruces, New Mexico

ABSTRACT

In this paper the problem of repre-
senting the composite video signal for
monochromatic T.V. transmission is exam-
ined and a method for computing the
required spectral bandwidth is devised
suitable for computer applications. The
results obtained numerically are compared
to measured results and to analytical
solutions for a determinate signal for
special cases. Comparison is made with
some 'tmaximum horizontal resolution"
methods with a resulting decrease in
bandwidth requirements for most applica-
tions.

INTRODUCTION

A fundamental problem in the design
of any communications system is speci-
fying the bandwidth necessary for trans-
mission of the required information. A
television system is no different in this
respect than any other communication
system. However, estimating the band-
width of a television system is a more
complicated problem than its counterpart
in most other communication problems.
The basic reason for the added complica-
tion is that a television system must
transmit a two dimensional picture over

This work was supported by NASA
Grant #NGR-32-003-037. Experimental
data furnished by Dickey Arndt, NASA
Manned Spacecraft Center, Houston,
Texas.

a one dimensional channel.
In most communication problems not

only is the bandwidth important but know-
ledge of the actual spectrum is necessary
in order to examine the effects of nar-
rowing this bandwidth. The purpose of
this work is to study video spectrums
and attempt to answer the question of
what is the necessary video bandwidth
for satisfactory reproduction and to
examine the composite video spectrum.
All numerical analysis is based upon the
parameters of the Apollo downlink tele-
vision system but the mathematical
developments are for a general television
system with only the requirements being
that it be monochromatic and use linear
scanning for transformation into the time
domain.

PART I

STANDARD METHODS FOR ESTIMATING
VIDEO BANDWIDTH

The vertical resolution of a tele-
vision system is directly proportional
to the number of lines in the scanning
pattern. The horizontal resolution is
a function only of video bandwidth:
i.e., the maximum number of vertical
lines which may be reproduced is a func-
tion of the bandwidth of the system. It
should be observed that the bandwidth
necessary to achieve maximum horizontal
resolution is not necessarily the band-
width needed to transmit a given image.

There have been numerous methods
devised for estimating the required
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video bandwidth of a television system.
However, for the purpose of this work,
the authors have selected three repre-
sentative methods which appear most
often. All of the methods have two
things in common--specifying a worst-
case bandwidth which is then used as a
design guide-line, and disregarding the
actual program material to be transmit-
ted through the system.

Method of Maximum Information

One method of determining the bandwidth
of a scanned video signal is to assume
that each intersection of a vertical
line with a horizontal scan line (using
the maximum number of vertical lines) is
a sample point. This means that the num-
ber of sample points will be the product
of the number of horizontal scan lines,
N, and the maximum possible number of
vertical lines, Nh. Then each of these
sample points may be considered quantized
into eight levels. It has been shown
that eight .uantitizing levels will re-
present an actual analogue television
signal with reasonable accuracy. [21

The channel capacity necessary to
transmit any signal is equal to the max-
imum rate of transmission of information.
If n symbols are assumed to occur with
equal probability and each takes an iden-
tical time, tt, to transmit, then it has
been shown [3] that the necessary channel
capacity,CI, is

-10g2nC/ o bits/sec. (1)
tt

For a television system, the n symbols
become the eight words necessary to
represent the amplitude of a sample, and
if the eight words are assumed to occur
with equal probability, then Equation 1
is applicable to such a system and the
channel capacity of such a television
system is given by Equation 2.

C/ = t bits/sec.Itt (2)

Now the time required to transmit each
sample is the number of samples divided
into the vertical framing period

= fNNh sec. (3)

Thus the channel capacity required to
transmit the assumed signal is

C/= 3ffNNh bits/sec. (4)

The appropriate relationship between
bandwidth and channel capacity in a noisy
channel has been shown to be [4]

C = BWlog2 (1 + N)g2 N bits/sec. (5)

The signal to noise ratio for high qual-
ity image reproduction has been shown to
be approximately thirty. [5] Substitu-
ting this value and Equation 4 into
Equation 5 and rearranging, yields a
system bandwidth of

BW = .6f NN hz.f h (6)

Using the parameters from Table 1
in Equation 6, an approximation to nec-
essary bandwidth for the Apollo system
is obtained as

BW (mode 1) = (.6)(10)(312)(250)

= 468 khz.

BW (mode 2) = (.6)(.625)(500)(1248)
= 247 khz.

Method of Vertical Bars

In using this method for determining
the required system bandwidth, an image
consisting of nothing but vertical bars
of alternating black and white illumina-
tion is assumed. It is further assumed
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TABLE I

Parc

Peak-to-Peal

Peak-to-Pea}

BASIC SCANNING PARAMETERS OF APOLLO TELEVISION SYSTEM [1]

imeter Mode 1

i Video Signal 2.4 V

c Sync Signal 2.4 V

Horizontal Line Period

Horizontal Line Frequency

Vertical Framing Period

Vertical Framing Frequency

Horizontal Sync Burst Period

Serrated Vertical Sync Period

Width of Serrations

Burst Frequency

Burst Waveform

Number of Lines Per Frame

Horizontal Resolution

that these bars are of width h/Nh where
h is the horizontal width of the picture.
Thus the system is being required to

operate at its maximum horizontal resolu-
tion.

When this type of image is scanned,
the ideal video output is a square wave

with a period of 2tQ/Nh and a fifty per-

cent duty cycle. The assumption is then
made that for the purposes of reproduc-
tion, a sinewave of this period is suf-
ficient. [6]

Thus, the required bandwidth based
on this type of analysis is given by

Nh
_2t hz. (7)Qt9

The necessary bandwidth for the Apollo
television may be calculated using
Equation 7 and parameters from Table 1.

312.5 ,usec

3.2 khz

100 msec

10 hz

30 ,usec

2.5 msec

45 psec

409.5 khz

Keyed Sinewave

320

250 Lines

BW (mode 1) =

BW (mode 2) =

1250 psec

800 hz

1.6 sec

.625 hz

120 vsec

10 msec

180 lsec

409.5 khz

Keyed Sinewave

1280

500 Lines

210

2(282.5) - 10-6
= 380 khz.

500

2 (1220) - 106

= 205 khz.

Method of Maximum Rise Time

The output of the scanning trans-

ducer when it crosses a vertical black

to white boundary is in the ideal case

a step function. However, in a real

system with finite bandwidth, this step
has a rise time which is a function of

system bandwidth.
If we assume such a boundary exists,

then it follows that the rise time must

be less than half the width of one of
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the minimum width vertical lines used to
specify horizontal resolution. The max-
imum rise time, tp,, based on the above
discussion becomes

t = (1/2)
tt
N secs.
h

(8)

The upper 3db frequency, f2, of a system
which will pass a pulse with such a rise
time is given by the approximation below
which may be found in most texts on video
amplifiers. [7]

.35f = hz.
2 t

p
(9)

Since the upper 3db frequency is a close
approximation to the required bandwidth,
Equations 8 and 9 may be combined to
yield an expression for the required sys-
tem bandwidth.

.7N
BW = hz.

tz
(10)

By making use of Equation 10 and the
parameters in Table 1, the bandwidth re-
quirements for the Apollo system may be
calculated under these assumptions.

BW (mode 1) = (.7)(210) = 521 khz.
282.5 * 106

BW (mode 2) = (.7)(500) = 280 khz.
1250 . 10 6

PART II

THE COMPOSITE VIDEO SPECTRUM

The video signal produced at the
output of a camera, using linear scanning,
may be expressed as the sum of swo sig-
nals--the total video signal, v (t), and
the synchronization signal, s(t). The
total video signal, v/ (t), may be ex-
pressed as the product of three other

BLACK

TYPICAL V(t) TIME

TYPCAn n^n F
TYPICAL BL(t) TIE

TYPICAL BV(t)

WH ITE'

V'(t) FOR ABOVE WAVEFORMS

TYPICAL S (t)

WHITE w

Eo (t) FOR ABOVE WAVEFORMS TiMi

TIME DOMAIN REPRESENTATION
OF A COMPOSITE VIDEO SIGNAL

Figure I

functions. One of these is a video sig-
nal, v(t), which results from allowing
the output of the camera to exist at all
times including retrace, or equivalently
scanning N pictures placed side by side
with no synchronization or retrace inter-
val involved. The second signal is a
blanking signal, Bk (t), which is zero
during horizontal retrace and one at all
other times. The third is another
blanking signal, BV (t), which is zero
during vertical retrace and one at all
other times. Thus

E0 (t) = V(t) B (t) BV (t) + s(t) (11)

This argument is illustrated graphically
in Figure 1.

Equation 11 has appeared in an ar-
ticle by L. E. Franks on a random video
process, but apparently has not been ap-
plied to a deterministic video signal
before. [9]

Development of the Composite Video
Spectrum Based on a Time Series Model

Using Equation 11 as a starting
point, the composite video spectrum may
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now be developed. The blanking function,
BV, represents a square wave with a very
high duty cycle and narrow spectrum and,
for that reason, neglecting this function
has no significant effect on the spec-
trum of Eo (t). [10] Making use of this
approximation, Equation 11 becomes

Eo (t) = v (t) BZ (t) + s(t)

00 00

V1 (w) = I B, (n) f v(t)eJ(W-nwQ1)t dt

n=-_0 _ (16)

Where B (n) = t | B(t)e JnPItdt

(12)

Eo(t) is the time representation of
the composite video signal as it occurs
at the output of the camera, and, there-
fore, its spectrum is the spectrum to
which the remainder of the television
system must respond. The spectrum of
Eo (t) is given by the two-sided Fourier
transform of E0 (t).

00

Eo ()={|v(t)B (t)eJt dt
_ 00

And wg = 2rfPI
Making use of the fact that the integral
represents another Fourier transform.

00

V/ (w) =IE
n=-a

Where

Bt (n) v (w-nwu) (17)

00

v (w-nw ) = v (t) eJtdt

wow-nw

+ s(t)e J tdt
00

(13) Equation 17 represents the envelope
of the spectrum of the composite video
signal.

The second integral is the Fourier trans-
form of the synchronization signal or
simply S(w). Equation 13 then becomes

00

E (w) = f v(t) B, (t) ejwt dt
_00

+ S(w). (14)

Application of this Model to a Black and
White Pattern

In order to apply Equation 18 to a
black and white test pattern, the Fourier
transform of v(t) and BQ (t) must be ob-
tained. In figure 2, the black and white
test pattern is shown with the corre-
sponding v(t) which it produces. The
v(t) is a square wave of fifty percent
duty cycle with its period equal to tf.
The corresponding v(m) is known to be

Then V/ (w) is given by

00

V/ () = v (t) B, (t) e dt
_00

tf -ja . miT
v(m) =- e sin 2

(15)
The absolute value of this function is

But Bk,(t) is periodic and may therefore
be represented by a Fourier series.
Making use of this fact and rearranging
reduces Equation 15 to

I I ttf (sifl2 )

v(m) =iT(Sn

356

(18)

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 16:31 from IEEE Xplore.  Restrictions apply.



-IB-

BLACK AND WHITE TEST PATTERN

"olu120T.1 it.ll^t4 Vil*K t It-NK.No

IL1Lm1 nnnil 11 11. nnnn l I11
tLf

lIME DOMAIN VIDEO OUTPUT FOR ABOVE IMAGE

BLACK AND WHITE PATTERN

Figure 2

The transform of the blanking signal in
Figure 1 is

B (n) = Te
(sin'Tr nT/t9)

JTnT/ t9,

The absolute value of this function is

Tsin nTff
B (n) = nQnTf (19)

t9

A plot of the product of Equations
18 and 19 versus frequencey is the am-
plitude spectrum of the composite video
signal produced by the black and white
pattern. This plot is shown in Figure 3
with the amplitude component of the zero
frequency term taken as a zero decibel
reference. This plot does not show the
components about the line frequency har-
monics, because such detail is impossible
to achieve on the frequency scale used.
However, this detail has been plotted on
a linear scale for the first two harmon-
ics and is shown in Figure 4. In making
the plot in Figure 3, the values for T,
t9, and tf were taken from Table 1 and

tKHI tRKH. 18BKBE
VIDEO SPECTRUM CALCULATED FOR BLACK AND WHITE TEST PATTERN

Figure 3

3BIS M O 36 3110 313 315 31706 316 3116 3533 3 1 336"0 33"1 33 36

SPECTRUM OF BLACK AND WHITE TEST
PATTERN ABOUT THE LINE SCANNING FREQUENCY

Figure 4

correspond to those used in the Apollo
television system.

This spectrum was measured by engi-
neers at the Man Space Flight Center in
Houston, Texas. Table II is a comparison
of the calculated amplitude spectrum with
the measured spectrum for the first
twenty-eight harmonics. The agreement
between the calculated and measured spec-

trum is quite good with the average dif-
ference being less than 2db, and only
four components showing greater than 3db
error.

The basic video signal, v(t), was a

ten cycle square wave, yet due to the ef-
fect of the blanking signal, this pattern
produces components which are only about
40db down from the maximum component at
100khz. This spectrum is analogous to,
but certainly not the same as, the spec-

trum generated by sampling a bandlimited
function.
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TABLE II

COMPARISON

Line frequency
Harmonic number

N

OF CALCULATED RESULTS WITH EXPERIMENT DATA FOR BLACK

Actual Calculated Amplitude
Frequency Amplitude Measured by

in KHZ in db NASA

AND WHITE PATTERN

Difference

-.4

-1.5

-2.5

-1.0

-2.5

-4.9

-6

-7.5

-10

-12.5

-13.5

-12.5

-12

-11.7

-13.8

-14

-16

-17.7

-20

-23

not present

-22

-21

-19

-17.6

-17

-19

-20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

3.2

6.4

9.6

12.8

16.0

19.2

22.4

25.6

28.8

32.0

35.2

38.6

41.8

45.0

48.2

51.4

54.6

57.8

60.0

63.2

66.4

69.6

72.8

75.0

78.2

81.4

84.6

87.8

.28

.98

1.36

1.2

1.1

.46

1.12

3.5

6.08

15.5

12.06

5.58

2.88

1.8

.6

.32

1.22

.5

.98

5.

-.12

-.52

-1.14

-2.2

-3.6

-5.36

-7.72

-11.04

-16.08

-28

-25.56

-18.08

-14.88

-13.56

-13.24

-13.68

-14.88

-17.2

-20.92

-28

-48

-26

-20.92

-19.2

-18

-17.8

-18.56

-20.06

4.

.08

.2

.4

.8

.44

.06
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An examination of Equations 18 and
19 reveals some of the parameters which
affect this spectrum. From Equation 19,
it can be seen that Bt (n) has an over-
all distribution of the familiar sin x/x
form and that the parameter which con-
trols the width of the spectrum of B2'(n)
is T/t9, the fraction of time spent for
retrace.

From Equation 18, the parameters
effecting v(m) may be examined. v(m)
also has a sin x/x distribution and its
first zero is given by the reciprocal of
the pulse width or the reciprocal of the
time interval during which the image is
white. For this very special case, this
time is tf/2, thus yielding a spectrum
of v(t) which is approximately 140
cycles wide. If the transition from
blac.k to white had been more gradual
going through several shades of gray in
between, then v(t) would have had an even
narrower spectrum and the frequency com-
ponents of the composite video would have
been much more tightly bound to the har-
monics of the line frequency. In the
limiting case of a single sine variation
from black to white, there would have
been only one sideband component for each
line frequency harmonic; and it would
have been at the framing frequency, 10hz.

Changing the test pattern will have
no effect on B9 (n), since it is a func-
tion of the scanning parameters. The
effect on v(m), however, may be quite
drastic, since v(t) is a function of the
picture and of the scanning rates.

In considering the effect of other
images on the spectrum of v(t) and thus
on the composite video spectrum, it is
most helpful to divide the possible
v(t)'s into two classes. The first class
will be defined as a set of possible
images which will generate a correspond-
ing set of v(t)'s bandlimited to the
bandwidth of B9(n), the second as a set
of possible images which will generate
corresponding v(t)'s which have band-
widths in excess of the bandwidth of
Bk(n). In the case of the Apollo system
operating in mode one, this dividing
bandwidth for the v(t)'s can be taken as
approximately 32 khz. (The first zero
of the sin x/x distribution describing

iL--.A-1X~~~~--. -- ;/-, BJ,\ ,
f, 21, 34, M, Sf, 6f 71, L F

ENVELOPE OF THE COMPOSITE VIDEO
SPECTEUM FOR THE BW OF VI_) H 1/2 IL

_ AFPPEOXIMATE COMPOSITE ENVELOPE

IIf lot 15, 2HL 25E1 3Efl. 3T1 EEM

APPROXIMATE ENVEtOPE OF THE COMPOSITE
VIDEO SPECTRUM FOR THE MW OF V/WI SW OF EdH)

APPROXIMATE COMPOSITE ENVELOPE

101L HLI 2NIL 2El1 30L 2.
APPEOXIMATE ENVELOPE OF THE COMPOSITE

VIDEO SPECTRUM FOR T"E SW OF V/W) EW OF &ae

Figure 5

the spectrum of Bk(t)).
For the class of video functions

with their bandwidths limited to the
bandwidth of Bk(t), the general shape of
the spectrum is defined by Bk(n). The
justification for this statement can best
be shown graphically, but before pro-
ceeding to such an argument, consider a
restricted case of this class of
v(t)'s. The case is one where v(t) is
bandlimited to less than one-half of the
line frequency. For such a situation,
the composite video spectrum is given by
Equation 17. An example of such a case
is plotted in Figure 5a. An inspection
of this figure reveals that the band-
width of the composite video spectrum is
given by the bandwidth of the blanking
signal.

As the bandwidth of v(t) is allowed
to increase, the situation becomes more
complicated, due to the overlapping of
the spectrum of v(t) about each of the
line frequency harmonics. An example of
this case is shown graphically in Figure
5b. This figure is drawn by considering
only five of thirty or forty v(w)'s dis-
placed about each of the thirty or forty
line harmonics given by BZ(n). v(w) is
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placed about each line harmonic with the
amplitude of v(w) multiplied by the value
of BZ (n) at that harmonic then the en-
velope of the composite video spectrum
was approximated by adding on a point to
point basis the envelope of all the
v(w)'s. Since only five v(w)'s were
considered, this is a fairly crude ap-
proximation, but it serves to illustrate
the point. A close inspection of Figure
5 will reveal that the harmonics in the
upper frequency regions are still very
small and that the bandwidth of the com-
posite video signal is still quite close
to that of Bt (t) taken alone. However,
the actual fine structure of the compo-
site video signal is no longer easily
obtained by this method, since it re-
quires adding all of the components of
the various overlapping v(w)'s at a
frequency to obtain the amplitude of that
frequency component. Since the line fre-
quency is a harmonic of the frame fre-
quency and each of the sideband com-
ponents is separated from the line
frequency by multiples of the frame fre-
quency, the overlapping about the line
frequency harmonics places sideband com-
ponents of one line frequency harmonic
on top of the sideband components of the
next line frequency harmonic.

When the second class of v(t)'s is
present, v(t) will be the function which
determines the bandwidth and not B2(t).
Consider first the trivial case of v(t)
being a unit impulse. Since v(w) is
then displaced about each of the line
frequencies, it is obvious that the band-
width of such a spectrum is infinite,
because the v(w) placed about the origin
extends to infinity with unity amplitude
and the other spectrums are only added to
this one.

As a second example, consider a v(w)
bandlimited to about four times the band-
width of Bp (t), and assume v(w) is a
unity constant out to the limiting fre-
quency. A plot of this situation is
shown in Figure 5c, once again using only
five of the components to obtain the en-
velope of the spectrum of the composite
video. Inspection reveals that the 3db
bandwidth of the composite video for this
case is g'iven exactly by the bandwidth of

v(w), and the only effect which blanking
has on the composite video spectrum is to
raise the level of the very high fre-
quency terms, but they still do not be-
come of appreciable size.

It should be pointed out that the
division between the two classes of
v(t)'s is somewhat arbitrary. If either
v(t) or B2(t) has high frequency compo-
nents compared to the other, it will de-
fine the bandwidth of the system. For
the intermediate cases, the bandwidth is
greater than either v(t) or By,(t) would
indicate, but no simple approximation can
be used to find the bandwidth in this
case.

Determination of a More Complicated v(t)
As a final example, consider the

video function, v(t) generated by scan-
ning a white diagonal bar on a black
background. The optical image and the
corresponding time domain output of the
scanning device are shown in Figure 6.

v(t) consists of a series of pulses
each of width T and each periodic at the
framing frequency. The spectrum of any
one of the periodic pulse trains is given
by the Fourier series expansion of the
pulse train. Denoting this expansion as
K (t), the series becomes

Ti*
TIMIE DOMAIN OUTPUT tESULTING FROM SCANNING THE IMAGE

BELOW NEGLECTING BLANKING

DIAGONAL BAR IMAGE

DIAGON AL BAR EXAMPLE

Figure 6
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00

K1(t) = I
n=-o

Where K1 (n) = t
tf

K (n)e fLwft (20)

t

o

by the fact that the beginning on one
pulse train is delayed by one line scan
period (plus At due to the slant of the
line) from the preceeding pulse train.
Thus, the phase shift 8 as function of
the time delay, td, between pulses is
given by

and wf = 27rff

Thus carrying out the indicated integra-
tion for the pulse train in question,

Kl(n) = TeJnwfT (sin nwf'rT/2)1 nw lrTc/2
f

(21)

Thus the envelope of K1 (t) is given by
the familiar sin x/x distribution with
the first zero occurring when w = l/T.

However, the spectrum of v(t) is
given by a summation of Q such pulse
trains or

o = 2rtd f (24)

Where f is the frequency of the compo-
nent in question.

The time delay, td, between the first
and second pulses is tt + At; and between
the first and third, it is twice this
much or, in general for the 'th pulse,
it is i(tt + At). The amplitude of the
n, component, A(nl), may be now expressed
as the sum of terms with identical am-
plitudes and phases given by Equation 24
or

A(n) K= (n + K2(n ) eji2dtA(n1) 1() d

+ K3(ne) 4lrtdf ......

v(t) = I Ki(t)
i=O

(22)

By substituting Equation 20 into Equation
22, the Fourier series representation of
v(t) becomes

V(t)==
00

I K (n) eJ f1 (23)
i=0 n=-00

An inspection of Equation 23 reveals
that the summing of these pulse trains
affects only the amplitude of the com-
ponents. Thus for some fixed n, say ni,
it is necessary to sum all of the Ki's
from each train of pulses to find the am-
plitude of the component at n1. But for
some fixed n, the amplitude of all the
K's is the same and the only difference
in the K"s is the phase of the compo-
nents. This phase difference is caused

+ K1(nL) eJ td

However, by recalling the KL1(n1) = K2(n1)
= .K(ni) the expression reduces to

A(n ) = K(n ) I ej27iTf
i=O

(25)

Where T = t + At

However, the series in Equation 25
may be put into closed form [10], and
the results are

9. ~~sinir2kTf
x j2TiTf - sin 7TTf (26)

i=O
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Substitution of Equation 26 into Equation
25 yields an expression for A(nl).

-(nl)= |K(nl sinTV QTfA(n1) K(n1 sin TrTf (27)

Since Equation 27 is good for any fixed
n, it may be substituted into Equation 23
to obtain the Fourier series representa-
tion of v(t) as

00

v(t) = I K(n)
n=-o

sin7rZTnff jnwft
sin7f Tnfff

(28)

The envelope of the resulting v(t)
has been plotted in Figure 7 assuming a
vertical line; i.e., At = 0. The effect
of having the sum of pulse trains in-
stead of only one pulse train is to mod-
ulate the envelope of K(n) with

sinlTZTnff
sinTg Tnff

The main effect of this modulation is to
concentrate the energy in bands about the
harmonics of the line frequency. Observe
that this concentration is accomplished
without consideration of the blanking
frequency, and that when the pulse width
is small, the effect of the blanking sig-
nal on the composite video spectrum is
very minor by the arguments presented in
the last section. Thus, in this case,
the bandwidth necessary to transmit the
composite video signal is determined by
the v(t) and, more specifically, by the
sin x/x envelope of one of the pulses.

One last point of interest is what
happens when At is not zero: i.e., when
the line is rotated. Examination of the
modulating function will reveal that it
is periodic and has peaks located at
f = l/T. Therefore, if At is not zero,
then the peaks of the spectrum envelope
occur at f = l/tt + At and harmonics of
f. Thus, for a At small, in comparison
with tt, the first peak is very near the
line frequency, but for the higher

MNIU 20P ,D A

MAGNITUDE OF K{n) FOR DIAGONAL BAR

AMPLITUDE OF SINrLTNf WITH T = 1/fL

IOf, to~~~~~~2f,

ENVELOPE OF THE VIDEO
SPECTRUM Of THE DIACGONAL BAR

SPECTRUM FOR DIAGONAL BAR

Figure 7

harmonics of f, the peak occurs farther
away from the line frequency and thus
the spectrum becomes more diffused in
the higher portion of the video range
for non-vertical lines.

This effect is analogous to putting
a band of frequencies into a frequency
doubling circuit, and the output is a
band of frequencies twice as wide. For
example, is At is .Oltk, then the first
peak occurs at f = .99fk, but the 50th
peak occurs at f = 49.5fk or halfway be-
tween the forty-ninth and fiftieth har-
monic of the line frequency.

PART III

GENERAL METHOD FOR OBTAINING THE SPECTRUM
OF THE VIDEO SIGNAL

In Part II, a mathematical model of
the composite video signal was presented,
but in order to use this model, it is
necessary to evaluate the function v(t).
This function may be obtained by per-
forming the scanning process mentally
and thus generating the video signal, as
was done for the previous two examples.
This process, however, becomes very com-
plicated for a picture of any complexity.
It is therefore of interest to have a

362

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 16:31 from IEEE Xplore.  Restrictions apply.



2b,

0 ^Xls 2a

TYPICAL IMAGE AND
COORDINATE SYSTE M

Where

A = conversion gain of the scanning
g device

v = velocity of the scanning device
in the x direction

2 a 4a 6a 81 lUa
X AXIS

PERIODIC STRUCTURE USED TO OBTAIN THE
VIDEO SPECTRUM OF THE IMAGE ABOVE

TYPICAL IMAGE & COORDINATE SYSTEM USED

u = velocity of the scanning device
in the y direction

AkQ. 2 k P,
VELOCITY

_1 COM PONENT

A - 1 C e-i fkk
-k,~-Z 2 kZP

Now recalling that v/a = 2/tt and
v/b = 2/tf and taking Ag = 1 for conven-

ience

Figure 8

method for obtaining the spectrum of v(t)
directly from the image and thus avoid
the step of transformation into the time
domain. In this section, a method devel-
oped by P. Mertz and F. Gray [11] for
obtaining the spectrum of v(t) directly
will be summarized and a numerical tech-
nique for machine computation based on

this method will be developed.

Harmonic Analysis of Scanned Optical
Images

Figure 8 represents a typical image
to be transmitted through a television
system. The brightness function over the
surface is defined as B (x,y).

Now Mertz and Gray [111 have shown
that

00 00

j(Tyk Tr=P
B(x,y)=kVaxJY

k=-CO £=-00

And that
(29)

00 00

v(t) = A I I
k=o =-00

Ag cos [1T (a+t+fkv
P.P

Akkos (-T + fl) t +4 k] (30)

00

v(t) = E E

k=o Z=-oo

Akt cos [2'r (f?k + ffZ) t + fkk (31)

Equation 31 represents the general
form of the video output as a function
of time and has the added advantage that
it defines the spectrum of v(t). Inspec-
tion of Equation 31 shows that the com-

ponents in the spectrum of v(t) are the
line frequency harmonics with sidebands
about them consisting of the frame fre-
quencies. (see Figure 9) This should
not be confused with the composite video
frequency spectrum obtained previously,
but rather this is the video spectrum be-
fore multiplication by the blanking
signal.

The major advantage of expressing
v(t) in the form of Equation 31 is that

the coefficients, A k, which determine

the spectrum of v(t may be found

directly from the image function, B(x,y).
Using Equation 29, B(x,y) may be

reduced to a cosine expression using the

same method as for v(t). B(x,y) then

becomes
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It then follows by orthogonal relation-
ships that

{fK+§fL

IL I

f~~~~~~~+ f. '

II I

lI 1 I LI

0 |L 3L OL ff ee

TYPICAL AMPLITUDE SPECTRUM Of A VIDEO SIGNAL

SIDEBANDS DUE TO MOTION
'v-. IN THE IMAGE

:f,-2 t 2fL ff 2f, 2fI4q 2"Pff
DETAIL Of A TYPICAL REGION OF THE VIDEO SPECTRUM
SHOWING THE EFFECT OF MOTION IN THE IMAGE

Figure 9

00 00

B(x,y) = I I
k=o Qk=,-

[Akk cos ix + b Y) t + fkzl (32)

However, this expression is expandable
by use of trig identities into

00 00

B(x,y)=I I I
k=o Q=-00

- s~~7k iTQakg cos (k x + b Y)yka b

+ b sin ( x + Y)lklJa (33)

1
a -

pq 4ab

2a 2b

0 0

B(x,y) cos (p x + 5A y) dx dy (34)
a b

la

bpq 4b1pq 4ab

2a 2b

0 0

B(x,y) sin (fRp x + 2a y) dx dya b (35)

Then since A =/ 2 2pq a + b
pq pq

the spectrum of v(t) is completely
defined by evaluation of the integrals
of Equation 34 and Equation 35.

General Aspects of the Spectrum of v(t)

There are several points of interest
concerning the video spectrum which are
brought to light by this approach. The
first of these is that the process of
scanning transforms each of the spacial
Fourier components of B(x,y) into a com-
ponent in the spectrum of v(t). This
transformation is made on a one to one
basis and any nonlinearity in the scan-
ning device which alters the amplitude
of these components or generates new ones
will produce distortion of the video
signal.

Another item of interest is the ef-
fect of motion in the image. If the
image is changing from one scan to anoth-
er, then the effect this has on the
Fourier series expansion of B(x,y) is to
make the coefficients, Akk, functions of
time. Since these coefficients are also
the coefficients in the Fourier series
expansion of v (t), each component of v (t)
is of the form

A(t) = Ak 21 (t) cos
1 1Where ak = A cos

bkk = Akk sin IkQ [ (k1f1+l+1ff) 27rt + kl I (36)
lkl
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Where A(t) is the amplitude of the -k Q
components. 1

Inspection of Equation 36 reveals that
it is an exact expression for a double
sideband suppressed carrier signal. The
spectrum of each component of v(t) takes
on sidebands with the maximum frequency
of the sidebands equal to the maximum
frequency of the motion in the image.
Figure 9 is a blown-up portion of a part
of such a spectrum of v(t). Note that
if the frequency of the motion is great-
er than 1/2 the frame frequency, ali-
asing will result, causing a blurring
effect in the received image.

Another point of interest is the ef-
fect of scanning with a finite aperture.
Up to this point in the discussion, the
aperture through which the scanning de-
vice viewed the image has been assumed
to be a point. If it is not a point but
rather a small area with its response
dependent upon the location of the image
point in the area, then these results
must be modified. The effect of such
an aperture is to smooth the time series
representing v(t) and thus to modify the
spectrum much as a filter would. By
extending this basic filter concept,
Mertz and Gray [11] were able to show
that a finite two dimensional aperture
has the effect of a comb filter with its
response peaks at the harmonics of the
line frequency. Thus, the effect of a
finite aperture on the spectrum is to
further confine the components to bands
of frequencies about the harmonics of
the line frequency. (The convergence of
the Fourier series expansion of v(t) also
has the effect of confining the energy to
these bands in the spectrum.)

One precaution which must be ob-
served in using this method is that
B(x,y) must truly be a function of both
x and y. Otherwise, the integrals of
Equations 34 and 35 are identically zero.
However, this is not a fault of the
theory, but rather a violation of one of
its assumptions. It is tacitly assumed
that the Fourier series for B(x,yl) dif-
fers from that of B(x,y2). If B(x,y) is
not a function of y, the theory col-
lapses. However, when this condition
exists, the situation is easily rectified

by expanding B(x) or B(y) in its corre-
sponding one dimensional series.

Development of a Numerical Method for
Approximating the Spectrum of v(t)

It is desirable to have a numerical
technique for approximating the spectrum
of v(t) in order to avoid evaluation of
the integrals in Equation 34 and Equation
35. The reason for avoiding this inte-
gration is the difficulty of obtaining a
mathematical expression for B(x,y) when
the image is normal program material. In
order to obtain such an approximation, it
is sufficient to make x and y discrete
and then find coefficients of the double
Fourier series such that the series
exactly represents B(x,y) at the dis-
crete points in question. If x is al-
lowed to take on 2N values and y is
allowed to take on 2M values, then x and
y become periodic in 2N and 2M respec-
tively. Taking the new periods of x and
y into account, Equation 26 may be re-

written in an approximated form as

N-1 M-1

B(x,y) = I I [ak cos (Tk x

k=o Q=o

+bk sin (k x +M Y-k +: - )

+ M Y)

(37)

Where b0P = bk = 0

The reasons for the limits on the summa-

tion will become clear as formulas for
ak1 and bk2 are derived. The dropping
of the negative values of Q is possible
because ak,t = ak -_ and bkP, = bk -V
i.e., the spectrum is symmetrical'with
respect to the line frequency harmonics.

Thus, the problem of expanding the
Equation 37 to obtain the video spectrum
resolves itself into the problem of ob-
taining ak9 and bk, in a numerical form
suitable for machine calculation. Be-
fore proceeding to the derivation of
these coefficients, it is helpful to

state three lemmas (see Appendix I) which
are necessary in the derivation.
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Lemma I

2N-1 2M-1 N-1 M-1

x=o y=o k=o Q=o

bkZ sin (rk +M Y)kk N

It is now possible to derive expres-
sions for apq and bpq as functions of
B(x,y). Multiplying both sides of
Equation 37 by

COS (T X + M y)

NN

2N-1 2M-1 N-1 M-1

x=o y=o k=o Q=o

and summing over x and y yields
x +

T y) = 'ON 2N-1 2M-1

x y

x=O Y=0

irk ir9,
ak9 cos (N x + M- Y)

x k 9,X
x y k Q

B(x,y) cos (NP x +Nq y)

7rk rrQ
ak cos (N I + - Y) cos

(N x +M Y) + kZX X b sin
x y k 9

O<q<M-l

O<p<N-1

p and q not both zero

Lemma III

irk +r 'rr

(N x + Mf Y) cos (y x + M Y) (38)

Applying Lemma 2 to the first sum on the
right-hand side of Equation 44 and Lemma
1 to the second sum of Equation 44 ob-
tained to

2N-1 2M-1 N-1 M-1

x=o y=o k=o Q=o

rrk 1ir9b sin (- x + M Y)kR,

2N-1 2M-1

I I B (x,y) cos

x=O y=O

sin (NP x +

= 2MNb
pq

O<p<N-l

O<qj:SM-l

(21 x + iA y) = 2MN a

N pq
(39)

By rearranging Equation 39, the desired
expression for apq is obtained as

2N-1 2M-1

a ~=2 B(x,y) cosapq 2NMy-
x=0 y=0

(TP x + Y) O<p<N-1

O<q<M-l

p=q 0

(40)
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Similarly, multiplying Equation 37
through by Tpr

sin Nx + i! y)

and summing over x and y, the expression
for b is seen to be

pq

2N-1 2M-1

b Ipq 2NM

(Tpw x + mA Y)N N

I B (x, y) cos

x=O y=0

O<p<N-l

O<q<M-l

(41)

Equations 40 and 41 are an approxi-
mation of the amplitude and phase spec-
trum of v(t) according to Equation 37.
Also Equations 40 and 41 are in a form
which may be used for machine computa-
tion, since their evaluation requires no
more than arithmetical operations.

Description of the Computer Program to
Find the Spectrum of v(t)

In order to use Equations 40 and 41
for machine computation, the brightness
function B(x,y) must be specified at 4 MN
points equally spaced over the image. In
the program used on this project, this
was done by forming B into a matrix and
storing this matrix on tape. The values
of M and N were taken as 150 each, thus
yielding 90,000 data points over the
image. These points are then read off
the tape, and Equations 40 and 41 eval-
uated to give apq and bpq. Since the
amplitude spectrum is of primary interest
the amplitude,

A = 2 2pq a + b
pq pq

is calculated and this is the result
plotted in all the following spectrums.
A copy of this program, as well as an
example of the ones used to generate
the B matrix, may be found in [13].

The first image which was selected
for analysis was a white circle and

black background. This image was chosen
for two reasons. The first was that it
represents typical program material for
the Apollo television system: i.e.,
such an image would be seen by astronauts
as they approach the moon in their Apollo
space capsule. Secondly, an exact ana-
lytical result for this image was given
by Mertz and Gray in 1934 [11]. Table
III is a comparison of the computer re-
sults with their analytical results.

Another example for which analyt-
ical results are available is the diag-
onal bar presented in Part II. There-
fore, as a second check on the computer
algorithm, this spectrum was investi-
gated. The spectrum of the white bar
placed at an angle of 450 with the x
axis was analyzed using the computer
routine. The results are presented in
Figures 10, 11, and 12. Figure 10 is
the spectrum of the line frequency har-
monics and represents the over-all
coarse spectrum. Observe that the envel-
ope is very nearly the sin x/x distribu-
tion of a single pulse produced by the
scanning process as was predicted in
Part II. Figures 11 and 12 are blown-up
versions of Figure 10, showing the fine
detail of the spectrum--both the low and
the high frequency regions. The actual
numbers are representative of the Apollo
(mode 1) system. Observe that the spec-
trum is more diffused from the line fre-
quency harmonics in the upper frequency
regions, as was predicted for a non-
vertical line in Part II.

Extension of Computer Model to the
Composite Video Spectrum

Up to this point in this chapter,
the spectrum under consideration has
been the spectrum of the video signal
only: i.e., without blanking and syn-
chronization. Since in Part II the
synchronization was shown to be an ad-
ditive term resulting from a one di-
mensional series, neglecting this term
represents a straight forward correc-
tion.

However, neglecting the blanking
signals is a much more difficult item

367

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 16:31 from IEEE Xplore.  Restrictions apply.



TABLE III

Q *ACTUAL FREQUENCY
IN Hz

0

1
2
3-.
4
0

1
2
3

4
0

1
2
3
4
0

1
2
3
4
0

0

0

0

0

0

0

0

0

0

3200
3210
3220
3230
3240
6400
6410
6420
6430
6440
9600
9610
9620
9630
9640

12800
12810
12820
12830
12840
16000
19600
22800
26000
29200
32400
35600
38800
42000
45200

CALCULATED
AMPLITUDE

.152

.131

.079

.023

.014

.094

.079

.042

.0023

.020

.032

.023

.0023

.017

.023

.011

.014

.021

.023

.0169

.023

.0121

.0041

.0118

.0065

.0025

.0072

.0046

.0014

.0048

#MERTZ AND GRAY' S
AMPLITUDE

.153

.130

.079

.023

.014

.095

.079

.040

.0024

.021

.032

.023

.0024

.017

.023

.012

.014

.021

.023

.0168

.023

.0126

.0047

.0113

.0061

.0027

.0071

.0042

.0019

.0049

DIFFERENCE

.001

.001

.000

.000

.000

.001

.000

.002

.0001

.001

.00

.00

.001

.000

.000

.001

.000

.000

.000

.0001

.000

.0005

.0006

.0005

.0004

.0002

.0001

.0004

.0005

.0001

* Frequency Calculation based on Apollo

A

# Apq 2ab 2 2 K1 2

Where a =

b =

R =

1

mode 1 scanning parameters

R/ p 2

(2a) 2b

length of picture
height of picture
radius of circle
first order bessel function
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1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
4
4
4
4
4
5
6
7
8
9
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SPECTRUM FOR DIAGON AL BAR TEST PATTERN

Figure 10

Odb4
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i41tH2 3.341 3.6011.

DETAIL OF DIAGONAL BARSPECTRUM IN LOW FREQUENCY REGION

3IKH0

Figure II

to correct, since the blanking functions
are multiplying v(t). Thus, if the mo-
del is to be of any real use, the blank-
ing signals must be accounted for. With
the computer algorithm already developed,
the simplest method of adding the blank-
ing is to put it into B(x,y). This may
be accomplished by placing a strip of
zero brightness along the top of the
image to represent vertical blanking and
by placing a strip of zero brightness
along the right hand edge to represent
horizontal blanking. This argument is
illustrated in Figure 13 and the result-
ing v(t) is sketched.

With this simple extension, the
computer algorithm presented in the last
section yields the composite video spec-
trum generated by transmitting any mono-
chrome image. In the examples close
observation will reveal that the nulls
in the calculated spectrums are slightly
shifted from those measured by NASA. The
reason for this is the different ratios
of the T/t . NASA's ratio was .0965
while the best approximation to this
which can be made using the previously
mentioned 300 by 300 grid is .100.

VIDEO SPECTRUMSr

2, 4. 0. Jo lB.

IMAGE FIELD WITH BLANKING ADDED

".I^

DOMAIN OUTPUT FOR ABOVE IMAGE

COMPOSITE VIDEO WAVEFORM

Figure 13
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Composite Video Spectrums of Some
Standard Test Patterns

With the model extended to the com-
posite video spectrum, it is now feasible
to determine spectrums of standard tele-
vision test patterns. The ones selected
for this study are representative of
those used by NASA engineers for testing
the Apollo system.

Knowing the theoretical spectrum of
standard test patterns is important to
television engineers for two reasons--
one being to insure the test pattern is
actually testing the parameter of the
system which it is designed to test, and
secondly, to compare with experimental
test data to evaluate system performance.
The pattern selected for this work to
demonstrate the use of the model is the
grate scale pattern shown in Figure 14.
The contrast ratio is 100, and the plots
of the spectrum are made using mode 1
Apollo scan parameters. The composite
video spectrum produced by the grate
pattern has been plotted in Figure 15.
Figure 16 is a measured reproduction of
the spectrum. The agreement is seen to
be quite good in general, with the major
difference being in the large peak at
50 KHz which the computer algorithm pre-
dicted but was not published in-the
measured results. However, the peaks at
100 KHz, 150 KHz, 200 KHz, and up do
agree. The fact that a peak was measured
at 100 KHz and at intervals of 50 KHz
thereafter indicates that these peaks are
being generated by a 50 KHz fundamental
and its harmonics. Thus, it would seem
that the algorithm is correct and the
lack of this large 50 KHz peak may re-
present an oversight in the measured
spectrum.

An interesting phenomenon was ob-
served in calculating this spectrum.
The contrast ratio first used was in-
finite, then changed to 1000, and finally
changed to 100. As this ratio was de-
creased, the peaks of the spectrum were
lower and the level of the valleys
raised. This phenomenon apparently has
not been observed by other workers in
this area and needs experimental verifi-
cation to prove or disprove that the con-
trast ratio has an effect on the compos-
ite video spectrum.

GRATE PATTERN

NASA TEST PATTERN

Figure 14

CALCULATED SPECTRUM FOR GRATE TEST PATTERN

Figure 15

MEASURED SPECTRUM FOR GRATE TEST PATTERN

Figure 16
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Appendix 1:

A mathematical model for a deter-
ministic composite video signal has been
presented and- the resulting spectrum
examined. The most difficult problem in-
volved in using the model was obtaining
the spectrum of the scanned video signal.
This problem was solved by applying the
methods of numerical analysis to the
theory of scanning developed by Mertz
and Gray and extending this theory to in--
clude blanking. The resulting computer
program will obtain the composite video
spectrum resulting from scanning any
general image.

Obtaining the spectrum of the com-
posite video signal was only half of the
problem, however. The related problem
of specifying the necessary bandwidth
for a television system was discussed.
The, conclusions concerning bandwidth
which may be drawn are twofold. First,
if the program material which the tele-
vision system must transmit is known,
then the methods of this work may be ap-
plied to this material and the resulting
spectrums will determine the necessary
system bandwidth. The bandwidth deter-
mined in this manner will be a much
better approximation than any of the
methods presented in Part I. For exam-
ple, if the only image to be transmitted
is the half black and half white test
pattern examined in Part II, then the
necessary system bandwidth would be on
the order 100 KHz. (Assuming Apollo mode
1 scan parameters) This is approximately
one-fourth of the bandwidth predicted by
any of the methods in Part I. However,
if the only specification concerning the
bandwidth available is the maximum
horizontal resolution, then the standard
methods presented in Part I yield good
estimations of the maximum bandwidth.
Even in this case, it is feasible to use
the methods of this work on probable
images and let the results serve as a
check on the standard methods.

An extension of this work to random
video processes would relieve the burden
of knowing the exact images to be trans-
mitted. L. E. Franks of Bell Telephone
Laboratories has published a paper in
this area. [9]

A proof is herein derived for the
first of the lemmas used in the text.
The remaining proofs are similar and are
derived in a report prepared for NASA
[131.

Lemma I

2N-1 2M-1 N-1 M-1

I I I I b sin ( xk + M Y

x=O y=O k=O Q=O

Cos (w X + m y) =O

Proof:

S = I I I I bkg sin (r x +k Y)
x y k b

Cos ( - X + m y)

Expanding by trig. identities

S = I I I I b (sin Nrk x cos
T9,

x y k Q
7Tk TrQ

+ cos N x sin M y)

(co s NP x sin 2e y

- sin 7TP x sin rq y)
N N

Carrying out the indicated multiplication

irfk mQ9, 2E

S = I I I I bkc sin N x cos M cos N x

x y k Q

cos y -

371

CONCLUSION

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 16:31 from IEEE Xplore.  Restrictions apply.



r~ ~b ikr
s in. !PrTQ

L LL bk slnNxs N x cos -

x y k Q
i yq
si Y

X sinMif Y cos -Px
x y k Q

cos y -
N

vrrv Trk ,TIQ lTrI I L L bk Cos Nx sin M sin 1-x
x y k Q

sin
T

y

and by rearranging

2M-1

S = I
N-1 M-1

I bk
Trkcs MqCos - y COS ~F y

y=O k=O Q=O

2M-1 N-1 M-1

L L L bkZsiLn Y sinM Y
y=O k=O Q=O

2N-1

L sin N x cos N x
x=O

but it is known that (12)

2i-1
7T. 7TI sinijz cos-.hz = O

z=O

(A)

Thus applying this theorem to each of the
single series above S becomes, S = 0

2N-l
Trk ffp

L sin N -x cos - x

x=O

QED
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