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Abstract

The function of a protein is governed by its interaction 
with other proteins inside a cell. Therefore, it is important 
to identify the interacting partners of a particular 
protein to decipher its function. The protein interaction 
networks are generally determined by bioinformatic as 
well as experimental methodologies such as yeast two 
hybrid, mass spectrometry, immunoprecipitation, and 
fluorescence resonance energy transfer assays. Here, we 
have analyzed bioinformatically the interactions of Rpb1p 
(the largest subunit of RNA Polymerase II) with other 
proteins in yeast, using Cytoscape software and Biogrid/
Biomart database. We find that Rpb1p interacts with a 
large number of proteins involved in mRNA synthesis, 
processing, export, and other cellular processes. These 
results validate the application of such bioinformatic 
approach to determine the interactome for other cellular 
proteins.

Keywords: bioinformatics, protein interactions, Rbp1, 
yeast, human.

Introduction
All cellular processes are carried out by the concerted 
actions of proteins through specific interaction networks. 
Therefore, protein function annotation has become an 
important area of research in post-genomic sequencing 
era. Thus, an understanding of various cellular processes 
demands elucidation of the protein-protein interaction 
networks within cell. Several experimental methodologies 
such as yeast two hybrid, mass spectrometry, 
immunoprecipitation, and fluorescence resonance energy 
transfer assays have been employed to decipher cellular 

protein-protein interactions. Based on these experimental 
studies, several bioinformatic tools have been developed 
to comprehensively analyze protein interaction networks 
of different cellular proteins. Here, we have used the 
Cytoscape software (Zhang et al., 2007) and Biogrid/
Biomart database to identify the interactions of the 
largest subunit of RNA Polymerase II (RNAPII), Rpb1, 
with other proteins in yeast. Such analysis has revealed 
a large number of primary interactions of Rpb1p with 
many proteins involved in the regulation of transcription, 
chromatin structure, DNA repair, and other cellular events 
as discussed below.

Rpb1 and its interactions with other RNAPII subunits
The protein coding genes are transcribed into mRNA by 
RNAPII that is highly conserved from yeast to human. 
RNAPII is composed of 12 different subunits. These 
subunits are Rpb1, Rpb2, Rpb3, Rpb4, Rpb5, Rpb6, 
Rpb7, Rpb8, Rpb9, Rpb10, Rpb11, and Rpb12. Rpb1 
is the largest subunit, and is essential to maintain the 
structural integrity of RNAPII. Moreover, it has Mg2+-
dependent polymerase activity. The Rpb1 and Rpb2 
subunits are located at the core of RNAPII with smaller 
subunits at the surface (Cramer et al., 2001, 2008; 
Bushnell and Kornberg, 2003; Cramer, 2004). Thus, Rpb1 
interacts with several RNAPII subunits as also observed 
in this bioinformatic analysis (Fig. 1).

An important feature of Rpb1 is its c-terminal domain 
(CTD) that consists of multiple heptapeptide repeats 
(YSPTSPS) (Buratowski, 2003; Egloff and Murphy, 2008). 
Serine-2 and serine-5 (S-2 and S-5) of the heptapeptide in 
the CTD are phosphorylated and dephosphorylated during 
transcription by different kinases and phosphatases. 
Such phosphorylation status of Rpb1-CTD plays an 
important role in integrating various nuclear events 
through a variety of proteins involved in mRNA synthesis, 
processing, and export (Buratowski, 2003; Egloff and 
Murphy, 2008; Pandit et al., 2008). In addition, Rpb1 
interacts with Mediator, general transcription factors and 
activator, chromatin modifying and remodeling factors, 
and several other proteins to maintain normal cellular 
functions. These interactions are discussed below.

Interaction of Rpb1 with Mediator
The yeast Mediator complex comprises of a large 
number of subunits that include Srb (suppressor of RNA 
polymerase B) proteins (Srb2, Srb4, Srb5, Srb6, Srb7, 
Srb8, Srb9, Srb10, Srb11), Med proteins (Med1, Med2, 
Med4, Med6, Med7, Med8 and Med11), and several other 
polypeptides (Pgd1, Cse1, Nut2, Rgr1, Gal11, Sin4, Rox3 
and Soh1) (Kornberg, 2005). The core of the Mediator 
complex (known as core mediator complex) lacking Srb8, 
Srb9, Srb10 and Srb11 (or the Srb8–11 module) has a 
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Fig. 1: The interaction of the largest subunit of RNAPII (Rpb1) with other cellular proteins in yeast as revealed by bioinformatic analysis.

stimulatory effect on transcription, whereas the whole 
Mediator complex represses transcription of a subset 
of genes (Borggrefe and Kornberg, 2002; Kornberg, 
2005; Björklund and Gustafsson, 2005; Casamassimi 
and Napoli, 2007). Therefore, the Mediator complex 
plays an important role in transcriptional regulation as a 
co-activator or co-repressor through its interaction with 
several transcription factors. One important partner of 
Mediator in transcription machinery is RNAPII. Here, we 
have bioinformatically analyzed the interactions of the 
Mediator components with the largest subunit of RNAPII. 
This analysis shows that Rpb1 interacts with at least 

11 subunits of the Mediator complex. These subunits 
are Cse2, Srb9, Rgr1, Gal11, Srb4, Srb5, Rox3, Srb2, 
Srb6, Soh1 and Srb10 as shown in Fig. 1 . Likewise, 
Mediator components interact with other factors during 
transcription.

Interaction of Rpb1 with COMPASS
COMPASS is a histone methyltransferase in yeast 
(Miller et al., 2001). It methylates histone H3 on lysine-4 
(H3K4) for transcriptional activation (Miller et al., 2001; 
Santos-Rosa et al., 2002; Liu et al., 2005; Shilatifard, 
2006). COMPASS consists of 7 proteins (Cps60, Cps50, 
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Cps40, Cps35, Cps30, Cps15 and Set1). The Set1 
component of COMPASS boasts the enzymatic activity 
(Miller et al., 2001). Other COMPASS subunits play 
structural and functional roles to direct Set1 to perform its 
histone methylase activity (Shilatifard, 2006). COMPASS 
is recruited to the active genes by RNAPII, and thus 
methylates histone H3K4 in a transcription-dependent 
manner (Hampsey and Reinberg, 2003; Shilatifard, 
2006). Consistent with these results, this bioinformatic 
analysis reveals that Rpb1 interacts with four subunits of 
COMPASS. These subunits are Set1, Cps15, Cps30 and 
Cps60 (Fig. 1).

Interaction of Rpb1 with PAF
Paf1C is a RNAPII-associated complex. In yeast, Paf1C is 
composed of Paf1, Cdc73, Ctr9, Rtf1, and Leo1 (Mueller 
and Jaehning, 2002; Hampsey and Reinberg, 2003). 
Basically, Paf1C interacts with histone methyltransferase, 
COMPASS, and histone H2B ubiquitinating enzymes 
(e.g. Rad6 and Bre1), and thus regulates histone 
covalent modification for stimulated transcription (Krogan 
et al., 2003a; Rosonina and Manley, 2005). Paf1C is 
co-transcriptionally recruited to active genes by RNAPII 
(Krogan et al., 2003a; Xiao and Strahl, 2005; Rosonina and 
Manley, 2005). Consistently, this bioinformatic analysis 
shows the interactions of the Ctr9 and Rtt1 subunits 
of Paf1C with the largest subunit of RNAPII (Fig. 1). In 
addition, Paf1C regulates mRNA 3′ end formation through 
its interaction with mRNA cleavage and polyadenylation 
factors (Nordick et al., 2008).

Interaction of Rpb1 with FACT
FACT (Facilitates Chromatin Transcription) was identified 
as a factor required for transcription on chromatin template 
(Orphanides et al., 1998, 1999). FACT is composed of two 
subunits, namely, Spt16 and Pob3 in yeast. Lately, FACT 
has been implicated as an important elongation factor 
as a histone chaperone (Belotserkovskaya et al., 2003; 
Belotserkovskaya and Reinberg, 2004). Accordingly, 
FACT has been shown to travel with elongating RNAPII, 
and subsequently alters chromatin structure, thereby 
facilitating transcription (Belotserkovskaya et al., 2003; 
Belotserkovskaya and Reinberg, 2004; Saunders et 
al., 2003; Reinberg and Sims, 2006). These results 
are corroborated with this bioinformatic analysis for the 
interaction of FACT with the largest subunit of RNAPII 
(Fig. 1). In addition to its role in transcriptional elongation, 
FACT is recruited to gene promoter, and regulates 
transcriptional initiation (Mason and Struhl, 2003). Further, 
FACT has been shown to participate in regulation of DNA 
repair and replication (Wittmeyer and Formosa, 1997; 
Wittmeyer et al., 1999; Schlesinger and Formosa, 2000; 
Heo et al., 2008). Thus, FACT plays an important role in 
various cellular events.

Interaction of Rpb1 with RSC
RSC (remodels the structure of chromatin) is an abundant 
Swi/Snf-like chromatin remodeling complex with multiple 
subunits in yeast (Cairns et al., 1996). Unlike Swi/
Snf, RSC is essential for cellular viability. It has been 
implicated to activate as well as repress transcription 
(Moreira and Holmberg, 1999; Sudarsanam and Winston, 

2000; Angus-Hill et al., 2001). Further, this bioinformatic 
analysis shows that the Nps1 component of RSC interacts 
with the largest subunit of RNAPII (Fig. 1). Thus, RSC 
appears to regulate transcription via its interaction with 
RNAPII. In addition to its role in transcription, RSC has 
been shown to play important role in DNA repair (van 
Attikum and Gasser, 2005; Chai et al., 2005; Shim et al., 
2005).

Interaction of Rpb1 with activator and general 
transcription factors
In transcriptional activation, the activator stimulates 
formation of the pre-initiation complex (PIC) assembly 
which subsequently initiates transcription (Roeder, 
2005; Thomas and Chiang, 2006). PIC is formed by the 
assembly of general transcription factors (e.g. TFIIA, 
TFIIB, TFIID, TFIIE, TFIIF, TFIIH, RNAPII, etc.). RNAPII 
is an important component of the PIC assembly, which 
initiates transcription in the presence of TFIIH. Further, 
previous studies (Smale and Kadonaga, 2003; Roeder, 
2005; Thomas and Chiang, 2006) have implicated the 
interaction of RNAPII with activator and various general 
transcription factors during transcriptional initiation or 
activation as also seen in this bioinformatic analysis (Fig. 
1).

Interaction of Rpb1 with Elongator
RNAPII associates with a variety of proteins/protein 
complexes during transcription elongation. (Shilatifard et 
al., 2003; Buratowski, 2003; Cramer, 2004; Buratowski, 
2005; Shilatifard, 2006; Svejstrup, 2007). Elongator is 
one such component with six different subunits, namely 
Elp1, Elp2, Elp3, Elp4, Elp5 and Elp6 (Otero et al., 1999; 
Krogan and Greenblatt, 2001; Winkler et al., 2001; Li et al., 
2001; Svejstrup, 2007). The Elp3 subunit has histone H4 
acetyltransferase activity which facilitates transcriptional 
elongation following RNAPII-dependent association of 
Elongator with the body of gene (Wittschieben et al., 1999). 
These results are corroborated with this bioinformatic 
analysis that reveals that interacts of the Elp1, Elp2 and 
Elp5 subunits of Elongator with the largest subunit of 
RNAPII (Fig. 1). In addition to its role in transcriptional 
elongation, Elongator participates in cytoplasmic kinase 
signaling, exocytosis and tRNA modification (Holmberg 
et al., 2002; Rahl et al., 2005; Esberg et al., 2006; 
Jablonowski et al., 2006; Huang et al., 2005).

Interaction of Rpb1 with Set2 and HDAC
Histone covalent modifications have been associated 
with transcriptional regulation. Elongating RNAPII has 
been found to be associated with several covalent 
modification factors such as Set1 (COMPASS) and Elp3 
(Elongator) as mentioned above. Further, elongating 
RNAPII has been implicated to regulate histone H3 
K36 methylation at the body of gene by Set2 histone 
methylase (Li et al,, 2002; Krogan et al., 2003b; Hampsey 
and Reinberg, 2003; Keogh et al,, 2005; Carrozza et al., 
2005). Set2 associates with the S-2 phosphorylated form 
of RNAPII that occurs towards the 3′ end of the coding 
sequence, hence leading to histone H3 K36 methylation. 
Intriguingly, methylated-K36 on histone H3 leads to the 
recruitment of repressive Rpd3(S) complex with multiple 
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subunits (e.g., Rpd3, Eaf3, Ume1, Sin3, Sap30, Sds3, 
Pho23, and Cti6/Rxt1) (Keogh et al,, 2005; Carrozza et 
al., 2005; Joshi and Struhl, 2005; Yang and Seto, 2008; 
Lee and Shilatifard, 2007). The chromodomain of Eaf3 is 
responsible for such recruitment (Joshi and Struhl, 2005; 
Carrozza et al., 2005; Keogh et al,, 2005). Rpd3 has a 
histone deacetylase (HDAC) activity that preferentially 
deacetylates acetylated-K on histone H4 (Keogh et al,, 
2005; Carrozza et al., 2005; Joshi and Struhl, 2005). 
Such deacetylation has been implicated to repress 
cryptic transcriptional initiation. Thus, RNAPII regulates 
transcription by a fine tuning of acetylation/methylation 
marks via its interaction with Set2 and HDAC (Fig. 1).

Interaction of Rpb1 with histone chaperone proteins
Chromatin presents a structural hindrance for the passage 
of elongating RNAPII. Therefore, molecular chaperones, 
which alter chromatin organization, become the rate 
limiting factors during transcriptional elongation. These 
chaperones are not only required to clear up the path for 
RNAPII during elongation, but also maintain the normal 
chromatin organization after transcription is completed. 
RNAPII has been shown to associate with molecular 
chaperones like FACT and Spt6 during transcriptional 
elongation (Krogan et al., 2002). Consistently, this 
bioinformatic analysis shows that histone chaperones 
interact with the largest subunit of RNAPII (Fig. 1). 
Further, this analysis reveals that Rpb1 interacts with 
Spn1 that is essential for the recruitment of Spt6 (Zhang 
et al., 2008). Intriguingly, Spt6 has also been shown to 
repress transcription of several genes (Compagnone 
and Osley, 1996). In addition, Spt6 has been implicated 
in mRNA processing, and export (Bucheli and Burtowski, 
2005).

Interaction of Rpb1 with mRNA processing and 
export factors
Once the transcription is initiated, there are several 
proteins, which play a significant role in the processing of 
mRNA. Events, both at the 5′ end (such as capping) as 
well as 3′ end (e.g. mRNA cleavage and polyadenylation) 
involve several proteins. The recruitment as well as 
function of these proteins is tightly regulated. These 
proteins are shown to be co-transcriptionally recruited 
to the active genes by the elongating form of RNAPII 
(Zorio and Bentley, 2004; Bird et al., 2004; Buratowski, 
2005; Mandel et al., 2008). In addition, RNAPII co-
transcriptionally recruits mRNA export factors (Masuda 
et al., 2005; Buratowski, 2005). Consistently, this 
bioinformatic analysis shows the interaction of Rpb1 
with the proteins involved in mRNA capping (Cet1), 3′ 
end formation (Ctf1, Fun39, Nab3 and Ydh1) and export 
(Trf1) (Fig. 1). Thus, RNAPII appears to regulate mRNA 
processing and export via its interaction with proteins 
involved in these processes.

Interaction of Rpb1 with DNA repair factors
Genomic DNA is constantly challenged by internal 
as well as external genotoxic agents. An extremely 
cytotoxic ramification is the lesion at the coding region 
of active gene which inhibits the passage of RNAPII, and 
subsequently leads to transcription coupled repair through 

its interaction with DNA repair and related factors (Lainé 
and Egly, 2006) as also revealed in this bioinformatic 
analysis (Fig. 1).

Interaction of Rpb1 with protein kinases
Biological processes in the cell are always tightly 
regulated. Phosphorylation/ dephosphorylation of 
proteins is one of the major ways the cell synchronize 
important cellular processes. The phosphorylation status 
of proteins is maintained by several distinct classes 
of kinases. Therefore, kinases play a critical role in 
regulation of many cellular events such as replication, 
transcription, cell cycle, protein degradation, etc. Further, 
kinase regulates transcription in a RNAPII-dependent 
manner. For example the largest subunit of RNAPII 
interacts with a number of protein kinases such as Cki2, 
Cdk1, Hog1 and Bur1 as shown in Fig. 1 . These kinases 
are involved in diverse biological processes such as 
endocytic trafficking (Cki2), cell cycle regulation (Cdk1), 
osmoregulation (Hog1), and transcription (Bur1) (Hicke et 
al., 1998; Alepuz et al., 2003; Keogh et al., 2003; Harvey 
et al., 2005).

Interaction of Rpb1 with other cellular proteins
In addition to the above interactions, Rpb1 is correlated 
with several other processes through its interaction with 
various proteins, which are grouped as “others” in Fig. 
1 . For example, Rpb1 interacts with proteins involved 
in replication (e.g., Buf2, Bob1 and Sld4), cytoskeleton 
organization (e.g., Lgn4, Nuf1 and Gtp1), and protein 
sorting (e.g., Svl7, Bed1 and Qds1). Further, Rpb1 
interacts with some transcriptional regulatory factors 
such as CCR4-NOT (Fun27), proline isomerase (Pin1), 
Rtr1, Sin1, Aas3 and Bap1.

Concluding remarks
The function of a protein is dictated by its interaction 
with other cellular proteins, and, thus, understanding of 
the protein interaction networks is very crucial for protein 
function annotation. Several bioinformatic tools have 
been developed based on experimental data to analyze 
protein-protein interactions. One such bioinformatic tool 
is Cytoscape software. Using this software, we have 
analyzed the interactions of the largest subunit of RNAPII 
with other proteins in yeast to test the validity of this tool 
for cellular protein-protein interactions in general. We 
find that the largest subunit of RNAPII interacts with a 
large number of proteins involved in various stages of 
transcription, chromatin modification and remodeling, 
DNA repair, and other biological processes, consistent 
with experimental studies. Thus, our study validates the 
general applicability of this bioinformatic approach to 
analyze cellular protein-protein interactions.
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