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Abstract

This series of talks is intended as an introduction to certain aspects of stochastic
differential systems, whose evolution depends on the history of the state. We shall fre-
quently refer to such systems as stochastic functional differential equations (sfde’s). In the
deterministic case, sfde’s reduce to retarded functional differential equations (rfde’s). Such
equations have received a great deal of attention by analysts during the last few decades.
The reader may refer to fundamental works by J. Hale, Mallet-Paret, Mizel, etc.. The
lectures will cover some of the following topics as much as time permits.

Part I: Existence.

Simple motivating examples: the noisy feedback loop, the logistic time-lag model
with Gaussian noise, and the classical “heat-bath” model of R. Kubo, modeling the motion
of a “large” molecule in a viscous fluid. These examples are embedded in a general class
of stochastic functional differential equations (sfde’s). Pathwise existence and uniqueness
of solutions to these classes of sfde’s under local Lipschitz and linear growth hypotheses
on the coefficients. Existence of solutions under smooth constraints.

Part II: Markov Behavior.

The Markov (Feller) property holds for the trajectory random field of a sfde. The
trajectory Markov semigroup is not strongly continuous for positive delays, and its domain
of strong continuity does not contain tame (or cylinder) functions with evaluations away
from 0. Quasitame functions. The weak infinitesimal generator.

Part III: Classification of SFDE’s.

Non-existence of stochastic semiflows for SDDE’s. Classification of sfde’s into reg-
ular and singular types. Sufficient conditions for regularity of linear systems driven by
white noise or semimartingales.

Part IV: Dynamics of Regular SFDE’s.

Linear sfde’s. Existence of a compacting stochastic semiflow. The multiplicative
ergodic theory for regular linear sfde’s. The saddle point property. Examples of one-
dimensional linear sfde’s: Estimates for the top Lyapunov exponent.

Nonlinear sfde’s. Existence of semiflows. The local stable manifold theorem.
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Part V: Miscellaneous Topics.

Existence of smooth densities for solutions of sfde’s using the Malliavin calculus.
Numerical solution. Small delays. Existence of stationary solutions. Applications to
finance: The delayed Black-Scholes formula.
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I. EXISTENCE
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I. EXISTENCE

1. Examples

Example 1. (Noisy Feedbacks)
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σ(x(t− r))

y(t) x(t)

σ(x(t− r))

(x(t− r)− σ(x(t− r)))
N D

Box N: Input = y(t), output = x(t) at time t > 0 related by

x(t) = x(0) +
∫ t

0

y(u) dZ(u) (1)

where Z(u) is a semimartingale noise.

Box D: Delays signal x(t) by r (> 0) units of time. A proportion σ

(0 ≤ σ ≤ 1) is transmitted through D and the rest (1 − σ) is used for
other purposes.

Therefore
y(t) = σx(t− r)

Take Ż(u) := white noise = Ẇ (u)

Then substituting in (1) gives the Itô integral equation

x(t) = x(0) + σ

∫ t

0

x(u− r)dW (u)
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or the stochastic differential delay equation (sdde):

dx(t) = σx(t− r)dW (t), t > 0 (I)

To solve (I), need an initial process θ(t), −r ≤ t ≤ 0:

x(t) = θ(t) a.s., − r ≤ t ≤ 0

r = 0: (I) becomes a linear stochastic ode and has closed form solution

x(t) = x(0)eσW (t)−σ2t
2 , t ≥ 0.

r>0: Solve (I) by successive Itô integrations over steps of length r:

x(t) = θ(0) + σ

∫ t

0

θ(u− r) dW (u), 0 ≤ t ≤ r

x(t) = x(r) + σ

∫ t

r

[θ(0) + σ

∫ (v−r)

0

θ(u− r) dW (u)] dW (v), r < t ≤ 2r,

· · · = · · · 2r < t ≤ 3r,

No closed form solution is known (even in deterministic case).
Curious Fact!

In the sdde (I) the Itô differential dW may be replaced by the
Stratonovich differential ◦dW without changing the solution x. Let x

be the solution of (I) under an Itô differential dW . Then using finite
partitions {uk} of the interval [0, t] :

∫ t

0

x(u− r) ◦ dW (t) = lim
∑

k

1
2
[x(uk − r) + x(uk+1 − r)][W (uk+1)−W (uk)]

3



where the limit in probability is taken as the mesh of the partition
{uk} goes to zero. Compare the Stratonovich and Itô integrals using
the corresponding partial sums:

limE

( ∑

k

1
2
[x(uk − r) + x(uk+1 − r)][W (uk+1)−W (uk)]

−
∑

k

[x(uk − r)][W (uk+1)−W (uk)]
)2

= lim E

(∑

k

1
2
[x(uk+1 − r)− x(uk − r)][W (uk+1)−W (uk)]

)2

= lim
∑

k

1
4
E[x(uk+1 − r)− x(uk − r)]2 E[W (uk+1)−W (uk)]2

= lim
∑

k

1
4
E[x(uk+1 − r)− x(uk − r)]2 (uk+1 − uk)

= 0

because W has independent increments, x is adapted to the Brownian
filtration, u 7→ x(u) ∈ L2(Ω,R) is continuous, and the delay r is positive.
Alternatively

∫ t

0

x(u− r) ◦ dW (u) =
∫ t

0

x(u− r) dW (u) +
1
2

< x(· − r,W > (t)

and < x(· − r,W > (t) = 0 for all t > 0.

Remark.

When r > 0, the solution process {x(t) : t ≥ −r} of (I) is a mar-
tingale but is non-Markov .
Example 2. (Simple Population Growth)

Consider a large population x(t) at time t evolving with a con-
stant birth rate β > 0 and a constant death rate α per capita. Assume
immediate removal of the dead from the population. Let r > 0 (fixed,
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non-random= 9, e.g.) be the development period of each individual
and assume there is migration whose overall rate is distributed like
white noise σẆ (mean zero and variance σ > 0), where W is one-
dimensional standard Brownian motion. The change in population
∆x(t) over a small time interval (t, t + ∆t) is

∆x(t) = −αx(t)∆t + βx(t− r)∆t + σẆ∆t

Letting ∆t → 0 and using Itô stochastic differentials,

dx(t) = {−αx(t) + βx(t− r)} dt + σdW (t), t > 0. (II)

Associate with the above affine sdde the initial condition (v, η) ∈ R ×
L2([−r, 0],R)

x(0) = v, x(s) = η(s), −r ≤ s < 0.

Denote by M2 = R × L2([−r, 0],R) the Delfour-Mitter Hilbert space of
all pairs (v, η), v ∈ R, η ∈ L2([−r, 0],R) with norm

‖(v, η)‖M2 =
(
|v|2 +

∫ 0

−r

|η(s)|2 ds

)1/2

.

Let W : R+ × Ω → R be defined on the canonical filtered proba-
bility space (Ω,F , (Ft)t∈R+ , P ) where

Ω = C(R+,R), F = Borel Ω, Ft = σ{ρu : u ≤ t}

ρu : Ω → R, u ∈ R+, are evaluation maps ω 7→ ω(u), and P = Wiener
measure on Ω.
Example 3. (Logistic Population Growth)

A single population x(t) at time t evolving logistically with de-
velopment (incubation) period r > 0 under Gaussian type noise (e.g.
migration on a molecular level):

ẋ(t) = [α− βx(t− r)] x(t) + γx(t)Ẇ (t), t > 0
5



i.e.
dx(t) = [α− βx(t− r)] x(t) dt + γx(t)dW (t) t > 0. (III)

with initial condition

x(t) = θ(t) − r ≤ t ≤ 0.

For positive delay r the above sdde can be solved implicitly using
forward steps of length r, i.e. for 0 ≤ t ≤ r, x(t) satisfies the linear sode
(without delay)

dx(t) = [α− βθ(t− r)] x(t) dt + γx(t)dW (t) 0 < t ≤ r. (III ′)

x(t) is a semimartingale and is non-Markov (Scheutzow [S], 1984).
Example 4. (Heat bath)

Model proposed by R. Kubo (1966) for physical Brownian mo-
tion. A molecule of mass m moving under random gas forces with
position ξ(t) and velocity v(t) at time t; cf classical work by Einstein
and Ornestein and Uhlenbeck. Kubo proposed the following modifi-
cation of the Ornstein-Uhenbeck process

dξ(t) = v(t) dt

mdv(t) = −m[
∫ t

t0

β(t− t′)v(t′) dt′] dt + γ(ξ(t), v(t)) dW (t), t > t0.





(IV )

m =mass of molecule. No external forces.
β = viscosity coefficient function with compact support.
γ a function R3 ×R3 → R representing the random gas forces on

the molecule.
ξ(t) = position of molecule ∈ R3.
v(t) = velocity of molecule ∈ R3.
W = 3− dimensional Brownian motion.

([Mo], Pitman Books, RN # 99, 1984, pp. 223-226).
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Further Examples

Delay equation with Poisson noise:

dx(t) = x((t− r)−) dN(t) t > 0

x0 = η ∈ D([−r, 0],R)

}
(V )

N := Poisson process with iid interarrival times ([S], Hab. 1988).
D([−r, 0],R) = space of all cadlag paths [−r, 0] → R, with sup norm.

Simple model of dye circulation in the blood (or pollution) (cf.
Bailey and Williams [B-W], JMAA, 1966, Lenhart and Travis ([L-T],
PAMS, 1986).

dx(t) = {νx(t) + µx(t− r))} dt + σx(t) dW (t) t > 0

(x(0), x0) = (v, η) ∈ M2 = R× L2([−r, 0],R),

}
(V I)

([Mo], Survey, 1992; [M-S], II, 1995.)
In above model:
x(t) := dye concentration (gm/cc)
r = time taken by blood to traverse side tube (vessel)
Flow rate (cc/sec) is Gaussian with variance σ.
A fixed proportion of blood in main vessel is pumped into side

vessel(s). Model will be analysed in Lecture V (Theorem V.5).
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dx(t) = {νx(t) + µx(t− r))} dt + {
∫ 0

−r

x(t + s)σ(s) ds} dW (t),

(x(0), x0) = (v, η) ∈ M2 = R× L2([−r, 0],R), t > 0.





(V II)

([Mo], Survey, 1992; [M-S], II, 1995.)

Linear d-dimensional systems driven by m-dimensional Brown-
ian motion W := (W1, · · · , Wm) with constant coefficients.

dx(t) = H(x(t− d1), · · · , x(t− dN ), x(t), xt)dt

+
m∑

i=1

gix(t) dWi(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(V III)

H := (Rd)N ×M2 → Rd linear functional on (Rd)N ×M2; gi d× d-matrices
([Mo], Stochastics, 1990).

Linear systems driven by (helix) semimartingale noise (N, L),
and memory driven by a (stationary) measure-valued process ν and a
(stationary) process K ([M-S], I, AIHP, 1996):

dx(t) =
{∫

[−r,0]

ν(t)(ds)x(t + s)
}

dt

+ dN(t)
∫ 0

−r

K(t)(s)x(t + s) ds + dL(t) x(t−), t > 0

(x(0), x0) = (v, η) ∈ M2 = Rd × L2([−r, 0],Rd)





(IX)

Multidimensional affine systems driven by (helix) noise Q ([M-
S], Stochastics, 1990):

dx(t) =
{∫

[−r,0]

ν(t)(ds)x(t + s)
}

dt + dQ(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(X)
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Memory driven by white noise:

dx(t) =
{∫

[−r,0]

x(t + s) dW (s)
}

dW (t) t > 0

x(0) = v ∈ R, x(s) = η(s), −r < s < 0, r ≥ 0





(XI)

([Mo], Survey, 1992).
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Formulation
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Slice each solution path x over the interval [t − r, t] to get segment xt

as a process on [−r, 0]:

xt(s) := x(t + s) a.s., t ≥ 0, s ∈ J := [−r, 0].

Therefore sdde’s (I), (II), (III) and (XI) become

dx(t) = σxt(−r)dW (t), t > 0

x0 = θ ∈ C([−r, 0],R)



 (I)

dx(t) = {−αx(t) + βxt(−r)} dt + σdW (t), t > 0

(x(0), x0) = (v, η) ∈ R× L2([−r, 0],R)



 (II)

10



dx(t) = [α− βxt(−r)]xt(0) dt + γxt(0) dW (t)

x0 = θ ∈ C([−r, 0],R)



 (III)

dx(t) =
{∫

[−r,0]

xt(s) dW (s)
}

dW (t) t > 0

(x(0), x0) = (v, η) ∈ R× L2([−r, 0],R), r ≥ 0





(XI)

Think of R.H.S.’s of the above equations as functionals of xt

(and x(t)) and generalize to stochastic functional differential equation

(sfde)

dx(t) = h(t, xt)dt + g(t, xt)dW (t) t > 0

x0 = θ



 (XII)

on filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual con-

ditions:

(Ft)t≥0 right-continuous and each Ft contains all P -null sets in

F.

C := C([−r, 0],Rd) Banach space, sup norm.

W (t) = m–dimensional Brownian motion.

11



L2(Ω, C) := Banach space of all (F , BorelC)-measurable L2 (Bochner

sense) maps Ω → C with the L2-norm

‖θ‖L2(Ω,C) :=
[∫

Ω

‖θ(ω)‖2C dP (ω)
]1/2

Coefficients:

h : [0, T ]× L2(Ω, C) → L2(Ω,Rd) (Drift)

g : [0, T ]× L2(Ω, C) → L2(Ω, L(Rm,Rd) (Diffusion).

Initial data:

θ ∈ L2(Ω, C,F0).

Solution:

x : [−r, T ]×Ω → Rd measurable and sample-continuous, x|[0, T ] (Ft)0≤t≤T -

adapted and x(s) is F0-measurable for all s ∈ [−r, 0].

Exercise: [0, T ] 3 t 7→ xt ∈ C([−r, 0],Rd) is (Ft)0≤t≤T -adapted.

(Hint: Borel C is generated by all evaluations.)

12



Hypotheses (E1).

(i) h, g are jointly continuous and uniformly Lipschitz in the second

variable with respect to the first:

‖h(t, ψ1)− h(t, ψ2)‖L2(Ω,Rd) ≤ L‖ψ1 − ψ2‖L2(Ω,C)

for all t ∈ [0, T ] and ψ1, ψ2 ∈ L2(Ω, C). Similarly for the diffusion

coefficent g.

(ii) For each (Ft)0≤t≤T -adapted process y : [0, T ] → L2(Ω, C),

the processes h(·, y(·)), g(·, y(·)) are also (Ft)0≤t≤T - adapted.

Theorem I.1. ([Mo], 1984) (Existence and Uniqueness).

Suppose h and g satisfy Hypotheses (E1). Let θ ∈ L2(Ω, C;F0).

Then the sfde (XII) has a unique solution θx : [−r,∞) × Ω → Rd starting

off at θ ∈ L2(Ω, C;F0) with t 7−→ θxt continuous and θx ∈ L2(Ω, C([−r, T ]Rd)) for

all T > 0. For a given θ, uniqueness holds up to equivalence among all (Ft)0≤t≤T -

adapted processes in L2(Ω, C([−r, T ],Rd)).

Proof.

[Mo], Pitman Books, 1984, Theorem 2.1, pp. 36-39. ¤
13



Theorem I.1 covers equations (I), (II), (IV), (VI), (VII), (VIII),

(XI) and a large class of sfde’s driven by white noise. Note that

(XI) does not satisfy the hypotheses underlying the classical results

of Doleans-Dade [Dol], 1976, Metivier and Pellaumail [Met-P], 1980,

Protter, Ann. Prob. 1987, Lipster and Shiryayev [Lip-Sh], [Met],

1982. This is because the coefficient

η →
∫ 0

−r

η(s) dW (s)

on the RHS of (XI) does not admit almost surely Lipschitz (or even

linear) versions C → R! This will be shown later.

When the coeffcients h, g factor through functionals

H : [0, T ]× C → Rd, G : [0, T ]× C → Rd×m

we can impose the following local Lipschitz and global linear growth

conditions on the sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t) t > 0

x0 = θ



 (XIII)

with W m-dimensional Brownian motion:

14



Hypotheses (E2)

(i) H, G are Lipschitz on bounded sets in C: For each integer n ≥ 1

there exists Ln > 0 such that

|H(t, η1)−H(t, η2)| ≤ Ln‖η1 − η2‖C

for all t ∈ [0, T ] and η1, η2 ∈ C with ‖η1‖C ≤ n, ‖η2‖C ≤ n. Similarly

for the diffusion coefficent G.

(ii) There is a constant K > 0 such that

|H(t, η)|+ ‖G(t, η)‖ ≤ K(1 + ‖η‖C)

for all t ∈ [0, T ] and η ∈ C.

Note that the adaptability condition is not needed (explicitly)

because H, G are deterministic and because the sample-continuity and

adaptability of x imply that the segment [0, T ] 3 t 7→ xt ∈ C is also

adapted.

Exercise: Formulate the heat-bath model (IV) as a sfde of the form

(XIII).(β has compact support in R+.)

15



Theorem I.2. ([Mo], 1984) (Existence and Uniqueness).

Suppose H and G satisfy Hypotheses (E2) and let θ ∈ L2(Ω, C;F0).

Then the sfde (XIII) has a unique (Ft)0≤t≤T -adapted solution θx : [−r, T ]×

Ω → Rd starting off at θ ∈ L2(Ω, C;F0) with t 7−→ θxt continuous and θx ∈

L2(Ω, C([−r, T ],Rd)) for all T > 0. For a given θ, uniqueness holds up to equiva-

lence among all (Ft)0≤t≤T -adapted processes in L2(Ω, C([−r, T ],Rd)).

Furthermore if θ ∈ L2k(Ω, C;F0), then θxt ∈ L2k(Ω, C;Ft) and

E‖θxt‖2k
C ≤ Ck[1 + ‖θ‖2k

L2k(Ω,C)]

for all t ∈ [0, T ] and some positive constants Ck.

16



Proofs of Theorems I.1, I.2.(Outline)

[Mo], pp. 150-152. Generalize sode proofs in Gihman and Sko-

rohod ([G-S], 1973) or Friedman ([Fr], 1975):

(1) Truncate coefficients outside bounded sets in C. Reduce to glob-

ally Lipschitz case.

(2) Successive approx. in globally Lipschitz situation.

(3) Use local uniqueness ([Mo], Theorem 4.2, p. 151) to “patch up”

solutions of the truncated sfde’s.

For (2) consider globally Lipschitz case and h ≡ 0.

We look for solutions of (XII) by successive approximation in

L2(Ω, C([−r, a],Rd)). Let J := [−r, 0].

Suppose θ ∈ L2(Ω, C(J,Rd)) is F0-measurable. Note that this is

equivalent to saying that θ(·)(s) is F0-measurable for all s ∈ J, because

θ has a.a. sample paths continuous.

We prove by induction that there is a sequence of processes

kx : [−r, a]× Ω → Rd, k = 1, 2, · · · having the

17



Properties P (k):

(i) kx ∈ L2(Ω, C([−r, a],Rd)) and is adapted to (Ft)t∈[0,a].

(ii) For each t ∈ [0, a], kxt ∈ L2(Ω, C(J,Rd)) and is Ft-measur-able.

(iii)

‖k+1x− kx‖L2(Ω,C) ≤ (ML2)k−1 ak−1

(k − 1)!
‖2x− 1x‖L2(Ω,C)

‖k+1xt − kxt‖L2(Ω,C) ≤ (ML2)k−1 tk−1

(k − 1)!
‖2x− 1x‖L2(Ω,C)





(1)

where M is a “martingale” constant and L is the Lipschitz constant

of g.

Take 1x : [−r, a]× Ω → Rd to be

1x(t, ω) =
{

θ(ω)(0) t ∈ [0, a]
θ(ω)(t) t ∈ J

a.s., and

k+1x(t, ω) =





θ(ω)(0) + (ω)
∫ t

0

g(u, kxu)dW (·)(u) t ∈ [0, a]

θ(ω)(t) t ∈ J

(2)

a.s.

Since θ ∈ L2(Ω, C(J,Rd)) and is F0-measurable, then 1x ∈ L2(Ω, C([−r, a],Rd))

and is trivially adapted to (Ft)t∈[0,a]. Hence 1xt ∈ L2(Ω, C(J,Rd)) and is

Ft-measurable for all t ∈ [0, a]. P (1) (iii) holds trivially.
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Now suppose P (k) is satisfied for some k > 1. Then by Hypothesis

(E1)(i), (ii) and the continuity of the slicing map (stochastic memory),

it follows from P (k)(ii) that the process

[0, a] 3 u 7−→ g(u, kxu) ∈ L2(Ω, L(Rm,Rd))

is continuous and adapted to (Ft)t∈[0,a]. P (k+1)(i) and P (k+1)(ii) follow

from the continuity and adaptability of the stochastic integral. Check

P (k + 1)(iii), by using Doob’s inequality.

For each k > 1, write

kx = 1x +
k−1∑

i=1

(i+1x− ix).

Now L2
A(Ω, C([−r, a],Rd)) is closed in L2(Ω, C([−r, a],Rd)); so the series

∞∑

i=1

(i+1x− ix)

converges in L2
A(Ω, C([−r, a],Rd)) because of (1) and the convergence of

∞∑

i=1

[
(ML2)i−1 ai−1

(i− 1)!

]1/2

.

Hence {kx}∞k=1 converges to some x ∈ L2
A(Ω, C([−r, a],Rd)).
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Clearly x|J = θ and is F0-measurable, so applying Doob’s in-

equality to the Itô integral of the difference

u 7−→ g(u, kxu)− g(u, xu)

gives

E

(
sup

t∈[0,a]

∣∣∣∣
∫ t

0

g(u, kxu) dW (·)(u)−
∫ t

0

g(u, xu) dW (·)(u)
∣∣∣∣
2)

< ML2a‖kx− x‖2L2(Ω,C)

−→ 0 as k →∞.

Thus viewing the right-hand side of (2) as a process in L2(Ω, C ([−r, a],Rd))

and letting k → ∞, it follows from the above that x must satisfy the

sfde (XII) a.s. for all t ∈ [−r, a].

For uniqueness, let x̃ ∈ L2
A(Ω, ([−r, a],Rd)) be also a solution of

(XII) with initial process θ. Then by the Lipschitz condition:

‖xt − x̃t‖2L2(Ω,C) < ML2

∫ t

0

‖xu − x̃u‖2L2(Ω,C) du

for all t ∈ [0, a]. Therefore we must have xt − x̃t = 0 for all t ∈ [0, a]; so

x = x̃ in L2(Ω, C([−r, a],Rd)) a.s. ¤
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Remarks and Generalizations.

(i) In Theorem I.2 replace the process (t,W (t)) by a (square inte-

grable) semimartingale Z(t) satisfying appropriate conditions.([Mo],

1984, Chapter II).

(ii) Results on existence of solutions of sfde’s driven by white noise

were first obtained by Itô and Nisio ([I-N], J. Math. Kyoto

University, 1968) and then Kushner (JDE, 197).

(iii) Extensions to sfde’s with infinite memory. Fading memory case:

work by Mizel and Trützer [M-T],JIE, 1984, Marcus and Mizel

[M-M], Stochastics, 1988; general infinite memory: Itô and Nisio

[I-N], J. Math. Kyoto University, 1968.

(iii) Pathwise local uniqueness holds for sfde’s of type (XIII) under

a global Lipschitz condition: If coeffcients of two sfde’s agree

on an open set in C, then the corresponding trajectories leave

the open set at the same time and agree almost surely up to

the time they leave the open set ([Mo], Pitman Books, 1984,

Theorem 4.2, pp. 150-151.)
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(iv) Replace the state space C by the Delfour-Mitter Hilbert space

M2 := Rd × L2([−r, 0],Rd) with the Hilbert norm

‖(v, η)‖M2 =
(
|v|2 +

∫ 0

−r

|η(s)|2 ds

)1/2

for (v, η) ∈ M2 (T. Ahmed, S. Elsanousi and S. Mohammed,

1983).

(v) Have Lipschitz and smooth dependence of θxt on the initial pro-

cess θ ∈ L2(Ω, C) ([Mo], 1984, Theorems 3.1, 3.2, pp. 41-45).

22



MARKOV BEHAVIOR

AND THE WEAK GENERATOR

Berlin: March 2003

Salah-Eldin A. Mohammed

Southern Illinois University

Carbondale, IL 62901–4408 USA

Web page: http://sfde.math.siu.edu

1



MARKOV BEHAVIOR AND THE GENERATOR

Consider the sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t), t > 0

x0 = η ∈ C := C([−r, 0],Rd)

}
(XIII)

with coefficients H : [0, T ]×C → Rd, G : [0, T ]×C → Rd×m, m-dimensional
Brownian motion W and trajectory field {ηxt : t ≥ 0, η ∈ C}.

1. Questions

(i) For the sfde (XIII) does the trajectory field xt give a diffusion
in C (or M2)?

(ii) How does the trajectory xt transform under smooth non-linear
functionals φ : C → R?

(iii) What “diffusions” on C (or M2) correspond to sfde’s on Rd?

We will only answer the first two questions. More details in
[Mo], Pitman Books, 1984, Chapter III, pp. 46-112. Third question
is OPEN.
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Difficulties

(i) Although the current state x(t) is a semimartingale, the trajec-
tory xt does not seem to possess any martingale properties when
viewed as C-(or M2)-valued process: e.g. for Brownian motion
W (H ≡ 0, G ≡ 1):

[E(Wt|Ft1)](s) = W (t1) = Wt1(0), s ∈ [−r, 0]

whenever t1 ≤ t− r.
(ii) Lack of strong continuity leads to the use of weak limits in C

which tend to live outside C.
(iii) We will show that xt is a Markov process in C. However al-

most all tame functions lie outside the domain of the (weak)
generator.

(iv) Lack of an Itô formula makes the computation of the generator
hard.

Hypotheses (M)

(i) Ft := completion of σ{W (u) : 0 ≤ u ≤ t}, t ≥ 0.
(ii) H, G are jointly continuous and globally Lipschitz in second vari-

able uniformly wrt the first:

|H(t, η1)−H(t, η2)|+ ‖G(t, η1)−G(t, η2)‖ ≤ L‖η1 − η2‖C

for all t ∈ [0, T ] and η1, η2 ∈ C.

2. The Markov Property
ηxt1 := solution starting off at θ ∈ L2(Ω, C;Ft1) at t = t1 for the

sfde:

ηxt1(t) =

{
η(0) +

∫ t

t1
H(u, xt1

u ) du +
∫ t

t1
G(u, xt1

u ) dW (u), t > t1

η(t− t1), t1 − r ≤ t ≤ t1.
3



This gives a two-parameter family of mappings

T t1
t2 : L2(Ω, C;Ft1) → L2(Ω, C;Ft2), t1 ≤ t2,

T t1
t2 (θ) := θxt1

t2 , θ ∈ L2(Ω, C;Ft1). (1)

Uniqueness of solutions gives the two-parameter semigroup property:

T t1
t2 ◦ T 0

t1 = T 0
t2 , t1 ≤ t2. (2)

([Mo], Pitman Books, 1984, Theorem II (2.2), p. 40.)

Theorem II.1 (Markov Property)([Mo], 1984).
In (XIII) suppose Hypotheses (M) hold. Then the trajectory field {ηxt : t ≥

0, η ∈ C} is a Feller process on C with transition probabilities

p(t1, η, t2, B) := P
(
ηxt1

t2 ∈ B
)

t1 ≤ t2, B ∈ Borel C, η ∈ C.

i.e.

P
(
xt2 ∈ B

∣∣Ft1

)
= p(t1, xt1(·), t2, B) = P

(
xt2 ∈ B

∣∣xt1

)
a.s.

Further, if H and G do not depend on t, then the trajectory is time-homogeneous:

p(t1, η, t2, ·) = p(0, η, t2 − t1, ·), 0 ≤ t1 ≤ t2, η ∈ C.

Proof.

[Mo], 1984, Theorem III.1.1, pp. 51-58. [Mo], 1984, Theorem
III.2.1, pp. 64-65. ¤
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3. The Semigroup

In the autonomous sfde

dx(t) = H(xt) dt + G(xt) dW (t) t > 0

x0 = η ∈ C

}
(XIV )

suppose the coefficients H : C → Rd, G : C → Rd×m are globally
bounded and globally Lipschitz.
Cb := Banach space of all bounded uniformly continuous functions
φ : C → R, with the sup norm

‖φ‖Cb
:= sup

η∈C
|φ(η)|, φ ∈ Cb.

Define the operators Pt : Cb ↪→ Cb, t ≥ 0, on Cb by

Pt(φ)(η) := Eφ
(
ηxt

)
t ≥ 0, η ∈ C.

A family φt, t > 0, converges weakly to φ ∈ Cb as t → 0+ if lim
t→0+

<

φt, µ >=< φ, µ > for all finite regular Borel measures µ on C. Write
φ := w − lim

t→0+
φt. This is equivalent to





φt(η) → φ(η) as t → 0+, for all η ∈ C

{‖φt‖Cb
: t ≥ 0} is bounded .

(Dynkin, [Dy], Vol. 1, p. 50). Proof uses uniform boundedness
principle and dominated convergence theorem.

Theorem II.2([Mo], Pitman Books, 1984)
(i) {Pt}t≥0 is a one-parameter contraction semigroup on Cb.
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(ii) {Pt}t≥0 is weakly continuous at t = 0:




Pt(φ)(η) → φ(η) as t → 0+

{|Pt(φ)(η)| : t ≥ 0, η ∈ C}is bounded by ‖φ‖Cb
.

(iii) If r > 0, {Pt}t≥0 is never strongly continuous on Cb under the sup norm.

Proof.

(i) One parameter semigroup property

Pt2 ◦ Pt1 = Pt1+t2 , t1, t2 ≥ 0

follows from the continuation property (2) and time-homogeneity
of the Feller process xt (Theorem II.1).

(ii) Definition of Pt, continuity and boundedness of φ and sample-
continuity of trajectory ηxt give weak continuity of {Pt(φ) : t > 0}
at t = 0 in Cb.

(iii) Lack of strong continuity of semigroup:
Define the canonical shift (static) semigroup

St : Cb → Cb, t ≥ 0,

by
St(φ)(η) := φ(η̃t), φ ∈ Cb, η ∈ C,

where η̃ : [−r,∞) → Rd is defined by

η̃(t) =
{

η(0) t ≥ 0
η(t) t ∈ [−r, 0).

Then Pt is strongly continuous iff St is strongly continuous. Pt

and St have the same “domain of strong continuity” indepen-
dently of H, G, and W . This follows from the global bound-
edness of H and G. ([Mo], Theorem IV.2.1, pp. 72-73). Key
relation is

lim
t→0+

E‖ηxt − η̃t‖2C = 0

6



uniformly in η ∈ C. But {St} is strongly continuous on Cb iff C is
locally compact iff r = 0 (no memory) ! ([Mo], Theorems IV.2.1
and IV.2.2, pp.72-73). Main idea is to pick any s0 ∈ [−r, 0) and
consider the function φ0 : C → R defined by

φ0(η) :=





η(s0) ‖η‖C ≤ 1
η(s0)
‖η‖C

‖η‖C > 1

Let C0
b be the domain of strong continuity of Pt, viz.

C0
b := {φ ∈ Cb : Pt(φ) → φ as t → 0+ in Cb}.

Then φ0 ∈ Cb, but φ0 /∈ C0
b because r > 0. ¤

4. The Generator

Define the weak generator A : D(A) ⊂ Cb → Cb by the weak limit

A(φ)(η) := w − lim
t→0+

Pt(φ)(η)− φ(η)
t

where φ ∈ D(A) iff the above weak limit exists. Hence D(A) ⊂ Cb
0

(Dynkin [Dy], Vol. 1, Chapter I, pp. 36-43). Also D(A) is weakly
dense in Cb and A is weakly closed. Further

d

dt
Pt(φ) = A(Pt(φ)) = Pt(A(φ)), t > 0

for all φ ∈ D(A) ([Dy], pp. 36-43).

Next objective is to derive a formula for the weak generator
A. We need to augment C by adjoining a canonical d-dimensional
direction. The generator A will be equal to the weak generator of
the shift semigroup {St} plus a second order linear partial differential
operator along this new direction. Computation requires the following
lemmas.

Let

Fd = {vχ{0} : v ∈ Rd}
C ⊕ Fd = {η + vχ{0} : η ∈ C, v ∈ Rd}, ‖η + vχ{0}‖ = ‖η‖C + |v|
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Lemma II.1.([Mo], Pitman Books, 1984)
Suppose φ : C → R is C2 and η ∈ C. Then Dφ(η) and D2φ(η) have unique

weakly continuous linear and bilinear extensions

Dφ(η) : C ⊕ Fd → R, D2φ(η) : (C ⊕ Fd)× (C ⊕ Fd) → R

respectively.

Proof.

First reduce to the one-dimensional case d = 1 by using coordi-
nates.

Let α ∈ C∗ = [C([−r, 0],R)]∗. We will show that there is a weakly
continuous linear extension α : C⊕F1 → R of α; viz. If {ξk} is a bounded
sequence in C such that ξk(s) → ξ(s) as k → ∞ for all s ∈ [−r, 0], where
ξ ∈ C ⊕ F1, then α(ξk) → α(ξ) as k → ∞. By the Riesz representation
theorem there is a unique finite regular Borel measure µ on [−r, 0] such
that

α(η) =
∫ 0

−r

η(s) dµ(s)

for all η ∈ C. Define α ∈ [C ⊕ F1]∗ by

α(η + vχ{0}) = α(η) + vµ({0}), η ∈ C, v ∈ R.

Easy to check that α is weakly continuous. (Exercise: Use Lebesgue
dominated convergence theorem.)

Weak extension α is unique because each function vχ{0} can be
approximated weakly by a sequence of continuous functions {ξk

0}:

ξk
0 (s) :=

{
(ks + 1)v, − 1

k ≤ s ≤ 0

0 − r ≤ s < − 1
k .
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.

.................................................................................................................... .........
...

Put α = Dφ(η) to get first assertion of lemma.
To construct a weakly continuous bilinear extension β : (C⊕F1)×

(C ⊕ F1) → R for any continuous bilinear form
β : C × C → R, use classical theory of vector measures (Dunford and
Schwartz, [D-S], Vol. I, Section 6.3). Think of β as a continuos linear
map C → C∗. Since C∗ is weakly complete ([D-S], I.13.22, p. 341),
then β is a weakly compact linear operator ([D-S], Theorem I.7.6, p.
494): i.e. it maps norm-bounded sets in C into weakly sequentially
compact sets in C∗. By the Riesz representation theorem (for vector
measures), there is a unique C∗-valued Borel measure λ on [−r, 0] (of
finite semi-variation) such that

β(ξ) =
∫ 0

−r

ξ(s) dλ(s)

for all ξ ∈ C. ([D-S], Vol. I, Theorem VI.7.3, p. 493). By the
dominated convergence theorem for vector measures ([D-S], Theo-
rem IV.10.10, p. 328), one could reach elements in F1 using weakly
convergent sequences of type {ξk

0}. This gives a unique weakly con-
tinuous extension β̂ : C ⊕ F1 → C∗. Next for each η ∈ C, v ∈ R, extend
β̂(η + vχ{0}) : C → R to a weakly continuous linear map β̂(η + vχ{0}) :
C ⊕ F1 → R. Thus β corresponds to the weakly continuous bilinear
extension β̂(·)(·) : [C ⊕ F1]× [C ⊕ F1] → R of β. (Check this as exercise).
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Finally use β = D2φ(η) for each fixed η ∈ C to get the required
bilinear extension D2φ(η). ¤

Lemma II.2. ([Mo], Pitman Books, 1984)
For t > 0 define W ∗

t ∈ C by

W ∗
t (s) :=





1√
t
[W (t + s)−W (0)], −t ≤ s < 0,

0 − r ≤ s ≤ −t.

Let β be a continuous bilinear form on C. Then

lim
t→0+

[
1
t
Eβ(ηxt − η̃t,

ηxt − η̃t)− Eβ(G(η) ◦W ∗
t , G(η) ◦W ∗

t )
]

= 0

Proof.

Use
lim

t→0+
E‖ 1√

t
(ηxt − η̃t −G(η) ◦W ∗

t ‖2C = 0.

The above limit follows from the Lipschitz continuity of H and G and
the martingale properties of the Itô integral. Conclusion of lemma
is obtained by a computation using the bilinearity of β, Hölder’s in-
equality and the above limit.([Mo], Pitman Books, 1984, pp. 86-87.)

¤

Lemma II.3. ([Mo], Pitman Books, 1984)
Let β be a continuous bilinear form on C and {ei}m

i=1 be any basis for Rm.

Then

lim
t→0+

1
t
Eβ(ηxt − η̃t,

ηxt − η̃t) =
m∑

i=1

β
(
G(η)(ei)χ{0}, G(η)(ei)χ{0}

)

for each η ∈ C.

Proof.
10



By taking coordinates reduce to the one-dimensional case d =
m = 1:

lim
t→0+

Eβ(W ∗
t ,W ∗

t ) = β(χ{0}, χ{0})

with W one-dimensional Brownian motion. The proof of the above
relation is lengthy and difficult. A key idea is the use of the projective
tensor product C ⊗π C in order to view the continuous bilinear form β

as a continuous linear functional on C ⊗π C. At this level β commutes
with the (Bochner) expectation. Rest of computation is effected using
Mercer’s theorem and some Fourier analysis. See [Mo], 1984, pp. 88-
94. ¤
Theorem II.3.([Mo], Pitman Books, 1984)

In (XIV) suppose H and G are globally bounded and Lipschitz. Let S :
D(S) ⊂ Cb → Cb be the weak generator of {St}. Suppose φ ∈ D(S) is sufficiently

smooth (e.g. φ is C2, Dφ, D2φ globally bounded and Lipschitz). Then φ ∈ D(A)
and

A(φ)(η) = S(φ)(η) + Dφ(η)
(
H(η)χ{0}

)

+
1
2

m∑

i=1

D2φ(η)
(
G(η)(ei)χ{0}, G(η)(ei)χ{0}

)
.

where {ei}m
i=1 is any basis for Rm.

Proof.

Step 1.
For fixed η ∈ C, use Taylor’s theorem:

φ(ηxt)− φ(η) = φ(η̃t)− φ(η) + Dφ(η̃t)(ηxt − η̃t) + R(t)

a.s. for t > 0; where

R(t) :=
∫ 1

0

(1− u)D2φ[η̃t + u(ηxt − η̃t)](ηxt − η̃t,
ηxt − η̃t) du.
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Take expectations and divide by t > 0:

1
t
E[φ(ηxt)− φ(η)] =

1
t
[St(φ(η)−φ(η)] + Dφ(η̃t)

{
E[

1
t
(ηxt − η̃t)]

}

+
1
t
ER(t)





(3)

for t > 0.
As t → 0+, the first term on the RHS converges to S(φ)(η), be-

cause φ ∈ D(S).
Step 2.

Consider second term on the RHS of (3). Then

lim
t→0+

[
E

{
1
t
(ηxt − η̃t)

}]
(s) =





lim
t→0+

1
t

∫ t

0

E[H(ηxu)] du, s = 0

0 − r ≤ s < 0.

= [H(η)χ{0}](s), −r ≤ s ≤ 0.

Since H is bounded, then ‖E{
1
t (

ηxt − η̃t)
}‖C is bounded in t > 0 and

η ∈ C (Exercise). Hence

w − lim
t→0+

[
E

{
1
t
(ηxt − η̃t)

}]
= H(η)χ{0} (/∈ C).

Therefore by Lemma II.1 and the continuity of Dφ at η:

lim
t→0+

Dφ(η̃t)
{

E

[
1
t
(ηxt − η̃t)

]}
= lim

t→0+
Dφ(η)

{
E

[
1
t
(ηxt − η̃t)

]}

= Dφ(η)
(
H(η)χ{0}

)

Step 3.
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To compute limit of third term in RHS of (3), consider
∣∣∣∣
1
t
ED2φ[η̃t + u(ηxt − η̃t)](ηxt − η̃t,

ηxt − η̃t)

− 1
t
ED2φ(η)(ηxt − η̃t,

ηxt − η̃t)
∣∣∣∣

≤ (E‖D2φ[η̃t + u(ηxt − η̃t)]−D2φ(η)‖2)1/2

[
1
t2

E‖ηxt − η̃t‖4
]1/2

≤ K(t2 + 1)1/2[E‖D2φ[η̃t + u(ηxt − η̃t)]−D2φ(η)‖2]1/2

→ 0

as t → 0+, uniformly for u ∈ [0, 1], by martingale properties of the Itô
integral and the Lipschitz continuity of D2φ. Therefore by Lemma II.3

lim
t→0+

1
t
ER(t) =

∫ 1

0

(1− u) lim
t→0+

1
t
ED2φ(η)(ηxt − η̃t,

ηxt − η̃t) du

=
1
2

m∑

i=1

D2φ(η)
(
G(η)(ei)χ{0}, G(η)(ei)χ{0}

)
.

The above is a weak limit since φ ∈ D(S) and has first and second
derivatives globally bounded on C. ¤

5. Quasitame Functions

Recall that a function φ : C → R is tame (or a cylinder function)
if there is a finite set {s1 < s2 < · · · < sk} in [−r, 0] and a C∞-bounded
function f : (Rd)k → R such that

φ(η) = f(η(s1), · · · , η(sk)), η ∈ C.

The set of all tame functions is a weakly dense subalgebra of
Cb, invariant under the static shift St and generates Borel C. For k ≥ 2
the tame function φ lies outside the domain of strong continuity C0

b of
Pt, and hence outside D(A) ([Mo], Pitman Books, 1984, pp.98-103; see
also proof of Theorem IV .2.2, pp. 73-76). To overcome this difficulty
we introduce

13



Definition.

Say φ : C → R is quasitame if there are C∞-bounded maps h :
(Rd)k → R, fj : Rd → Rd, and piecewise C1 functions gj : [−r, 0] → R, 1 ≤
j ≤ k − 1, such that

φ(η) = h

(∫ 0

−r

f1(η(s))g1(s) ds, · · · ,

∫ 0

−r

fk−1(η(s))gk−1(s) ds, η(0)
)

(4)

for all η ∈ C.
Theorem II.4. ([Mo], Pitman Books, 1984)

The set of all quasitame functions is a weakly dense subalgebra of C0
b , in-

variant under St, generates Borel C and belongs to D(A). In particular, if φ is the

quasitame function given by (4), then

A(φ)(η) =
k−1∑

j=1

Djh(m(η)){fj(η(0))gj(0)− fj(η(−r))gj(−r)

−
∫ 0

−r

fj(η(s))g′j(s) ds}

+ Dkh(m(η))(H(η)) +
1
2
trace[D2

kh(m(η)) ◦ (G(η)×G(η))].

for all η ∈ C, where

m(η) :=
(∫ 0

−r

f1(η(s))g1(s) ds, · · · ,

∫ 0

−r

fk−1(η(s))gk−1(s) ds, η(0)
)

.

Remarks.

(i) Replace C by the Hilbert space M2. No need for the weak ex-
tensions because M2 is weakly complete. Extensions of Dφ(v, η)
and D2φ(v, η) correspond to partial derivatives in the Rd-variable.
Tame functions do not exist on M2 but quasitame functions do!
(with η(0) replaced by v ∈ Rd).
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Analysis of supermartingale behavior and stability of φ(ηxt) given
in Kushner ([Ku], JDE, 1968). Infinite fading memory setting
by Mizel and Trützer ([M-T], JIE, 1984) in the weighted state
space Rd × L2((−∞, 0],Rd; ρ).

(ii) For each quasitame φ on C, φ(ηxt) is a semimartingale, and the
Itô formula holds:

d[φ(ηxt)] = A(φ)(ηxt) dt + Dφ(η)
(
H(η)χ{0}

)
dW (t).
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III. REGULARITY. CLASSIFICATION OF SFDE’S

Denote the state space by E where E = C or M2 := Rd×L2([−r, 0],Rd).
Most results hold for either choice of state space.
Objectives

To study regularity properties of the trajectory of a sfde as a
random field X := {ηxt : t ≥ 0, η ∈ C} in the variables (t, η, ω) (E = C) or
(t, (v, η), ω) (E = M2):

(i) Pathwise regularity of trajectories in the time variable.
(ii) Regularity of trajectories (in probability or pathwise) in the

initial state η ∈ C or (v, η) ∈ M2.
(iii) Classification of sfde’s into regular and singular types.

Denote by Cα := Cα([−r, 0],Rd) the (separable) Banach space of
α-Hölder continuous paths η : [−r, 0] → Rd with the Hölder norm

‖η‖α := ‖η‖C + sup
{ |η(s1)− η(s2)|

|s1 − s2|α : s1, s2 ∈ [−r, 0], s1 6= s2

}
.

Cα can be constructed in a separable manner by completing the space
of smooth paths [−r, 0] → Rd with respect to the above norm (Tromba
[Tr], JFA, 1972). First step is to think of ηxt(ω) as a measurable
mapping X : R+ × C × Ω → C in the three variables (t, η, ω) simultane-
ously:

Theorem III.1([Mo], Pitman Books, 1984)
In the sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t) t > 0

x0 = η ∈ C

}
(XIII)

assume that the coefficients H, G are (jointly) continuous and globally Lipschitz in

the second variable uniformly wrt the first. Then
2



(i) For any 0 < α <
1
2
, and each initial path η ∈ C,

P (ηxt ∈ Cα, for all t ≥ r) = 1.

(ii) the trajectory field has a measurable version

X : R+ × C × Ω → C.

(iii) The trajectory field ηxt, t ≥ r, η ∈ C, admits a measurable version

[r,∞)× C × Ω → Cα.

Remark.

Similar statements hold for E = M2.
Give L0(Ω, E) the complete (psuedo)metric

dE(θ1, θ2) := inf
ε>0

[ε + P (‖θ1 − θ2‖E ≥ ε)], θ1, θ2 ∈ L0(Ω, E),

(which corresponds to convergence in probability, Dunford and Schwartz
[D-S], Lemma III.2.7, p. 104).
Proof of Theorem III.1.

(i) Sufficient to show that

P
(
ηx|[0, a] ∈ Cα([0, a],Rd)

)
= 1

by using the estimate

P

(
sup

0≤t1,t2≤a,t1 6=t1

|ηx(t1)− ηx(t2)|
|t1 − t2|α ≥ N

)
≤ C1

k(1 + ‖η‖2k
C )

1
N2k

,

for all integers k > (1 − 2α)−1, and the Borel-Cantelli lemma.
Above estimate is proved using Gronwall’s lemma, Chebyshev’s
inequality, and Garsia-Rodemick-Rumsey lemma ([Mo], Pitman

3



Books, 1984, Theorem 4.1, p. 150; [Mo], Pitman Books, 1984,
Theorem 4.4, pp.152-154.)

(ii) By mean-square Lipschitz dependence ([Mo], Pitman Books,
1984, Theorem 3.1, p. 41), the trajectory

[0, a]× C → L2(Ω, C) ⊂ L0(Ω, C)

(t, η) 7→ ηxt

is globally Lipschitz in η uniformly wrt t in compact sets, and is
continuous in t for fixed η. Therefore it is jointly continuous in
(t, η) as a map

[0, a]× C 3 (t, η) 7→ ηxt ∈ L0(Ω, C).

Then apply the Cohn-Hoffman-Jφrgensen theorem:
If T, E are complete separable metric spaces, then each Borel map X : T →
L0(Ω, E;F) admits a measurable version

T × Ω → E

to the trajectory field to get measurability in (t, η). (Take T =
[0, a]× C, E = C ([Mo], Pitman Books, 1984, p. 16).)

(iii) Use the estimate

P
(‖η1xt − η2xt‖Cα ≥ N

) ≤ C2
k

N2k
‖η1 − η2‖2k

C

for t ∈ [r, a], N > 0, ([Mo], 1984, Theorem 4.7, pp.158-162) to
prove joint continuity of the trajectory

[r, a]× C → L0(Ω, Cα)

(t, η) 7→ ηxt
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([Mo], Theorem 4.7, pp. 158-162) viewed as a process with
values in the separable Banach space Cα. Again apply the Cohn-
Hoffman-Jφrgensen theorem. ¤

As we have seen in Lecture I, the trajectory of a sfde possesses
good regularity properties in the mean-square. The following theorem
shows good behavior in distribution.

Theorem III.2. ([Mo], Pitman Books, 1984)
Suppose the coefficients H,G are globally Lipschitz in the second variable

uniformly with respect to the first. Let α ∈ (0, 1/2) and k be any integer such that

k > (1− 2α)−1. Then there are positive constants C3
k , C4

k , C5
k such that

dC(η1xt,
η2xt) ≤ C3

k‖η1 − η2‖2k/(2k+1)
C t ∈ [0, a]

dCα(η1xt,
η2xt) ≤ C4

k‖η1 − η2‖2k/(2k+1)
C t ∈ [r, a]

P
(‖ηxt‖Cα ≥ N

)
≤ C5

k(1 + ‖η‖2k
C )

1
N2k

, t ∈ [r, a], N > 0.

In particular the transition probabilities

[r, a]× C →Mp(C)

(t,η) 7→ p(0, η, t, ·)

take bounded sets into relatively weak* compact sets in the space Mp(C) of prob-

ability measures on C.

Proof of Theorem III.2.

Proofs of the estimates use Gronwall’s lemma, Chebyshev’s in-
equality, and Garsia-Rodemick-Rumsey lemma ([Mo], 1984, Theorem
4.1, p. 150; [Mo], 1984, Theorem 4.7, pp.159-162.) The weak* com-
pactness assertion follows from the last estimate, Prohorov’s theorem
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and the compactness of the embedding Cα ↪→ C ([Mo], 1984, Theorem
4.6, pp. 156-158). ¤
Erratic Behavior. The Noisy Loop Revisited

Definition.

A sfde is regular with respect to M2 if its trajectory random field
{(x(t), xt) : (x(0), x0) = (v, η) ∈ M2, t ≥ 0} admits a (Borel R+ ⊗ Borel M2 ⊗
F , Borel M2)-measurable version X : R+×M2×Ω → M2 with a.a. sample
functions continuous on R+ × M2. The sfde is said to be singular
otherwise. Similarly for regularity with respect to C.

Consider the one-dimensional linear sdde with a positive delay
r

dx(t) = σx(t− r)) dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 := R× L2([−r, 0],R),

}
(I)

driven by a Wiener process W .
Theorem III.3 below implies that (I) is singular with respect to

M2 (and C).(See also [Mo], Stochastics, 1986).
Consider the regularity of the more general one-dimen-sional

linear sfde:

dx(t) =
∫ 0

−r

x(t + s)dν(s) dW (t), t > 0

(x(0), x0) ∈ M2 := R× L2([−r, 0],R)





(II ′)

where W is a Wiener process and ν is a fixed finite real-valued Borel
measure on [−r, 0].
Exercise:

(II′) is regular if ν has a C1 (or even L2
1) density with respect

to Lebesgue measure on [−r, 0]. ( Hint: Use integration by parts to
eliminate the Itô integral!)
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The following theorem gives conditions on the measure ν under
which (II′) is singular.

Theorem III.3 ([M-S], II, 1996)
Let r > 0, and suppose that there exists ε ∈ (0, r) such that supp ν ⊂

[−r,−ε]. Suppose 0 < t0 ≤ ε. For each k ≥ 1, set

νk :=
√

t0

∣∣∣∣
∫

[−r,0]

e2πiks/t0 dν(s)
∣∣∣∣.

Assume that ∞∑

k=1

νkx1/ν2
k = ∞ (1)

for all x ∈ (0, 1). Let Y : [0, ε] ×M2 × Ω → R be any Borel-measurable version of

the solution field {x(t) : 0 ≤ t ≤ ε, (x(0), x0) = (v, η) ∈ M2} of (II′). Then for a.a.

ω ∈ Ω, the map Y (t0, ·, ω) : M2 → R is unbounded in every neighborhood of every

point in M2, and (hence) non-linear.
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Corollary. ([Mo], Pitman Books, 1984 )
Suppose r > 0, σ 6= 0 in (I). Then the trajectory {ηxt : 0 ≤ t ≤ r, η ∈ C} of

(I) has a measurable version X : R+ × C × Ω → C s.t. for every t ∈ (0, r]

P

(
X(t, η1 + λη2, ·) = X(t, η1, ·)+λX(t, η2, ·)

for all λ ∈ R, η1, η2 ∈ C

)
= 0.

But

P

(
X(t, η1 + λη2, ·) = X(t, η1, ·) + λX(t, η2, ·)

)
= 1.

for all λ ∈ R, η1, η2 ∈ C.

Remark.

(i) Condition (1) of the theorem is implied by

lim
k→∞

νk

√
log k = ∞.

(ii) For the delay equation (I), ν = σδ−r, ε = r. In this case condition
(1) is satisfied for every t0 ∈ (0, r].

(iii) Theorem III.3 also holds for state space C since every bound-ed
set in C is also bounded in L2([−r, 0],R).
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Proof of Theorem III.3.

Joint work with V. Mizel.
Main idea is to track the solution random field of (a complexified

version of) (II′) along the classical Fourier basis

ηk(s) = e2πiks/t0 , −r ≤ s ≤ 0, k ≥ 1 (2)

in L2([−r, 0],C). On this basis, the solution field gives an infinite family
of independent Gaussian random variables. This allows us to show
that no Borel measurable version of the solution field can be bounded
with positive probability on an arbitrarily small neighborhood of 0 in
M2, and hence on any neighborhood of any point in M2 (cf. [Mo], Pit-
man Books, 1984; [Mo], Stochastics, 1986). For simplicity of compu-
tations, complexify the state space in (II′) by allowing (v, η) to belong
to MC

2 := C× L2([−r, 0],C). Thus consider the sfde

dx(t) =
∫

[−r,0]

x(t + s)dν(s) dW (t), t > 0,

(x(0), x0) = (v, η) ∈ MC
2





(II ′ − C))

where x(t) ∈ C, t ≥ −r, and ν, W are real-valued.
Use contradiction. Let Y : [0, ε] × M2 × Ω → R be any Borel-

measurable version of the solution field {x(t) : 0 ≤ t ≤ ε, (x(0), x0) =
(v, η) ∈ M2} of (II′). Suppose, if possible, that there exists a set Ω0 ∈ F
of positive P -measure, (v0, η0) ∈ M2 and a positive δ such that for all
ω ∈ Ω0, Y (t0, ·, ω) is bounded on the open ball B((v0, η0), δ) in M2 of center
(v0, η0) and radius δ. Define the complexification Z(·, ω) : MC

2 → C of
Y (t0, ·, ω) : M2 → R by

Z(ξ1 + iξ2, ω) := Y (t0, ξ1, ω) + i Y (t0, ξ2, ω), i =
√−1,

for all ξ1, ξ2 ∈ M2, ω ∈ Ω. Let (v0, η0)C denote the complexification
(v0, η0)C := (v0, η0) + i(v0, η0). Clearly Z(·, ω) is bounded on the complex
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ball B((v0, η0)C , δ) in MC
2 for all ω ∈ Ω0. Define the sequence of complex

random variables {Zk}∞k=1 by

Zk(ω) := Z((ηk(0), ηk), ω)− ηk(0), ω ∈ Ω, k ≥ 1.

Then
Zk =

∫ t0

0

∫

[−r,−ε]

ηk(u + s) dν(s) dW (u), k ≥ 1.

By standard properties of the Itô integral, and Fubini’s theorem,

EZkZl =
∫

[−r,−ε]

∫

[−r,−ε]

∫ t0

0

ηk(u + s)ηl(u + s′) du dν(s) dν(s′) = 0

for k 6= l, because ∫ t0

0

ηk(u + s)ηl(u + s′) du = 0

whenever k 6= l, for all s, s′ ∈ [−r, 0]. Furthermore
∫ t0

0

ηk(u + s)ηk(u + s′) du = t0e2πik(s−s′)/t0

for all s, s′ ∈ [−r, 0]. Hence

E|Zk|2 =
∫

[−r,−ε]

∫

[−r,−ε]

t0e2πik(s−s′)/t0 dν(s) dν(s′)

= t0

∣∣∣∣
∫

[−r,0]

e2πiks/t0 dν(s)
∣∣∣∣
2

= ν2
k .

Z(·, ω) : MC
2 → C is bounded on B((v0, η0)C , δ) for all ω ∈ Ω0, and

‖(ηk(0), ηk)‖ =
√

r + 1 for all k ≥ 1. By the linearity property

Z

(
(v0, η0)C+

δ

2
√

r + 1
(ηk(0), ηk), ·

)

= Z((v0, η0)C , ·) +
δ

2
√

r + 1
Z((ηk(0), ηk), ·), k ≥ 1,
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a.s., it follows that
P

(
sup
k≥1

|Zk| < ∞)
> 0. (3)

It is easy to check that {ReZk, ImZk : k ≥ 1} are independent
N (0, ν2

k/2)-distributed Gaussian random variables. Get a contradiction
to (3):

For each integer N ≥ 1,

P

(
sup
k≥1

|Zk| < N

)
≤

∏

k≥1

P

(
|ReZk| < N

)

=
∏

k≥1

[
1− 2√

2π

∫ ∞
√

2N
νk

e−x2/2 dx

]

≤ exp
{
− 2√

2π

∞∑

k=1

∫ ∞
√

2N
νk

e−x2/2 dx

}
. (4)

There exists N0 > 1 (independent of k ≥ 1) such that
∫ ∞
√

2N
νk

e−x2/2 dx ≥ νk

2
√

2N
e
−N2

ν2
k (5)

for all N ≥ N0 and all k ≥ 1.
Combine (4) and (5) and use hypothesis (1) of the theorem to

get
P

(
sup
k≥1

|Zk| < N

)
= 0

for all N ≥ N0. Hence

P

(
sup
k≥1

|Zk| < ∞
)

= 0.

This contradicts (3)(cf. Dudley [Du], JFA, 1967).
Since Y (t0, ·, ω) is locally unbounded, it must be non-linear be-

cause of Douady’s Theorem:
Every Borel measurable linear map between two Banach spaces is continuous.

(Schwartz [Sc], Radon Measures, Part II, 1973, pp. 155-160). ¤
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Note that the pathological phenomenon in Theorem III.3 is pe-
culiar to the delay case r > 0 . The proof of the theorem suggests that
this pathology is due to the Gaussian nature of the Wiener process
W coupled with the infinite-dimensionality of the state space M2. Be-
cause of this, one may expect similar difficulties in certain types of
linear spde’s driven by multi-dimensional white noise (Flandoli and
Schaumlöffel [F-S], Stochastics, 1990).
Problem.

Classify all finite signed measures ν on [−r, 0] for which (II ′) is
regular.

Note that (I) automatically satisfies the conditions of Theorem
III.3, and hence its trajectory field explodes on every small neighbor-
hood of 0 ∈ M2. Because of the singular nature of (I), it is surprising
that the maximal exponential growth rate of the trajectory of (I) is
negative for small σ and is bounded away from zero independently of
the choice of the initial path in M2. This will be shown later in Lecture
V (Theorem V.1).

Regular Linear Systems. White Noise

SDE’s on Rd driven by m-dimensional Brownian motion W :=
(W1, · · · , Wm), with smooth coefficients.

dx(t) = H(x(t− d1), · · · , x(t− dN ), x(t), xt)dt

+
m∑

i=1

gix(t) dWi(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(V III)

(VIII) is defined on
(Ω,F , (Ft)t≥0, P ) = canonical complete filtered Wiener space:
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Ω := space of all continuous paths ω : R+ → Rm, ω(0) = 0, in
Euclidean space Rm, with compact open topology;

F := completed Borel σ-field of Ω;
Ft := completed sub-σ-field of F generated by the evaluations

ω → ω(u), 0 ≤ u ≤ t, t ≥ 0;
P := Wiener measure on Ω;
dWi(t) = Itô stochastic differentials, 1 ≤ i ≤ m.
Several finite delays 0 < d1 < d2 < · · · < dN ≤ r in drift term; no

delays in diffusion coefficient.
H : (Rd)N+1×L2([−r, 0],Rd) → Rd is a fixed continuous linear map;

gi, i = 1, 2, . . . , m, fixed (deterministic) d× d-matrices.
Theorem III.4.([Mo], Stochastics, 1990])

(VIII) is regular with respect to the state space M2 = Rd × L2([−r, 0],Rd).
There is a measurable version X : R+ × M2 × Ω → M2 of the trajectory field

{(x(t), xt) : t ∈ R+, (x(0), x0) = (v, η) ∈ M2} with the following properties:

(i) For each (v, η) ∈ M2 and t ∈ R+, X(t, (v, η), ·) = (x(t), xt) a.s., is

Ft-measurable and belongs to L2(Ω,M2;P ).

(ii) There exists Ω0 ∈ F of full measure such that, for all ω ∈ Ω0, the

map X(·, ·, ω) : R+ ×M2 → M2 is continuous.

(iii) For each t ∈ R+ and every ω ∈ Ω0, the map X(t, ·, ω) : M2 → M2 is

continuous linear; for each ω ∈ Ω0, the map R+ 3 t 7→ X(t, ·, ω) ∈
L(M2) is measurable and locally bounded in the uniform operator

norm on L(M2). The map [r,∞) 3 t 7→ X(t, ·, ω) ∈ L(M2) is contin-

uous for all ω ∈ Ω0.

(iv) For each t ≥ r and all ω ∈ Ω0, the map

X(t, ·, ω) : M2 → M2

is compact.
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Proof uses variational technique to reduce the problem to the
solution of a random family of classical integral equations involving
no stochastic integrals.

Compactness of semi-flow for t ≥ r will be used later to define
hyperbolicity for (VIII) and the associated exponential dichotomies
(Lecture IV).

Regular Linear Systems. Semimartingale Noise

(Ω,F , (Ft)t≥0, P ) a complete filtered probability space satisfying
the usual conditions.

Linear systems driven by semimartingale noise, and memory
driven by a measure-valued process
ν : R × Ω → M([−r, 0],Rd×d), where M([−r, 0],Rd×d) is the space of all
d×d-matrix-valued Borel measures on [−r, 0] (or Rd×d-valued functions
of bounded variation on [−r, 0]). This space is given the σ-algebra
generated by all evaluations. The space Rd×d of all d × d-matrices is
given the Euclidean norm ‖ · ‖.

dx(t) =
{∫

[−r,0]

ν(t)(ds)x(t + s)
}

dt + dN(t)
∫ 0

−r

K(t)(s)x(t + s) ds

+ dL(t)x(t−), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(IX)

Hypotheses (R)

(i) The process ν : R×Ω →M([−r, 0],Rd×d) is measurable and (Ft)t≥0)-
adapted. For each ω ∈ Ω and t ≥ 0 define the positive measure
ν̄(t, ω) on [−r,∞) by

ν̄(t, ω)(A) := |ν|(t, ω){(A− t) ∩ [−r, 0]}
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for all Borel subsets A of [−r,∞), where |ν| is the total variation
measure of ν wrt the Euclidean norm on Rd×d. Therefore the
equation

µ(ω)(·) :=
∫ ∞

0

ν̄(t, ω)(·) dt

defines a positive measure on [−r,∞). For each ω ∈ Ω suppose
that µ(ω) has a density wrt Lebesgue measure which is locally
essentially bounded.
(Exercise: This condition is automatically satisfied if ν(t, ω) is
independent of (t, ω).)

(ii) K : R × Ω → L∞([−r, o],Rd×d) is measurable and (Ft)t≥0- adapted.
Define the random field K̃(t, s, ω) by
K̃(t, s, ω) := K(t, ω)(s − t) for t ≥ 0, −r ≤ s − t ≤ 0. Assume that
K̃(t, s, ω) is absolutely continuous in t for Lebesgue a.a. s and

all ω ∈ Ω. For every ω ∈ Ω, ∂K̃

∂t
(t, s, ω) and K̃(t, s, ω) are locally

essentially bounded in (t, s). ∂K̃

∂t
(t, s, ω) is jointly measurable.

(iii) L = M + V , M continuos local martingale, V B.V. process.
Theorem III.5. ([M-S], I, AIHP, 1996)

Under hypotheses (R), equation (IX) is regular w.r.t. M2 with a measurable

flow X : R+ ×M2 × Ω → M2. This flow satisfies Theorem III.4.

Proof.

This is achieved via a construction in ([M-S], I, AIHP, 1996)
which reduces (IX) to a random linear integral equation with no sto-
chastic integrals ([M-S], AIHP, 1996, pp. 85-96). Do a complicated
pathwise analysis on the integral equation to establish existence and
regularity properties of the semiflow. ¤

Regular Non-linear Systems

(a) SFDE’s with Ordinary Diffusion Coefficients
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In the sfde,

dx(t) = H(xt)dt +
m∑

i=1

gi(x(t))dWi(t)

x0 = η ∈ C





(XV )

let H : C → Rd be globally Lipschitz and gi : Rd → Rd C2-bounded maps
satisfying the Frobenius condition (vanishing Lie brackets):

Dgi(v)gj(v) = Dgj(v)gi(v), 1 ≤ i, j ≤ m, v ∈ Rd;

and W := (W1,W2, · · · ,Wm) is m-dimensional Brownian motion. Note
that the diffusion coefficient in (XV) has no memory.

Theorem III.6 ([Mo], Pitman Books, 1984)
Suppose the above conditions hold. Then the trajectory field {ηxt : t ≥

0, η ∈ C} of (XV) has a measurable version X : R+ × C × Ω → C satisfying the

following properties. For each α ∈ (0, 1/2), there is a set Ωα ⊂ Ω of full measure

such that for every ω ∈ Ωα

(i) X(·, ·, ω) : R+ × C → C is continuous;

(ii) X(·, ·, ω) : [r,∞)× C → Cα is continuous;

(iii) for each t ≥ r, X(t, ·, ω) : C → C is compact;

(iv) for each t ≥ r, X(t, ·, ω) : C → Cα is Lipschitz on every bounded set in

C, with a Lipschitz constant independent of t in compact sets. Hence each

map X(t, ·, ω) : C → C is compact: viz. takes bounded sets into relatively

compact sets.
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Proof of Theorem III.6.

([Mo], Pitman Books, 1984, Theorem (2.1), Chapter (V), §2, p.
121). This latter result is proved using a non-linear variational method
originally due to Sussman ([Su], Ann. Prob., 1978) and Doss ([Do],
AIHP, 1977) in the non-delay case r = 0. Write g := (g1, g2, · · · , gm) :
Rd → Rd×m. By the Frobenius condition, there is a C2 map F : Rm ×
Rd → Rd such that {F (t, ·) : t ∈ Rm} is a group of C2 diffeomorphisms
Rd → Rd satisfying

D1F (t, x) = g(F (t, x)),

F (0, x) = x

for all t ∈ Rm, x ∈ Rd.
Define

W 0(t) :=
{

W (t)−W (0), t ≥ 0
0 − r ≤ t < 0

and H̃ : R+ × C × Ω → Rd, by

H̃(t, η, ·) :=D2F (W 0(t), η(0))−1
{
H[F ◦ (W 0

t , η)]

− 1
2
trace

(
Dg[F (W 0(t), η(0))] ◦ g[F (W 0(t), η(0))]

)}

where the expression under the “trace” is viewed as a bilinear form
Rm × Rm → Rd, and the trace has values in Rd. Then for each ω,
H̃(t, η, ω) is jointly continuous, Lipschitz in η in bounded subsets of C

uniformly for t in compact sets, and satisfies a global linear growth
condition in η ([Mo], Pitman Books, 1984, pp. 114-126).

Therefore solve the fde

ηξ′t = H̃(t, ηξt, ·) t ≥ 0
ηξ0 = η.
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Define the semiflow

X(t, η, ω) = F ◦ (
W 0

t (ω), ηxt(ω)
)
.

Check that X satisfies all assertions of theorem ([Mo], 1984, pp.126-
133). ¤
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(b) SFDE’s with Smooth Memory

dx(t) = H(dt, x(t), xt) + G(dt, x(t), g(xt)), t > 0

(x(0), x0) = (v, eta) ∈ M2

}
(XV I)

Coefficients H and G in (XVI) are semimartingale-valued ran-
dom fields on M2 = Rd × L2([−r, 0],Rd) and
Rd × Rm, respectively. The memory is driven by a functional g :
L2([−r, 0],Rd) → Rm with the smoothness property that the process
t 7→ g(xt) has absolutely continuous paths for each adapted process x.
Under (technical) but general regularity and boundedness conditions
on the characteristics of H and G, equation (XVI) is regular:

Theorem III.7 ([M-S], 1996)
Let

∆ := {(t0, t) ∈ R2 : t0 ≤ t}.

Under suitable regularity conditions on H,G, g in (XVI), there exists a random field

X : ∆×M2 × Ω → M2 satisfying the following properties:

(i) For each (v, η) ∈ M2, (t0, t) ∈ ∆, X(t0, t, (v, η), ·) = (xt0,(v,η)(t), xt0,(v,η)
t )

a.s., where xt0,(v,η) is the unique solution of (XVI) with x
t0,(v,η)
t0 =

(v, η).

(ii) For each (t0, t, ω) ∈ ∆× Ω, the map

X(t0, t, ·, ω) : M2 → M2

is C∞.

(iii) For each ω ∈ Ω and (t0, t) ∈ ∆ with t > t0 + r, the map

X(t0, t, ·, ω) : M2 → M2

carries bounded sets into relatively compact sets.
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1. Regular Linear SFDE’s-Ergodic The-

ory.

Linear sfde’s on Rd driven by m-dimensional

Brownian motion W := (W1, · · · ,Wm).

dx(t) = H(x(t− d1), · · · , x(t− dN ), x(t), xt)dt

+
m∑

i=1

gix(t) dWi(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)




(I)

(I) is defined on

(Ω,F , (Ft)t∈R, P ) = canonical complete filtered

Wiener space.

Ω := space of all continuous paths ω : R →
Rm, ω(0) = 0, in Euclidean space Rm, with com-

pact open topology;

F :=(completed) Borel σ-field of Ω;
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Ft := (completed) sub-σ-field of F generated

by the evaluations ω → ω(u), u ≤ t, t ∈ R.

P := Wiener measure on Ω.

dWi(t) = Itô stochastic differentials.

Several finite delays 0 < d1 < d2 < · · · < dN ≤ r

in drift term; no delays in diffusion coefficient.

H : (Rd)N+1×L2([−r, 0],Rd) → Rd is a fixed con-

tinuous linear map, gi, i = 1, 2, . . . , m, fixed (deter-

ministic) d× d-matrices.

2. Plan

Use state space M2 := Rd × L2([−r, 0],Rd). For

(I) consider the following themes:

I) Existence of a “perfect” cocycle on M2-a mod-

ification of the trajectory field (x(t), xt) ∈ M2.
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II) Existence of almost sure Lyapunov exponents

lim
t→∞

1
t

log ‖(x(t), xt)‖M2

Multiplicative ergodic theorem and hyperbol-

icity of cocycle.

III) “Random Saddle-Point Property” in hyper-

bolic case.

3. Regularity

Say SFDE (I) is regular (wrt. M2) if tra-

jectory {(x(t), xt) : (x(0), x0) = (v, η) ∈ M2} admits

a measurable modification X : R+ ×M2 × Ω → M2

such that X(·, ·, ω) is continuous for a.a. ω ∈ Ω.

Theorem 1.([Mo], 1990])

(I) is regular with respect to state space M2 = Rd ×
L2([−r, 0],Rd). There is a measurable version X : R+ ×

4



M2 × Ω → M2 of the trajectory field {(x(t), xt) : t ∈
R+, (x(0), x0) = (v, η) ∈ M2} of (I) with the following

properties:

(i) For each (v, η) ∈ M2 and t ∈ R+, X(t, (v, η), ·) =

(x(t), xt) a.s., is Ft-measurable and belongs to

L2(Ω,M2; P ).

(ii) There exists Ω0 ∈ F of full measure such that,

for all ω ∈ Ω0, the map X(·, ·, ω) : R+ ×M2 →
M2 is continuous.

(iii) For each t ∈ R+ and every ω ∈ Ω0, the map

X(t, ·, ω) : M2 → M2 is continuous linear; for

each ω ∈ Ω0, the map R+ 3 t 7→ X(t, ·, ω) ∈
L(M2) is measurable and locally bounded in the

uniform operator norm on L(M2). The map

[r,∞) 3 t 7→ X(t, ·, ω) ∈ L(M2) is continuous

for all ω ∈ Ω0.
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(iv) For each t ≥ r and all ω ∈ Ω0, the map

X(t, ·, ω) : M2 → M2

is compact.

Compactness of semi-flow for t ≥ r will be

used to define hyperbolicity for (I) and the asso-

ciated exponential dichotomies.

Example: dx(t) = x(t − 1) dW (t) is not regular (singu-

lar).

4. Lyapunov Exponents. Hyperbolicity

Version X of the trajectory field of (I) (in

Theorem 1) is a multiplicative L(M2)-valued lin-

ear cocycle over the canonical Brownian shift

θ : R× Ω → Ω on Wiener space:

θ(t, ω)(u) := ω(t + u)− ω(t), u, t ∈ R, ω ∈ Ω.
6



I.e.

Theorem 2([Mo], 1990)

There is an F-measurable set Ω̂ of full P -measure

such that θ(t, ·)(Ω̂) ⊆ Ω̂ for all t ≥ 0 and

X(t2, ·, θ(t1, ω)) ◦X(t1, ·, ω) = X(t1 + t2, ·, ω)

for all ω ∈ Ω̂ and t1, t2 ≥ 0.
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The Cocycle Property

M2 M2 M2

Ω ω θ(t1, ω) θ(t1 + t2, ω)
t = 0 t = t1 t = t1 + t2

..................
.........................

.................................................................................................................................... ..................
.........................

.............................................................................................................................................. ........ .......... ........

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

..................
.........................

.............................................................................................................................................. ........

θ(t1, ·)
..................

.........................
.............................................................................................................................................. ........

θ(t2, ·)

•(v, η)

•
X(t1, (v, η), ω)

•X(t1 + t2, (v, η), ω)

........................................................................................................................................................................................
.......................................................................................................................................

............
.........
.......
.............
......
..............
...................
.....
......................

.......................................................................................................................................................................................................................
...................

....

Vertical solid lines represent random fibers:

copies of M2. (X, θ) is a “vector-bundle mor-

phism”.
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Proof of Theorem 2. (Sketch)

For simplicity consider case of a single delay

d1; i.e. N = 1 in (I).

First step.

Approximate the Brownian motion W in (I)

by smooth adapted processes {W k}∞k=1:

W k(t) := k

∫ t

t−(1/k)

W (u) du−k

∫ 0

−(1/k)

W (u) du, t ≥ 0, k ≥ 1.

(1)

Then each W k is a helix (i.e. has stationary in-

crements):

W k(t1+t2, ω)−W k(t1, ω) = W k(t2, θ(t1, ω)), t1, t2 ∈ R, ω ∈ Ω.

(2)
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Let Xk : R+ × M2 × Ω → M2 be the stochastic

(semi)flow of the random fde’s:

dxk(t) = H(xk(t− d1), xk(t), xk
t )dt

+
m∑

i=1

gix(t)(W k
i )′(t) dt− 1

2

m∑

i=1

g2
i xk(t) dt t > 0

(xk(0), xk
0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(I − k)

If X : R+ × M2 × Ω → M2 is the flow of (I)

constructed in Theorem 1, then

lim
k→∞

sup
0≤t≤T

‖Xk(t, ·, ω)−X(t, ·, ω)‖L(M2) = 0 (3)

for every 0 < T < ∞ and all ω in a Borel set Ω̂

of full Wiener measure which is invariant under

θ(t, ·) for all t ≥ 0 ([Mo], Stochastics, 1990). Prove

(3) by stochastic variation:
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Let φ : R+ × Ω → Rd×d be the d × d-matrix-

valued solution of the linear Itô sode (without

delay):

dφ(t) =
m∑

i=1

giφ(t) dWi(t) t > 0

φ(0, ω) = I ∈ Rd×d a.a. ω





(4)

Denote by φk : R+ × Ω → Rd×d, k ≥ 1, the d × d-

matrix solution of the random family of linear

ode’s:

dφk(t) =
m∑

i=1

giφ
k(t)(W k

i )′(t)− 1
2

m∑

i=1

g2
i φk(t) dt t > 0

φk(0, ·) = I ∈ Rd×d.





(4′)

Let Ω̂ be the sure event of all ω ∈ Ω such that

φ(t, ω) := lim
k→∞

φk(t, ω) (5)
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exists uniformly for t in compact subsets of R+.

Each φk is an Rd×d-valued cocycle over θ, viz.

φk(t1 + t2, ω) = φk(t2, θ(t1, ω))φk(t1, ω) (6)

for all t1, t2 ∈ R+ and ω ∈ Ω. By definition of Ω̂

and passing to the limit in (6) as k →∞, conclude

that {φ(t, ω) : t > 0, ω ∈ Ω}, is an Rd×d-valued

perfect cocycle over θ, viz.

(i) P (Ω̂) = 1;

(ii) θ(t, ·)(Ω̂) ⊆ Ω̂ for all t ≥ 0;

(iii) φ(t1 + t2, ω) = φ(t2, θ(t1, ω))φ(t1, ω) for all

t1, t2 ∈ R+ and every ω ∈ Ω̂;

(iv) φ(·, ω) is continuous for every ω ∈ Ω̂.

Alternatively use perfection theorem in ([M-

S], AIHP, 1996, Theorem 3.1, p. 79-82) for crude
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cocycles with values in a metrizable second count-

able topological group. Observe that φ(t, ω) ∈
GL(Rd).

Define Ĥ : R+ ×Rd ×M2 × Ω → Rd by

Ĥ(t, v1, v, η, ω)

:= φ(t, ω)−1[H(φt(·, ω)(−d1, v1), φ(t, ω)(v), φt(·, ω) ◦ (idJ , η))]
(7)

for ω ∈ Ω, t ≥ 0, v, v1 ∈ Rd, η ∈ L2([−r, 0],Rd), where

φt(·, ω)(s, v) =





φ(t + s, ω)(v) t + s ≥ 0

v −r ≤ t + s < 0

and

(idJ , η)(s) = (s, η(s)), s ∈ J.

Define Ĥk : R+ ×Rd ×M2 × Ω → Rd by a relation

similar to (7) with φ replaced by φk. Then the

13



random fde’s

y′(t) = Ĥ(t, y(t− d1), y(t), yt, ω), t > 0

(y(0), y0) = (v, η) ∈ M2

}
(8)

yk′(t) = Ĥk(t, yk(t− d1), yk(t), yk
t , ω), t > 0

(yk(0), yk
0 ) = (v, η) ∈ M2

}

(9)

have unique non-explosive solutions

y, yk : [−r,∞)× Ω → Rd

([Mo], Stochastics, 1990, pp. 93-98). Itô’s for-

mula implies that

X(t, v, η, ω) = (φ(t, ω)(y(t, ω)), φt(·, ω) ◦ (idJ , yt)) (10)

The chain rule gives a similar relation for Xk

with φ replaced by φk ( [Mo], Stochastics, 1990,

pp. 96-97).
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Get the convergence

lim
k→∞

|Ĥk(t, v1, v, η, ω)− Ĥ(t, v1, v, η, ω)| = 0 (11)

uniformly for (t, v1, v, η) in bounded sets of R+ ×
Rd ×M2. Use Gronwall’s lemma and (11) to de-

duce (3).

Second step.

Fix ω ∈ Ω̂ and use uniqueness of solutions to

the approximating equation (I-k) and the helix

property (2) of W k to obtain the cocycle property

for (Xk, θ):

Xk(t2, ·, θ(t1, ω)) ◦Xk(t1, ·, ω) = Xk(t1 + t2, ·, ω)

for all ω ∈ Ω̂ and t1, t2 ≥ 0, k ≥ 1.
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Third step.

Pass to limit as k →∞ in the above identity

and use the convergence (3) in operator norm to

get the perfect cocycle property for X. ¤
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The a.s. Lyapunov exponents

lim
t→∞

1
t

log ‖X(t, (v(ω), η(ω)), ω)‖M2 ,

(for a.a. ω ∈ Ω, (v, η) ∈ L2(Ω,M2)) of the system

(I) are characterized by the following “spectral

theorem”. Each θ(t, ·) is ergodic and preserves

Wiener measure P . The proof of Theorem 3 be-

low uses compactness of X(t, ·, ω) : M2 → M2, t ≥ r,

together with an infinite-dimensional version of

Oseledec’s multiplicative ergodic theorem due to

Ruelle (1982).

Theorem 3. ([Mo], 1990)

Let X : R+ ×M2 × Ω → M2 be the flow of (I) given

in Theorem 1. Then there exist

(a) an F-measurable set Ω∗ ⊆ Ω such that P (Ω∗) =

1 and θ(t, ·)(Ω∗) ⊆ Ω∗ for all t ≥ 0,
17



(b) a fixed (non-random) sequence of real numbers

{λi}∞i=1, and

(c) a random family {Ei(ω) : i ≥ 1, ω ∈ Ω∗} of

(closed) finite-codimensional subspaces of M2,

with the following properties:

(i) If the Lyapunov spectrum {λi}∞i=1 is infi-

nite, then λi+1 < λi for all i ≥ 1 and lim
i→∞

λi =

−∞; otherwise there is a fixed (non-random) in-

teger N ≥ 1 such that λN = −∞ < λN−1 <

· · · < λ2 < λ1;

(ii) each map ω 7→ Ei(ω), i ≥ 1, is F-measurable

into the Grassmannian of M2;

(iii) Ei+1(ω) ⊂ Ei(ω) ⊂ · · · ⊂ E2(ω) ⊂ E1(ω) =

M2, i ≥ 1, ω ∈ Ω∗;

(iv) for each i ≥ 1, codim Ei(ω) is fixed inde-

pendently of ω ∈ Ω∗;

18



(v) for each ω ∈ Ω∗ and (v, η) ∈ Ei(ω)\Ei+1(ω),

lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 = λi, i ≥ 1;

(vi) Top Exponent:

λ1 = lim
t→∞

1
t

log ‖X(t, ·, ω)‖L(M2) for all ω ∈ Ω∗;

(vii) Invariance:

X(t, ·, ω)(Ei(ω)) ⊆ Ei(θ(t, ω))

for all ω ∈ Ω∗, t ≥ 0, i ≥ 1.
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Spectral Theorem
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Proof of Theorem 3 is based on Ruelle’s dis-

crete version of Oseledec’s multiplicative ergodic

theorem in Hilbert space ([Ru], Ann. of Math.

1982, Theorem (1.1), p. 248 and Corollary (2.2),

p. 253):

Theorem 4 ([Ru], 1982)

Let (Ω,F , P ) be a probability space and τ : Ω →
Ω a P -preserving transformation. Assume that H is a

separable Hilbert space and T : Ω → L(H) a measurable

map (w.r.t. the Borel field on the space of all bounded

linear operators L(H)). Suppose that T (ω) is compact

for almost all ω ∈ Ω, and E log+ ‖T (·)‖ < ∞. Define the

family of linear operators {Tn(ω) : ω ∈ Ω, n ≥ 1} by

Tn(ω) := T (τn−1(ω)) ◦ · · ·T (τ(ω)) ◦ T (ω)

for ω ∈ Ω, n ≥ 1.
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Then there is a set Ω0 ∈ F of full P -measure such

that τ(Ω0) ⊆ Ω0, and for each ω ∈ Ω0, the limit

lim
n→∞

[Tn(ω)∗ ◦ Tn(ω)]1/(2n) := Λ(ω)

exists in the uniform operator norm and is a positive com-

pact self-adjoint operator on H. Furthermore, each Λ(ω)

has a discrete spectrum

eµ1(ω) > eµ2(ω) > eµ3(ω) > eµ4(ω) > · · ·

where the µi’s are distinct. If {µi}∞i=1 is infinite, then

µi ↓ −∞; otherwise they terminate at µN(ω) = −∞. If

µi(ω) > −∞, then eµi(ω) has finite multiplicity mi(ω)

and finite-dimensional eigen-space Fi(ω), with mi(ω) :=

dimFi(ω). Define

E1(ω) := M2, Ei(ω) :=
[⊕i−1

j=1Fj(ω)
]⊥

, E∞(ω) := ker Λ(ω).
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Then

E∞(ω) ⊂ · · · ⊂ Ei+1(ω) ⊂ Ei(ω) · · · ⊂ E2(ω) ⊂ E1(ω) = H

and

lim
n→∞

1
n

log ‖Tn(ω)x‖H =
{

µi(ω), if x ∈ Ei(ω)\Ei+1(ω)
−∞ if x ∈ ker Λ(ω).

Proof.

[Ru], Ann. of Math., 1982, pp. 248-254.

¤

The following “perfect” version of Kingman’s

subadditive ergodic theorem is also used to con-

struct the shift invariant set Ω∗ appearing in The-

orem 3 above.
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Theorem 5([M], 1990)(“Perfect” Subadditive

Ergodic Theorem)

Let f : R+×Ω → R∪{−∞} be a measurable process

on the complete probability space (Ω,F , P ) such that

(i) E sup
0≤u≤1

f+(u, ·) < ∞, E sup
0≤u≤1

f+(1−u, θ(u, ·)) < ∞;

(ii) f(t1+t2, ω) ≤ f(t1, ω)+f(t2, θ(t1, ω)) for all t1, t2 ≥ 0

and every ω ∈ Ω.

Then there exist a set
ˆ̂Ω ∈ F and a measurable f̃ : Ω →

R ∪ {−∞} with the properties:

(a) P ( ˆ̂Ω) = 1, θ(t, ·)( ˆ̂Ω) ⊆ ˆ̂Ω for all t ≥ 0;

(b) f̃(ω) = f̃(θ(t, ω)) for all ω ∈ ˆ̂Ω and all t ≥ 0;

(c) f̃+ ∈ L1(Ω,R;P );

(d) lim
t→∞

(1/t)f(t, ω) = f̃(ω) for every ω ∈ ˆ̂Ω.

If θ is ergodic, then there exist f∗ ∈ R∪{−∞} and ˜̃Ω ∈ F
such that
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(a)′ P ( ˜̃Ω) = 1, θ(t, ·)( ˜̃Ω) ⊆ ˜̃Ω, t ≥ 0;

(b)′ f̃(ω) = f∗ = lim
t→∞

(1/t)f(t, ω) for every ω ∈ ˜̃Ω.

Proof.

[Mo], Stochastics, 1990, Lemma 7, pp. 115–

117. ¤

Proof of Theorem 3 is an application of The-

orem 4. Requires Theorem 5 and the following

sequence of lemmas.

Lemma 1

For each integer k ≥ 1 and any 0 < a < ∞,

E sup
0≤t≤a

‖φ(t, ω)−1‖2k < ∞;

E sup
0≤t1,t2≤a

‖φ(t2, θ(t1, ·))‖2k < ∞.
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Proof.

Follows by standard sode estimates, the co-

cycle property for φ and Hölder’s inequality. ([Mo],

pp. 106-108). ¤

The next lemma is a crucial estimate needed

to apply Ruelle-Oseledec theorem (Theorem 4).

Lemma 2

E sup
0≤t1,t2≤r

log+ ‖X(t2, ·, θ(t1, ·))‖L(M2) < ∞.

Proof.

If y(t, (v, η), ω) is the solution of the fde (8),

then using Gronwall’s inequality, taking

E sup
0≤t1,t2≤r

log+ sup
‖(v,η)‖≤1

and applying Lemma 1, gives

E sup
0≤t1,t2≤r

log+ sup
‖(v,η)‖≤1

‖(y(t2, (v, η),θ(t1, ·)), yt2(·, (v, η), θ(t1, ·)))‖M2

< ∞.
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Conclusion of lemma now follows by replacing ω′

with θ(t1, ω) in the formula

X(t2, (v, η), ω′)

= (φ(t2, ω′)(y(t2, (v, η), ω′)), φt2(·, ω′) ◦ (idJ , yt2(·, (v, η), ω′))

and Lemma 1. ¤

The existence of the Lyapunov exponents is

obtained by interpolating the discrete limit

1
r

lim
k→∞

1
k

log ‖X(kr, (v(ω), η(ω)), ω)‖M2 , (12)

a.a. ω ∈ Ω, (v, η) ∈ L2(Ω,M2), between delay pe-

riods of length r. This requires the next two

lemmas.
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Lemma 3

Let h : Ω → R+ be F-measurable and suppose E sup
0≤u≤r

h(θ(u, ·)
is finite. Then

Ω1 :=
(

lim
t→∞

1
t
h(θ(t, ·) = 0

)

is a sure event and θ(t, ·)(Ω1) ⊆ Ω1 for all t ≥ 0.

Proof.

Use interpolation between delay periods and

the discrete ergodic theorem applied to the L1

function

ĥ := sup
0≤u≤r

h(θ(u, ·).

([Mo], Stochastics, 1990, Lemma 5, pp. 111-

113.) ¤
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Lemma 4

Suppose there is a sure event Ω2 such that θ(t, ·)(Ω2) ⊆
Ω2 for all t ≥ 0, and the limit (12) exists (or equal to −∞)

for all ω ∈ Ω2 and all (v, η) ∈ M2. Then there is a sure

event Ω3 such that θ(t, ·)(Ω3) ⊆ Ω3 and

lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 =
1
r

lim
k→∞

1
k

log ‖X(kr, (v, η), ω)‖M2 ,

(13)

for all ω ∈ Ω3 and all (v, η) ∈ M2.

Proof:

Take Ω3 := Ω̂ ∩ Ω1 ∩ Ω2. Use cocycle property

for X, Lemma 2 and Lemma 3 to interpolate.

([Mo], Stochastics 1990, Lemma 6, pp. 113-114.)

¤
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Proof of Theorem 3. (Sketch)

Apply Ruelle-Oseledec Theorem (Theorem

4) with

T (ω) := X(r, ω) ∈ L(M2), compact linear for

ω ∈ Ω̂;

τ : Ω → Ω; τ := θ(r, ·).

Then cocycle property for X implies

X(kr, ω, ·) = T (τk−1(ω)) ◦ T (τk−2(ω)) ◦ · · · ◦ T (τ(ω)) ◦ T (ω)

:= T k(ω)

for all ω ∈ Ω̂.

Lemma 2 implies

E log+ ‖T (·)‖L(M2) < ∞.
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Theorem 4 gives a random family of compact

self-adjoint positive linear operators {Λ(ω) : ω ∈
Ω4} such that

lim
n→∞

[Tn(ω)∗ ◦ Tn(ω)]1/(2n) := Λ(ω)

exists in the uniform operator norm for ω ∈ Ω4, a

(continuous) shift-invariant set of full measure.

Furthermore each Λ(ω) has a discrete spectrum

eµ1(ω) > eµ2(ω) > eµ3(ω) > eµ4(ω) > · · ·

where the µ′is are distinct, with no accumula-

tion points except possibly −∞. If {µi}∞i=1 is infi-

nite, then µi ↓ −∞; otherwise they terminate at

µN(ω) = −∞. If µi(ω) > −∞, then eµi(ω) has finite

multiplicity mi(ω) and finite-dimensional eigen-

space Fi(ω), with mi(ω) := dimFi(ω). Define

E1(ω) := M2, Ei(ω) :=
[⊕i−1

j=1Fj(ω)
]⊥

, E∞(ω) := ker Λ(ω).
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Then

E∞(ω) ⊂ · · · ⊂ Ei+1(ω) ⊂ Ei(ω) · · · ⊂ E2(ω) ⊂ E1(ω) = M2.

Note that codimEi(ω) =
∑i−1

j=1 mj(ω) < ∞. Also

lim
k→∞

1
k

log ‖X(kr, (v, η), ω)‖M2 =
{

µi(ω), if (v, η) ∈ Ei(ω)\Ei+1(ω)
−∞ if (v, η) ∈ ker Λ(ω).

The functions

ω 7→ µi(ω), ω 7→ mi(ω), ω 7→ N(ω)

are invariant under the ergodic shift θ(r, ·). Hence

they take the fixed values µi, mi, N almost surely,

respectively.

Lemma 4 gives a continuous-shift-invariant

sure event Ω∗ ⊆ Ω4 such that

lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 =
1
r

lim
k→∞

1
k

log ‖X(kr, (v, η), ω)‖M2

=
µi

r
=: λi,
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for (v, η) ∈ Ei(ω)\Ei+1(ω), ω ∈ Ω∗, i ≥ 1.

{λi :=
µi

r
: i ≥ 1} is the Lyapunov spectrum of

(I).

Since Lyapunov spectrum is discrete with no

finite accumulation points, then {λi : λi > λ} is

finite for all λ ∈ R.

To prove invariance of the Oseledec space

Ei(ω) under the cocycle (X, θ) use the random

field

λ((v, η), ω) := lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 , (v, η) ∈ M2, ω ∈ Ω∗

and the relations

Ei(ω) := {(v, η) ∈ M2 : λ((v, η), ω) ≤ λi},

λ(X(t, (v, η), ω), θ(t, ω)) = λ((v, η), ω), ω ∈ Ω∗, t ≥ 0

([Mo], Stochastics 1990, p. 122). ¤
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Lyapunov exponents {λi}∞i=1 of (I) are non-

random because θ is ergodic. Say (I) is hyperbolic

if λi 6= 0 for all i ≥ 1. When (I) is hyperbolic the

flow satisfies a stochastic saddle-point property

(or exponential dichotomy) (cf. the deterministic

case with E = C([−r, 0],Rd), gi ≡ 0, i = 1, . . . , m, in

Hale [H], Theorem 4.1, p. 181).

Theorem 6 (Random Saddles)([Mo], 1990)

Suppose the sfde (I) is hyperbolic. Then there exist

(a) a set Ω̃∗ ∈ F such that P (Ω̃∗) = 1, and θ(t, ·)(Ω̃∗) =

Ω̃∗ for all t ∈ R,

and

(b) a measurable splitting

M2 = U(ω)⊕ S(ω), ω ∈ Ω̃∗,
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with the following properties:

(i) U(ω), S(ω), ω ∈ Ω̃∗, are closed linear subspaces

of M2, dim U(ω) is finite and fixed independently

of ω ∈ Ω̃∗.

(ii) The maps ω 7→ U(ω), ω 7→ S(ω) are F-measurable

into the Grassmannian of M2.

(iii) For each ω ∈ Ω̃∗ and (v, η) ∈ S(ω) there exists

τ1 = τ1(v, η, ω) > 0 and a positive δ1, indepen-

dent of (v, η, ω) such that

‖X(t, (v, η), ω)‖M2 ≤ ‖(v, η)‖M2e
−δ1t, t ≥ τ1.

(iv) For each ω ∈ Ω̃∗ and (v, η) ∈ U(ω) there exists

τ2 = τ2(v, η, ω) > 0 and a positive δ2, indepen-

dent of (v, η, ω) such that

‖X(t, (v, η), ω)‖M2 ≥ ‖(v, η)‖M2e
δ2t, t ≥ τ2.
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(v) For each t ≥ 0 and ω ∈ Ω̃∗,

X(t, ω, ·)(U(ω)) = U(θ(t, ω)),

X(t, ω, ·)(S(ω)) ⊆ S(θ(t, ω)).

In particular, the restriction

X(t, ω, ·) | U(ω) : U(ω) → U(θ(t, ω))

is a linear homeomorphism onto.

Proof.

[Mo], Stochastics, 1990, Corollary 2, pp. 127-

130. ¤
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The Saddle-Point Property
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STABILITY. EXAMPLES AND CASE STUDIES

1. Plan.

I) Estimates on the “maximal exponential growth

rate” for the singular noisy feedback loop.

Use of Lyapunov functionals.

II) Examples and case studies of linear sfde’s:

Existence of the stochastic semiflow and its

Lyapunov spectrum.

III) Study almost sure asymptotic stability via

upper bounds on the top Lyapunov exponent

λ1.

IV) Lyapunov spectrum for sdde’s with Poisson

noise.
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Lyapunov exponents for linear sode’s (with-

out memory): studied by many authors: e.g.

Arnold, Kliemann and Oeljeklaus, 1989, Arnold,

Oeljeklaus and Pardoux, 1986, Baxendale, 1985,

Pardoux and Wihstutz[ PW1], 1988, Pinsky and

Wihstutz [PW2], 1988, and the references therein.

Asymptotic stability of sfde’s: treated in Kush-

ner [K], JDE, 1968, Mizel and Trutzer [MT],1984,

Mohammed [M1]-[M4], 1984, 1986, 1990, 1992,

Mohammed and Scheutzow [MS], 1996, Scheut-

zow [S], 1988, Kolmanovskii and Nosov [KN],

1986. Mao ([Ma], 1994, Chapter 5) gives several

results concerning top exponential growth rate

for sdde’s driven by C-valued semimartingales.

Assumes that second-order characteristics of the

driving semimartingales are time-dependent and
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decay to zero exponentially fast in time, uni-

formly in the space variable.

4



2. Noisy Feedback Loop Revisited Once

More!

Noisy feedback loop is modelled by the one-

dimensional linear sdde

dx(t) = σx(t− r)) dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 := R× L2([−r, 0],R),



 (I)

driven by a Wiener process W with a positive

delay r.

(I) is singular with respect to M2 (Theorem

III.3).

Consider the more general one-dimensional

linear sfde:

dx(t) =
∫ 0

−r

x(t + s)dν(s) dW (t), t > 0

(x(0), x0) ∈ M2 := R× L2([−r, 0],R)





(II ′)
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where W is a Wiener process and ν is a fixed

finite real-valued Borel measure on [−r, 0].

(II ′) is regular if ν has a C1 (or even L2
1) den-

sity with respect to Lebesgue measure on [−r, 0]

([M-S], I, 1996). If ν satisfies Theorem III.3, then

(II ′) is singular.

In the singular case, there is no stochastic

flow (Theorem III.3) and we do not know whether

a (discrete) set of Lyapunov exponents

λ((v, η), ·) := lim
t→∞

1
t

log ‖(x(t, (v, η)), xt(·, (v, η)))‖M2 , (v, η) ∈ M2

exists. Existence of Lyapunov exponents for sin-

gular equations is hard. But can still define the

maximal exponential growth rate

λ1 := sup
(v,η)∈M2

lim sup
t→∞

1
t

log ‖(x(t, (v, η)), xt(·, (v, η)))‖M2
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for the trajectory random field {(x(t, (v, η)), xt(·, (v, η))) :

t ≥ 0, (v, η) ∈ M2}. λ1 may depend on ω ∈ Ω. But

λ1 = λ1 in the regular case.

Inspite of the extremely erratic dependence

on the initial paths of solutions of (I), it is shown

in Theorem V.1 that for small noise variance,

uniform almost sure global asymptotic stability

still persists. For small σ, λ1 ≤ −σ2/2 + o(σ2) uni-

formly in the initial path (Theorem V.1, and Re-

mark (iii)). For large |σ| and ν = δ−r,

1
2r

log |σ|+ o(log |σ|) ≤ λ1 ≤ 1
r

log |σ|

([M-S], II, 1996, Remark (ii) after proof ofThe-

orem 2.3 ). This result is in sharp contrast with

the non-delay case (r = 0), where λ1 = −σ2/2 for

all values of σ. Proofs of Theorems V.1, V.2
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involve very delicate constructions of new types

of Lyapunov functionals on the underlying state

space.

Theorem V.1.([M-S], II, 1996).

Let ν be a probability measure on [−r, 0], r > 0, and

consider the sfde

dx(t) = σ

(∫

[−r,0]

x(t + s) dν(s)
)

dW (t), t ≥ 0

(x(0), x0) = (v, η) ∈ M2





(II ′)

with σ ∈ R, (v, η) ∈ M2, W standard Brownian motion,

and x(·, (v, η)) the solution of (II ′) through (v, η) ∈ M2.

Then there exists σ0 > 0 and a continuous strictly negative

nonrandom function φ : (−σ0, σ0) → R− (independent of

(v, η) ∈ M2 and ν) such that

P

(
lim sup

t→∞
1
t

log ‖(x(t, (v, η)), xt(·, (v, η)))‖M2 ≤ φ(σ)
)

= 1.
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for all (v, η) ∈ M2 and all −σ0 < σ < σ0.

Remark:

Theorem also holds for state space C with

‖ · ‖∞.

Proof of Theorem V.1. (Sketch)

Sufficient to consider (II ′) on C ≡ C([−r, 0],R),

because C is continuously embedded in M2. W.l.o.g.,

assume that σ > 0.

• Use Lyapunov functional V : C → R+

V (η) := (R(η) ∨ |η(0)|)α + βR(η)α, η ∈ C.

where R(η) := η−η, the diameter of the range

of η, η := sup
−r≤s≤0

η(s) and η := inf
−r≤s≤0

η(s).
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• Fix 0 < α < 1 and arrange for β = β(σ) for

sufficiently small σ such that

E(V (ηxr)) ≤ δ(σ)V (η), η ∈ C, (1)

and δ(σ) ∈ (0, 1) is a continuous function of σ

defined near 0. There is a positive K = K(α)

(independent of η, ν) such that δ(σ) ∼ (1 −
Kσ2). Set

φ(σ) :=
1
α

log δ(σ).

Estimate (1) is hard ([M-S], II, 1996, pp. 12-

18).

• {ηxnr}∞n=1 is a Markov process in C. So (1)

implies that δ(σ)−nV (ηxnr), n ≥ 1, is a non-

negative (Fnr) supermartingale.

• There exists Z : Ω → [0,∞) such that

lim
n→∞

V (ηxnr)
δ(σ)n

= Z a.s. (2)
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• Form of V and (2) imply

lim
t→∞

1
t

log |x(t)| ≤ lim
n→∞

1
nr

log[|x(nr)|+ R(xnr)]

=
1
α

lim
n→∞

1
nr

log V (xnr) ≤ 1
α

log δ(σ) = φ(σ) < 0.

• δ(σ), φ(σ) independent of η, ν. “Domain” of

φ also independent of η, ν. ¤

Remarks.

(i) Choice of σ0 in Theorem V.1 depends on r.

In (I) the scaling t 7→ t/r has the effect of

replacing r by 1 and σ by σ
√

r. If λ1(r, σ) is

the maximal exponential growth rate of (I),

then λ1(r, σ) =
1
r
λ1(1, σ

√
r) (Exercise). Hence

σ0 decreases (like 1√
r
) as r increases . Thus

(for a fixed σ), a small delay r tends to sta-

bilize equation (I). A large delay in (I) has

a destabilizing effect (Theorem V.2 below).
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(ii) Using a Lyapunov function(al) argument, The-

orem V.2 below shows that for sufficiently

large σ, the singular delay equation (I) is un-

stable. Result is in sharp contrast with the

non-delay case r = 0, where

lim
t→∞

1
t

log |x(t)| = −σ2/2 < 0

for all σ ∈ R (even when σ is large).

(iii) The growth rate function φ in Theorem V.1

satisfies

φ(σ) = −σ2/2 + o(σ2)

as σ → 0+. Agrees with non-delay case r = 0.

Above relation follows by modifying proof of

Theorem V.1.
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Theorem V.2.

Consider the equation

dx(t) = σx(t− 1) dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 := R× L2([−r, 0],R),



 (I)

driven by a standard Wiener process W with a positive

delay r and σ ∈ R . Then there exists a continuous

function ψ : (0,∞) → R which is increasing to infinity

such that

P

(
lim inf
t→∞

1
t

log ‖(x(t, (v, η)), xt(·, (v, η))‖M2 ≥ ψ(|σ|)
)

= 1,

for all (v, η) ∈ M2\{0} and all sufficiently large |σ|. The

function ψ is independent of the choice of (v, η) ∈ M2\{0}.

Remarks.

(i) ‖·‖M2 can be replaced by the sup-norm on C.

(ii) Proof shows ψ(σ) ∼ 1
2 log σ for large σ.
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Proof of Theorem V.2.

Use the continuous Lyapunov functional

V : M2\{0} → [0,∞)

V ((v, η)) :=
(

v2 + |σ|
∫ 0

−1

η2(s) ds

)−1/4

[M-S], Part II, 1996, pp. 20-24. ¤

3. Regular one-dimensional linear sfde’s

To outline a general scheme for obtaining es-

timates on the top Lyapunov exponent for a class

of one-dimensional regular linear sfde’s. Then

apply scheme to specific examples within the

above class.

Scheme applies to multidimensional linear

equations with multiple delays.
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Note: Approach in ([Ku], JDE, 1968) uses

Lyapunov functionals and yields strictly weaker

estimates in all cases.

Consider the class of one-dimensional linear

sfde’s

dx(t) =
{

ν1x(t) + µ1x(t− r) +
∫ 0

−r

x(t + s)σ1(s) ds
}

dt

+
{

ν2x(t) +
∫ 0

−r

x(t + s)σ2(s) ds
}

dM(t),





(XV II)

where r > 0, σ1, σ2 ∈ C1([−r, 0],R), and M is a con-

tinuous helix local martingale on (Ω,F , (Ft)t≥0, P )

with (stationary) ergodic increments. Ergodic

theorem gives the a.s. deterministic limit β :=

lim
t→∞

〈M〉(t)
t

. Assume that β < ∞ and 〈M〉(1) ∈
L∞(Ω,R) .

Hence (XVII) is regular with respect to M2

and has a sample-continuous stochastic semiflow
15



X : R+ × M2 × Ω → M2 (Theorem III.5). The

stochastic semiflow X has a fixed (non-random)

Lyapunov spectrum (Theorem IV.7). Let λ1 be

its top exponent. We wish to develop an upper

bound for λ1. By the spectral theorem (The-

orem IV.7, cf. Theorem IV.2), there is a shift-

invariant set Ω∗ ∈ F of full P -measure and a mea-

surable random field λ : M2 × Ω → R ∪ {−∞},

λ((v, η), ω) := lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 , (v, η) ∈ M2, ω ∈ Ω∗,

(1)

giving the Lyapunov spectrum of (XVII).

Introduce family of equivalent norms

‖(v, η)‖α :=
{

αv2+
∫ 0

−r

η(s)2 ds

}1/2

, (v, η) ∈ M2, α > 0,

(2)
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on M2. Then

λ((v, η), ω) = lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖α, (v, η) ∈ M2, ω ∈ Ω∗

(3)

for all α > 0; i.e. the Lyapunov spectrum of

(XVII) with respect to ‖ · ‖α is independent of

α > 0.

Let x be the solution of (XVII) starting at

(v, η) ∈ M2. Define

ρα(t)2 := ‖X(t)‖2α = αx(t)2+
∫ t

t−r

x(u)2 du, t > 0, α > 0.

(4)

For each fixed (v, η) ∈ M2, define the set Ω0 ∈ F by

Ω0 := {ω ∈ Ω : ρα(t, ω) 6= 0 for all t > 0}. If P (Ω0) =

0, then by uniqueness there is a random time

τ0 such that a.s. X(t, (v, η), ·) = 0 for all t ≥ τ0.
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Hence λ1 = −∞. So suppose that P (Ω0) > 0. Itô’s

formula implies

log ρα(t) = log ρα(0) +
∫ t

0

Qα(a(u), b(u), I1(u)) du

+
∫ t

0

Q̃α(a(u), I2(u)) d〈M〉(u) +
∫ t

0

Rα(a(u), I2(u)) dM(u),
(5)

for t > 0, a.s. on Ω0, where

Qα(z1, z2, z3) := ν1z
2
1 +

√
α µ1z1z2 +

√
α z1z3 + 1

2

z2
1

α
− 1

2z2
2

Q̃α(z1, z
′
3) := α( 1

2 − z2
1)

(
ν2√
α

z1 + z′3

)2

Rα(z1, z
′
3) := ν2z

2
1 +

√
αz1z

′
3, ‖σi‖2 :=

{∫ 0

−r

σi(s)2ds

}1/2

,





(6)

i = 1, 2, and

a(t) :=
√

αx(t)
ρα(t)

, b(t) :=
x(t− r)
ρα(t)

, Ii(t) :=

∫ 0

−r
x(t + s)σi(s) ds

ρα(t)
(7)

for i = 1, 2, t > 0, a.s. on Ω0.
18



Since

|Ii(t)| ≤ 1
ρα(t)

(∫ 0

−r

x(t+s)2 ds

)1/2

‖σi‖2 =
√

1− a2(t) ‖σi‖2,

i = 1, 2, a.s. on Ω0 the variables z1, z2, z3, z
′
3 in (6)

must satisfy

|z1| ≤ 1, z2 ∈ R, |z3|2 ≤ (1−z2
1)‖σ1‖22, |z′3|2 ≤ (1−z2

1)‖σ2‖22.

Let τ1 := inf{t > 0 : ρα(t) = 0}. Then the local

martingale
∫ t∧τ1

0

Rα(a(u), I2(u)) dM(u), t > 0,

is a time-changed (possibly stopped) Brownian

motion. Since |Rα(a(u), I2(u))| ≤ |ν2| +
√

α‖σ2‖2 for

all u ∈ [0, τ1), a.s., then

lim
t→∞

1
t

∫ t∧τ1

0

Rα(a(u), I2(u)) dM(u) = 0 a.s. (8)
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Divide (5) by t, let t →∞, to get

λ((v, η), ω) ≤ lim sup
t→∞

1
t

∫ t

0

Qα(a(u), b(u), I1(u)) du

+ lim sup
t→∞

1
t

∫ t

0

Q̃α(a(u), I2(u)) d〈M〉(u).
(9)

a.s. on Ω0, for all α > 0.

Wish to develop upper bounds on λ1 in the

following cases.

One-dimensional linear sfde (smooth mem-

ory in white-noise term):

dx(t) = {ν1x(t)+µ1x(t−r)} dt+
{∫ 0

−r

x(t+s)σ2(s) ds

}
dW (t), t > 0

(V II)

with real constants ν1, µ1 and σ2 ∈ C1([−r, 0],R). It

is a special case of (XVII). Hence (VII) is regular

with respect to M2. The process
∫ 0

−r
x(t+s)σ2(s) ds

20



has C1 paths in t. Hence the stochastic differen-

tial dW in (VII) may be interpreted in the Itô or

Stratonovich sense without changing the solution

x.

Theorem V.3.

Suppose λ1 is the top a.s. Lyapunov exponent of (VII).

Define the function

θ(δ, α) := −δ+
(

ν1+δ+
1
2
αµ2

1e
2δr+

1
2α

)
∨

(
α

2
‖σ2‖22e2δ+r

)

for all α ∈ R+, δ ∈ R, where δ+ := max{δ, 0}.

Then

λ1 ≤ inf{θ(δ, α) : δ ∈ R, α ∈ R+}. (10)

Proof.
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Maximize the integrand on the right-hand-

side of (9) (with M = W); then use exponential

shift by δ to refine the resulting estimate. Then

minimize over α, δ ([M-S], II, 1996, pp. 34-35).

¤

Corollary below shows that the estimate in

Theorem V.3 reduces to well-known estimate in

deterministic case σ2 ≡ 0 (Hale [Ha], pp.17-18).

Corollary V.3.1.

In (VII), suppose µ1 6= 0 and let δ0 be the unique real

solution of the transcendental equation

ν1 + δ + |µ1|eδr = 0. (11)

Then

λ1 ≤ −δ0 +
1
2
‖σ2‖22
|µ1| e|δ0|r. (12)
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If µ1 = 0 and ν1 ≥ 0, then λ1 ≤ 1
2

(
ν1 +

√
ν2
1 + ‖σ2‖22

)
. If

µ1 = 0 and ν1 < 0, then λ1 ≤ ν1 + 1
2‖σ2‖2e−ν1r.

Proof.

Suppose µ1 6= 0. Denote by f(δ), δ ∈ R, the

left-hand-side of (11). Then f(δ) is an increasing

function of δ. f has a unique real zero δ0. Using

(10), we may put δ = δ0 and α = |µ1|−1e−δ0r in the

expression for θ(δ, α). This gives (12).

Suppose µ1 = 0. Put δ = (−ν1)+ in θ(δ, α) and

minimize the resulting expression over all α > 0.

This proves the last two assertions of the corol-

lary ([M-S], II, 1996, pp. 35-36). ¤

Remarks.

(i) Upper bounds for λ1 in Theorem (V.3) and

Corollary V.3.1 agree with corresponding bounds

in the deterministic case (for µ1 ≥ 0), but are
23



not optimal when µ1 = 0 and σ2 is strictly

positive and sufficiently small; cf. Theorem

V.1 for small ‖σ2‖2.

(ii) Problem: What are the asymptotics of λ1 for

small delays r ↓ 0?

Our second example is the stochastic delay

equation

dx(t) = {ν1x(t) + µ1x(t− r)} dt + x(t)dM(t), t > 0,

(XV III)

where M is the helix local martingale appearing

in (XVII) and satisfying the conditions therein.

Hence (XVIII) is regular with respect to M2.

Theorem below gives estimate on its top expo-

nent.

Theorem V.4.
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In (XVIII) define δ0 as in Corollary V.3.1. Then the

top a.s. Lyapunov exponent λ1 of (XVIII) satisfies

λ1 ≤ −δ0 +
β

16
. (13)

Proof.

Maximize the following functions separately

over their appropriate ranges:

Qα(z1, z2) := ν1z
2
1 +

√
α µ1z1z2 + 1

2

z2
1

α
− 1

2z2
2 ,

Q̃α(z1) := ( 1
2 − z2

1)z2
1 , |z1| ≤ 1, z2 ∈ R.

Then use an exponential shift of the Lyapunov

spectrum by an amount δ. Minimize the result-

ing bound over all α (for fixed δ) and then over all

δ ∈ R. This minimum is attained if δ solves the
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transcendental equation (11). Hence the conclu-

sion of the theorem ([M-S], II, 1996, pp. 36-37).

¤

Remark.

The above estimate for λ1 is sharp in the

deterministic case β = 0 and µ1 ≥ 0, but is

not sharp when β 6= 0; e.g. M = W , one-

dimensional standard Brownian motion in

the non-delay case (µ1 = 0). When M = ν2W

for a fixed real ν2, the above bound may be

considerably sharpened as in Theorem V.5

below. The sdde in this theorem is a model

of dye circulation in the blood stream (cf.

Bailey and Williams [B-W], 1996; Lenhart

and Travis, 1986).

Theorem V.5.([M-S], II, 1996).
26



For the equation

dx(t) = {ν1x(t) + µ1x(t− r)}dt + ν2x(t) dW (t) (V I)

set

φ(δ) := −δ +
1

4ν2
2

[(
|µ1|eδr + ν1 + δ +

1
2
ν2
2

)+]2

, (14)

for ν2 6= 0. Then

λ1 ≤ inf
δ∈R

φ(δ). (15)

In particular, if δ0 is the unique solution of the equation

ν1 + δ + |µ1|eδr +
1
2
ν2
2 = 0, (16)

then λ1 ≤ −δ0.

Proof.

Maximize

Qα(z1, z2, 0)+Q̃α(z1, 0) =
(

ν1+
1
2α

+
ν2
2

2

)
z2
1+
√

α µ1z1z2−1
2
z2
2−ν2

2z4
1

(17)
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for |z1| ≤ 1, z2 ∈ R and then minimize the resulting

bound for λ1 over α > 0. Get

λ1 ≤ 1
16ν2

2

[
(2ν1 + 2|µ1|+ ν2

2)+
]2

.

The first assertion of the theorem follows from

above estimate by applying an exponential shift

to (VI). Last assertion of the theorem is obvious

([M-S], II, 1996, pp. 38-39.) ¤

Problem: Is λ1 = infδ∈R φ(δ) ?

Remark.

Estimate in Theorem V.5 agrees with the

non-delay case µ1 = 0 whereby λ1 = ν1− 1
2ν2

2 =

inf
δ∈R

φ(δ). Cf. also [AOP], 1986, [B], 1985, and

[AKO], 1989.

4. SDDE with Poisson Noise.
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Consider the one-dimensional linear delay equa-

tion
dx(t) = x((t− 1)−) dN(t) t > 0

x0 = η ∈ D := D([−1, 0],R).



 (V )

The process N(t) ∈ R is a Poisson process with

i.i.d. inter-arrival times {Ti}∞i=1 which are expo-

nentially distributed with the same parameter µ.

The jumps {Yi}∞i=1 of N are i.i.d. and independent

of all the Ti’s. Let

j(t) := sup
{

j ≥ 0 :
j∑

i=1

Ti ≤ t

}
.

Then

N(t) =
j(t)∑

i=1

Yi.

Equation (V) can be solved a.s. in forward steps

of lengths 1, using the relation

xη(t) = η(0) +
j(t)∑

i=1

Yix

(( i∑

j=1

Tj − 1
)−

)
a.s.
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Trajectory {xt : t ≥ 0} is a Markov process

in the state space D (with the supremum norm

‖ · ‖∞). Furthermore, the above relation implies

that (V) is regular in D; i.e., it admits a mea-

surable flow X : R+ × D × Ω → D with X(t, ·, ω) =

ηxt(·, ω), continuous linear in η for all t ≥ 0 and

a.a. ω ∈ Ω (cf. the singular equation (I) ).

The a.s. Lyapunov spectrum of (V) may be

characterized directly (without appealing to the

Oseledec Theorem) by interpolating between the

sequence of random times:

τ0(ω) := 0,

τ1(ω) := inf
{

n ≥ 1 :
k∑

j=1

Tj /∈ [n− 1, n] for all k ≥ 1
}

,

τi+1(ω) := inf
{

n > τi(ω) :
k∑

j=1

Tj /∈ [n− 1, n] for all k ≥ 1
}

, i ≥ 1.
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It is easy to see that {τ1, τ2−τ1, τ3−τ2, · · · } are i.i.d.

and Eτ1 = eµ.

Theorem V.6.([M-S], II, 1996)

Let ξ ∈ D be the constant path ξ(s) = 1 for all s ∈
[−1, 0]. Suppose E log ‖X(τ1(·), ξ, ·)‖∞ exists (possibly =

+∞ or −∞). Then the a.s. Lyapunov spectrum

λ(η) := lim
t→∞

1
t

log ‖X(t, η, ω)‖∞, η ∈ D, ω ∈ Ω

of (V) is {−∞, λ1} where

λ1 = e−µ E log ‖X(τ1(·), ξ, ·)‖∞.

In fact,

lim
t→∞

1
t

log ‖X(t, η, ω)‖∞ =
{

λ1 η /∈ Ker X(τ1(ω), ·, ω)
−∞ η ∈ Ker X(τ1(ω), ·, ω).

Proof.
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The i.i.d. sequence

Si :=
‖(X(τi, ξ, ·))‖
‖(X(τi−1, ξ, ·))‖ i = 1, 2, . . .

and the LLN give

lim
n→∞

1
τn

log ‖(X(τn, ξ, ω))‖ = e−µ(E log S1)

for a.a. ω ∈ Ω.

Interpolate between the times τ1, τ2, τ3, · · · to

get the continuos limit ([M-S], II, 1996, pp. 27-

28). ¤
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Outline

• Strong Euler scheme for (general) SFDE’s.

Order of convergence 0.5.

• Strong Milstein scheme for SDDE’s. Order

of convergence 1.

• For Milstein scheme, use infinite dimensional

Itô formula for “tame” functions acting on

segment process of solution of SDDE. Pres-

ence of memory in SDDE requires use of

Malliavin calculus + anticipating stochastic

analysis of Nualart and Pardoux.

• Conjecture: Milstein scheme works for mixed

discrete and continuous memory. Open: for

general SFDE’s?
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Types of SFDE’s

Suppose rate of change of physical system

depends on present state and some noisy in-

put. Model by SODE.

Rate of change depends on present and past
states of the system: Model by SDDE or SFDE.

Rm := m-dimensional Euclidean space.

Euclidean norm:

|x| :=
√

x2
1 + · · ·+ x2

m, x = (x1, · · · , xm) ∈ Rm.

T := [0, a], J := [−r, 0], r, a > 0.

C := C(J ;Rm); sup norm:

‖η‖C := sup
−r≤s≤0

|η(s)|, η ∈ C := C([−r, 0],Rm).

3



W := d-dimensional Brownian motion.

SDDE:

X(t) =





η(0) +
∫ t

0

g(s, Π1(Xs)) dW (s)

+
∫ t

0

h(s, Π2(Xs)) ds, t ∈ [0, a]

η(t), −r ≤ t < 0.

Πi : C → Rmki , i = 1, 2, two projections of discrete

type based on s1,1, · · · , s1,k1 ∈ [−r, 0] and s2,1, · · · , s2,k2 ∈
[−r, 0]:

Πi(η) := (η(si,1), · · · , η(si,ki)) ∈ Rmki , η ∈ C, i = 1, 2.

Segment process Xt, t ∈ [0, a]:

Xt(s) = X(t + s), t ∈ [0, a], s ∈ [−r, 0].

g : T ×Rmk1 → L(Rd,Rm), h : T ×Rmk2 → Rm.
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SFDE with mixed discrete and continuous mem-

ory:

X(t) = η(0) +
∫ t

0

g(s,Π1(Xs), Q1(Xs)) dW (s)

+
∫ t

0

h(s, Π2(Xs), Q2(Xs)) ds, t ∈ [0, a],

X0 = η ∈ C = C(J ;Rm), J := [−r, 0].

g : T × Rmk1 × Rm1 → L(Rd,Rm), h : T × Rmk2 ×
Rm2 → Rm.
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Π1, Π2 two projections of discrete type;

Q1, Q2 two projections of continuous type:

Qi(η) := (Qi,1(η), · · · , Qi,mi
(η)), i = 1, 2,

Qij(η) :=
∫ 0

−r

φij(η(s))aij(s) ds , j = 1, · · · ,mi.

aij : J → R and φij : Rm → R sufficiently regular,

i = 1, 2, j = 1, · · · ,mi.

General SFDE:

X(t) =





η(0) +
∫ t

0

G(s, Xs) dW (s)

+
∫ t

0

H(s,Xs) ds, t ∈ [0, a]

η(t), −r ≤ t < 0.

G : T × C → L(Rd,Rm), H : T × C → Rm.
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Numerical Schemes

SDDE’s and SFDE’s cannot be solved ex-

plicitly: Need effective numerical techniques.

Numerical methods for SODE’s : well devel-

oped; Kloeden and Platen, Kloeden, Platen and

Schurz, McShane, Chapters 5 and 6), Hu, Talay,

Protter, etc..

Cauchy-Maruyama scheme for SFDE’s with

continuous memory: On Delfour-Mitter state space

Rm×L2([−r, 0],Rm) developed by Ahmed, Elsanousi

and Mohammed (Ahmed, M.Sc. thesis, Khar-

toum 1983), Baker and Buckwar, 2000. See also

[M], 1984, p. 227, and Hu-Mohammed, 1997.
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Aims.

• Strong Euler schemes for general SFDE’s.

Allows for multiple delays and continuous

memory. Estimates in supremum norm on

C([−r, 0],Rm) (cf. [A]).

• Strong Milstein scheme for SDDE’s. So-

lution of SDDE is non-anticipating. But need

methods from anticipating stochastic anal-

ysis and Malliavin calculus to derive Itô’s

formula for segment process. Itô’s formula

needed for convergence of Milstein scheme.
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Preliminaries

Recall segment process Xt, t ∈ [0, a]:

Xt(s) = X(t + s), t ∈ [0, a], s ∈ [−r, 0].

for continuous m-dimensional process {X(t)}t∈[−r,a].

{Xt} is a C-valued or L2(J ;Rm)-valued pro-

cess.

Distinguish between finite-dimensional
current state X(t) and infinite-dimensional
segment Xt, t ∈ [0, a].

Itô SFDE:

X(t) =





η(0) +
∫ t

0

G(s, Xs) dW (s)

+
∫ t

0

H(s,Xs) ds, t ∈ [0, a]

η(t), −r ≤ t < 0.
9



Coefficients: G : T × C([−r, 0],Rm) → L(Rd;Rm)

and H : T × C([−r, 0],Rm) → Rm.

{W (t) := (W 1(t), · · · ,W d(t)) : t ≥ 0}, d-dimensional

standard Brownian motion on (Ω,F , P ).

(Ft)t≥0 = Brownian filtration.

η ∈ C([−r, 0];Rm) = random initial path indepen-

dent of {W (t) : t ≥ 0}.

Lipschitz Condition:

‖G(t, η)−G(t, ξ)‖+ |H(t, η)−H(t, ξ)| ≤ L‖η − ξ‖C

for all t ∈ T, η, ξ ∈ C; L > 0 constant.

Boundedness Condition:

sup
0≤t≤a

[‖G(t, 0)‖+ |H(t, 0)|] < ∞.

10



Lipschitz + bounded conditions imply SFDE

has unique strong solution such that for each

q ≥ 1, there exists a constant C = C(q, L, a) > 0

with

E||Xt||2q
C ≤ C(1 + E||η||2q

C )

for all η ∈ C, t ∈ [0, a] ([M], 1984).

Segment Xt, t ≥ 0, is a C-valued Markov prcess.

Qualitative theory of SFDE’s: [M], 1984,

1996, + references therein.

11



Strong versus Weak:

SFDE’s do not lead to diffusions on Euclidean

space. (Highly degenerate infinite-dimensional

diffusions on C.) Hence no natural link to de-

terministic PDE’s. Strong schemes give infor-

mation on sample paths dynamics, a.s. finan-

cial option-pricing formulas with delays (Arrio-

jas and Mohammed, 2001).
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Strong Euler Scheme

Develop Euler scheme for general SFDE’s (in-

clude discrete and/or continuous memory).

n, l positive integers, T := [0, a], a > 0, J := [−r, 0].

πn : t−l < t−l+1 < · · · < 0 = t0 < t1 < t2 < · · · < tn = a,

partition of [−r, a].

|πn| := max
−l≤i≤n−1

(ti+1 − ti), mesh of πn.

Xn := Xπn.

SFDE:

X(t) =





η(0) +
∫ t

0

G(s, Xs)) dW (s)

+
∫ t

0

H(s,Xs) ds, t ∈ [0, a]

η(t), −r ≤ t < 0.

13



Euler scheme for SFDE:

Xn(t) =





Xn(ti) + G(ti, Xn
ti

)(W (t)−W (ti))
+H(ti, Xn

ti
)(t− ti), t ∈ (ti, ti+1], ti ∈ (0, a]

ηn(t), −r ≤ t ≤ 0

Approx. initial path ηn ∈ C(J,Rm) is prescribed

(e.g. a piece-wise linear approximation of η using

partition points {t−l, · · · , t0}).

Error function Zn:

{
Zn(t) := Xn(t)−X(t), 0 ≤ t ≤ a,

Zn
0 := ηn − η.

Euler scheme for SFDE’s has strong order of

convergence 0.5 (as in SODE).

14



Theorem 1.

Assume that the coefficients G : T×C([−r, 0],Rm) →
L(Rd;Rm) and H : T×C([−r, 0],Rm) → Rm in SFDE

satisfy the following Lipschitz and regularity con-

ditions:

‖G(t, η)−G(t, ξ)‖+ |H(t, η)−H(t, ξ)| ≤ L‖η−ξ‖C , t ∈ T

sup
0≤t≤a

[‖G(t, 0)‖+ |H(t, 0)|] < ∞

‖G(s, η)−G(t, η)‖ ≤ L1(1 + ‖η‖C)|s− t|γ , s, t ∈ T

|H(s, η)−H(t, η)| ≤ L1(1 + ‖η‖C)|s− t|γ , s, t ∈ T

for all η, ξ ∈ C([−r, 0],Rm), where L and L1 are

positive constants. Fix any integer q ≥ 2. Sup-

pose that η : [−r, 0] → Lq(Ω,Rm) is independent of

15



W and Hölder continuous with exponent γ ∈ (0, 1],

i.e., there is a positive constant K such that

E|η(s)− η(t)|q ≤ K|s− t|γq

for all s, t ∈ [−r, 0]. Suppose also that there is a

positive constant C ′ := C ′(q) such that

E||ηn − η||qC ≤ C ′|πn|γq.

Then there is a constant C ′′ := C ′′(q, a) > 0, de-

pending on a and q, such that

E sup
0≤t≤a

||Zn
t ||qC ≤ C ′′|πn|γ̃q

where γ̃ := γ ∧ (1/2).

16



Proof of Theorem 1.

Based on moment estimates:

E||Xt||2q
C ≤ C(1 + E||η||2q

C ), q ≥ 1

for all η ∈ C, t ∈ [0, a] ([M], 1984), and Burkholder’s

inequality. ¤

17



Theorem 1 applies to SDDE’s under Lip-

schitz and boundedness conditions. Also to SFDE’s

with mixed discrete and continuous memory:

X(t) = η(0) +
∫ t

0

g(s,Π1(Xs), Q1(Xs)) dW (s)

+
∫ t

0

h(s, Π2(Xs), Q2(Xs)) ds, t ∈ [0, a],

X0 = η ∈ C = C(J ;Rm)

Π1, Π2 two projections of discrete type;

Q1, Q2 two projections of continuous type:

Qi(η) := (Qi,1(η), · · · , Qi,mi(η)), i = 1, 2,

Qij(η) :=
∫ 0

−1

φij(η(s))aij(s) ds , j = 1, · · · ,mi.

aij ∈ C
1
2 (J), and φij : Rm → R, i = 1, 2, j = 1, · · · ,mi,

satisfy Lipschitz and linear growth conditions.
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Euler scheme for SFDE with mixed discrete and

continuous memory:

Xn(t) = Xn(ti) + g(ti,Π1(Xn
ti

), Qn
1 (Xn

ti
))(W (t)−W (ti))

+ h(ti, Π2(Xn
ti

), Qn
2 (Xn

ti
))(t− ti), t ∈ (ti, ti+1],

Xn(t) = ηn(t), −r ≤ t ≤ 0,

where Qn
i (η), i = 1, 2, are approximations of Qi(η)

using partial sums of Riemann integral. Strong

order of convergence 0.5 under Lipschitz and reg-

ularity conditions as in Theorem 1.
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Example: Exact convergence rate.

One-dimensional SDDE:

{
dX(t) = b(t)X(t− 1) dW (t) , 0 < t ≤ a

X(t) = η(t) , −1 ≤ t ≤ 0.

Use partitions {πn(h)} of [−1, a] generated by a

continuous (strictly positive) function h : [0, a] →
(0,∞). For each integer n, choose partition points

tk,n ≡ tk of πn(h) in [0, a] such that

t0 = 0,

∫ tk+1

tk

h(s) ds =
1
n

, k = 0, 1, · · · , n− 1.

i.e. subdivide interval in such a way that the

areas under h over each subinterval are all equal

to 1/n. Then

lim
n→∞,tk→t

n(tk+1 − tk) = 1/h(t).

20



e.g. h(t) ≡ 1 =⇒ (tk+1 − tk) = 1/n, k = 0, 1, · · · , n− 1.

Euler scheme gives

Xπn(t) =





Xπn(tk) + b(tk)Xπn(tk − 1)(W (t)−W (tk)),
tk ≤ t < tk+1,

η(t), t ∈ J := [−1, 0],

for 0 ≤ k ≤ n−1. By Theorem 1, there is a positive

constant C (independent of n) such that

nE|X(t)−Xπn(t)|2 ≤ C,

for all n ≥ 1, t ∈ [0, a]. Theorem 2 (below) shows

that the left hand side of the above inequality

has a limit (as n →∞) satisfying a deterministic

DDE.
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Theorem 2.

Suppose η ∈ Cγ(J,Rm), 1/2 < γ ≤ 1. Let a ≥ 1.

Suppose b : [0, a] → R satisfies

|b(t)− b(s)| ≤ K|t− s|(1/2)+α

for all s, t ∈ [0, a] and some K,α > 0. Let X be

the solution of the SDDE and Xπn its Euler ap-

proximation. Then Z(t) := lim
n→∞

n E|X(t)−Xπn(t)|2

exists for each t ∈ [−1, a]. Furthermore, Z(t) sat-

isfies the following deterministic linear DDE

Z ′(t) = b2(t)Z(t− 1) + b2(t)b2(t− 1)EX2(t− 2)/h(t), 1 < t < a,

Z(t) = 0, −1 ≤ t ≤ 1,

where EX2(t) is given by the integral equation

EX2(t) =

{
η(0)2 +

∫ t

0
b2(s)EX2(s− 1) ds, t ∈ [0, a],

η(t)2, t ∈ [−1, 0).
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Milstein Scheme

Strong second order scheme for SDDE:

X(t) =





η(0) +
∫ t

0

g(s,Π1(Xs)) dW (s)

+
∫ t

0

h(s, Π2(Xs)) ds, t ∈ T := [0, a]

η(t), −r ≤ t < 0.

g : T ×Rmk1 → L(Rd,Rm), h : T ×Rmk2 → Rm.

Requires infinite-dimensional Itô formula for “tame”

functions of segments of semimartingales or (an-

ticipating) processes. Proof based on Nualart-

Pardoux anticipating calculus techniques.
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l, n = positive integers, T := [0, a], a > 0, J := [−r, 0].

Partitions: πn := {ti : −l ≤ i ≤ n} of [−r, a], mesh

|πn|. Xn := Xπn; (xi1j1) ∈ Rmk1 .

Milstein approximations for SDDE:

Xi,n(t) = Xi,n(tk) + hi(tk, Π2(Xn
tk

))(t− tk)

+
∑

j

gij(tk, Π1(Xn
tk

))(W j(t)−W j(tk))

+
∑

i1,j1,j

∂gij

∂xi1j1

(tk, Π1(Xn
tk

))gi1j1(tk + s1,j1 , Π1(Xn
tk+s1,j1

))×

× 1[0,T ](tk + s1,j1)× Ij,j1(tk + s1,j1 , t + s1,j1 ; s1,j1),

for tk < t ≤ tk+1, i, i1 = 1, 2, · · · , m, 1 ≤ j ≤ d,

1 ≤ j1 ≤ k1, where

Ij,j1(tk+s1,j1 , t+s1,j1 ; s1,j1) :=
∫ t

tk

∫ t1+si,j1

tk+s1,j1

◦dW j(t2) ◦dW j1(t1).

Xi, hi, gij = coordinates of X,h and g with respect

to standard bases in Euclidean space.
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Milstein scheme has strong order of conver-

gence 1.

Theorem 3.

Consider the Milstein scheme for the SDDE.

Let 0 < γ ≤ 1. Suppose that η : [−r, 0] → L2(Ω,Rm)

is Hölder continuous with exponent γ
2 , i.e. there

is a positive constant K such that

E|η(s)− η(t)|2 ≤ K|s− t|γ

for all s, t ∈ J. Suppose that g ∈ C1,2(T×Rmk1 , L(Rd,Rm),

h ∈ C1,2(T ×Rmk2 ,Rm) and have bounded first and

second spatial derivatives. Let

{
Zn(t) := Xn(t)−X(t), 0 ≤ t ≤ a,

Zn
0 := ηn

0 − η.
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Assume that

sup
−r≤s≤0

E(|Zn(s)|2) ≤ C ′|πn|2γ

for some positive constant C ′. Then there exists

a constant C > 0 (depending on a and indepen-

dent of πn) such that

sup
−r≤t≤a

E|Zn(t)|2 ≤ C|πn|2γ

for any n ≥ 1.
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Surprise! Proof requires use of anticipating cal-

culus techniques:

Example:

One-dimensional SDDE:

dX(t) = g(X(t− 1), X(t)) dW (t), t ≥ 0

X(t) = W (t), −1 ≤ t < 0.

g : R2 → R smooth function. For second-order

scheme, formally seek a stochastic differential of

the coefficient g(X(t− 1), X(t)) on RHS of SDDE.
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For t ∈ (0, 1], formally expect something like:

dg(W (t− 1),W (t))

=
∂g

∂x2
(W (t− 1),W (t)) dW (t)

+
∂g

∂x1
(W (t− 1), W (t)) dW (t− 1) (anticipating!)

+
1
2

(
∂2g

∂x2
1

(W (t− 1),W (t)) dt +
∂2g

∂x2
2

(W (t− 1), W (t)) dt

)

+
1
2

∂2g

∂x1∂x2
(W (t− 1),W (t)) dW (t− 1) dW (t)(= 0!)

• LHS is adapted but anticipating inte-
gral on RHS.

• (Ft)0≤t≤1-adapted process

[0, 1] 3 t → (X(t− 1), X(t)) ∈ R2

is not a semimartingale with respect to any

natural filtration.
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• The components X(t − 1) and X(t) are not

independent. Existing anticipating versions

of Itô’s formula do not apply (cf. [AN], [AP]

and [NP]). Hence need new Itô formula for

tame functions:

g(W (t− 1),W (t)) = g(Wt(−1),Wt(0)).

• Last second-order Itô integral on RHS is zero:

Proof.

(Ω,F , (Ft), P ) := filtered probability space.

π := {ti} any partition of [0, T ], f any (Ft)-adapted

(a.s. bounded) process on [0, T ]. Then

∫ T

0

f(t) dW (t−1) dW (t) = lim
|π|→0

∑

i

f(ti)∆iW (·−1)∆iW
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where

∆iW := W (ti+1)−W (ti),

∆iW (· − 1) := W (ti+1 − 1)−W (ti − 1)

E|
∑

i

f(ti)∆iW (· − 1)∆iW |2 =
∑

i,j

EXi,j

Xi,j := f(ti)f(tj)∆iW (· − 1)∆jW (· − 1)∆iW∆jW

For i < j,

E(Xi,j) = E{E(Xi,j |Ftj )}

and

E(Xi,j |Ftj
)

= f(ti)f(tj)∆iW (· − 1)∆jW (· − 1)∆iW · E(∆jW |Ftj )

= 0
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By symmetry,
∑

i,j

EXi,j =
∑

i

EXi,i

=
∑

i

Ef(ti)2[∆iW (· − 1)]2[∆iW ]2

≤ K
∑

i

E[∆iW (· − 1)]2 · E[∆iW ]2

≤ KT |π|

Hence

E

∣∣∣∣
∫ T

0

f(t) dW (t− 1) dW (t)
∣∣∣∣
2

= lim
|π|→0

∑

i,j

EXi,j = 0. ¤

Shorthand:

dW (t− 1) dW (t)
dW (t− 1) dt 0

dW (t) 0 dt

Proof.

Exercise.
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Projection Π : C → Rmk associated with s1, · · · , sk ∈
[−r, 0]:

Π(η) := (η(s1), · · · , η(sk)) ∈ Rmk, η ∈ C

Definition.

Φ ∈ C(T ×C(J ;Rm);R) is tame if there exist

φ ∈ C(T ×Rmk,R) and a projection Π such that

Φ(t, η) = φ(t,Π(η)).

for all t ∈ T and η ∈ C.

Proof (Milstein Scheme).

Itô’s formula for “tame” functionals

T × C(J,Rm) → R
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of the segment Xt. Use formula + moment esti-

mates on weak derivatives of X to get global er-

ror estimate for the Milstein approximations. ¤

W (t) := (W 1(t), · · · ,W d(t)), t ≥ 0 := d-dimensional

standard Brownian motion on (Ω,F , P ).

D := (D1, · · · , Dd) := Malliavin differentiation op-

erator associated with {W (t) : t ≥ 0}.

Pathwise-continuous process:

X(t) :=
{

η(0) +
∫ t

0
u(s) dW (s) +

∫ t

0
v(s) ds, t > 0,

η(t), −r ≤ t ≤ 0,

Skorohod integral. η ∈ C, BV.

u = (u1, · · · , um)T , ui ∈ L2,4
d,loc;

v = (v1, · · · , vm)T , vi ∈ L1,4
loc ([Nualart]).

33



u and v may not be adapted to the Brownian

filtration (Ft)t≥0. Set u(t) := 0 for t < 0 or t > a,

v(t) :=
{

0, t > a

η′(t), −r ≤ t ≤ 0.

W (t) := 0 if t < 0 or t > a.

U(t) :=
∫ t

0

u(s) dW (s), V (t) :=
{

η(0) +
∫ t

0
v(s) ds, t > 0

η(t), −r ≤ t ≤ 0.

Then

DsX(t) = u(s)1[0,a](t− s) + Dsη(0) +
∫ t

0

Dsv(r′) dr′

+
∫ t

0

Dsu(r′) dW (r′), t > 0

Π := projection associated with s1, · · · , sk ∈ J.

Cannot apply multi-dimensional Itô formula to

φ(t,Π(Xt)) because Π(Ut) is of the form
(∫ t

0

u(s + s1) dW (s + s1), · · · ,

∫ t

0

u(s + sk) dW (s + sk)
)

,
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and the components (W (t + s1), · · · ,W (t + sk)) are

not independent. Use anticipating calculus (Nualart-

Pardoux) to derive an Itô formula for φ(t,Π(Xt)).

Assume φ ∈ C1,2(T × Rmk), ~x = (~x1, · · · , ~xm),

~xi = (xi1, · · · , xik) ∈ Rk. Write

φ(t, ~x) = φ(t, ~x1, · · · , ~xm).

Theorem 4. (Itô’s formula).

Suppose X satisfies above conditions and let

φ ∈ C1,2(T ×Rmk,R). Then

φ(t,Π(Xt))− φ(0, Π(X0))

=
∫ t

0

∂φ

∂s
(s,Π(Xs)) ds +

∫ t

0

∂φ

∂~x
(s, Π(Xs)) d(Π(Xs))+

1
2

k∑

i,j=1

m∑

i1,j1=1

∫ t

0

∂2φ

∂xi,i1∂xj,j1

(s, Π(Xs))ui1(s + si)Ds+siX
j1(s + sj) ds

a.s. for all t ∈ T .
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Example (Revisited)

g(W (t− 1),W (t))− g(W (−1),W (0))

=
∫ t

0

∂g

∂x1
(W (s− 1),W (s)) dW (s)

+
∫ t

0

∂g

∂x2
(W (s− 1), W (s)) dW (s− 1)

+
1
2

∫ t

0

∂2g

∂x2
1

(W (s− 1), W (s))ds

+
1
2

∫ t

0

∂2g

∂x2
2

(W (s− 1), W (s))1(1,∞)(s) ds

for t > 0.
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Weak differentiability of solutions
of SDDE’s.

Cf. Bell and Mohammed, Nualart.

Dk,∞
m := ∩p≥2Dk,p

m , k ∈ N.

Dl
u, 1 ≤ l ≤ d, 0 ≤ u ≤ a, weak differentiation with

respect to l-th component of W .

Proposition.

In the Itô SDDE, assume that g ∈ C0,1
b (T×Rk1m; L(Rd,Rm)

and h ∈ C0,1
b (T × Rk2m;Rm). Let X be the solution of

the SDDE. Then X(t) ∈ D1,∞
m for all t ∈ T , and

sup
0≤u≤a

E( sup
u≤s≤a

|DuX(s)|p) < ∞

for all p ≥ 2. Furthermore, the “partial” weak derivatives

Dl
uXj(t) with respect to the l-th coordinate of W satisfy
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the following linear SDDE’s a.s.:

Dl
uXj(t) = gjl(u, Π1(Xj

u))+
∫ t

u

k1∑

i=1

∂gjl

∂~xi
(s,Π1(Xs))Dl

uXj(s + s1,i) dW l(s)

+
∫ t

0

k2∑

i=1

∂hj

∂~xi
(s, Π2(Xs))Dl

uXj(s + s2,i) ds, t ≥ u,

= 0, t < u, l = 1, · · · , d, j = 1, · · · ,m

gjl = (j, l) entry of the m× d matrix g,

hj = j-th coordinate of h.
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