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Self-Adaptive Configuration of Visualization
Pipeline Over Wide-Area Networks

Qishi Wu, Jinzhu Gao, Mengxia Zhu, Nageswara S.V. Rao, Jian Huang, S. Sitharama Iyengar

Abstract

Next-generation scientific applications require the capabilities to visualize large archival datasets or on-going
computer simulations of physical and other phenomena over wide-area network connections. To minimize the latency
in interactive visualizations across wide-area networks, we propose an approach that adaptively decomposes and
maps the visualization pipeline onto a set of strategically selected network nodes. This scheme is realized by
grouping the modules that implement visualization and networking subtasks, and mapping them onto computing
nodes with possibly disparate computing capabilities and network connections. Using estimates for communication
and processing times of subtasks, we present a polynomial-time algorithm to compute a decomposition and
mapping to achieve minimum end-to-end delay of the visualization pipeline. We present experimental results using
geographically distributed deployments to demonstrate the effectiveness of this method in visualizing datasets from
three application domains.

Index Terms

Distributed computing, remote visualization, visualization pipeline, bandwidth measurement, network mapping.

I. INTRODUCTION

THE capability to remotely visualize datasets and on-going computations over wide-area networks is

considered a critical enabling technology to support large-scale computational science applications,

particularly when large datasets or computations are involved [1]. Visualization systems of different types

and scales for these applications have been the focus of research for many years [2]. In general, a remote

visualization system forms a pipeline consisting of a server at one end with the dataset, and a client at

the other end with rendering and display capabilities. In between, zero or more network nodes perform

a variety of intermediate processing and caching operations. Due to the computational, functional, and

bandwidth limitations at the client end, it is usually impractical to transfer or replicate entire large datasets

at the client. Instead, a common design goal is to achieve interactive visualizations over wide-area networks

by optimally matching the modules of a visualization pipeline with the resources at the network nodes to

minimize data transfer and processing times.
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In the past, the visualization field has focused on extending individual algorithms to network environ-

ments with various optimization techniques such as compression [3], [4], [5] or latency-hiding schemes [6].

Many current systems are based on statically configuring and mapping the visualization pipeline onto

available network nodes, often using ad-hoc approaches. In this paper, we propose a systematic framework

for remote visualization systems to self-adapt according to visualization needs and time-varying network

and node conditions. The need for adaptive optimization and configuration of a visualization pipeline arises

for the following reasons: (i) scientific computing communities have demonstrated the potential of pooling

in globally distributed users to achieve unprecedented data collections, visualizations, simulations, and

analysis; (ii) system resources including supercomputers, data repositories, computing facilities, network

infrastructures, storage devices, and display units have been increasingly deployed around the globe; (iii)

resources are typically connected via the Internet or a dedicated network to many users, which could

make their availability, utilization, capacity, and performance very dynamic; and (iv) users in scientific,

medical, and engineering areas require different visualization modalities specific to their domains with

different visualization parameters. A self-adaptive visualization system is needed to optimally utilize the

networked resources under the above diverse and dynamic environments.

We develop cost models to estimate processing times of visualization modules, including isosurface

extraction and raycasting, as well as data transfer times over network connections. Using these cost models,

we propose a dynamic programming solution to compute optimal pipeline configurations. Specifically,

we decompose the visualization pipeline into groups of modules and map them onto network nodes

to minimize the end-to-end delay. Self-adaptation and efficient reconfiguration is achieved by the low

polynomial time complexity of our dynamic programming method. We employ a message-based control

flow scheme for runtime adaptation in response to user requests and dynamic system conditions. A central

management node maintains the information about data sources and node capabilities to facilitate the

pipeline adaptation. This node maintains Visualization Routing Table (VRT) consisting of a sequence

of network nodes that the request flows through, which is dynamically updated to maintain an optimal

configuration.

The main contributions of our work include an analytical formulation of a remote visualization problem

in a networked environment, the development of cost models for transport and computing times, and the

design of a self-adaptive system for visualization pipeline configuration. This system is implemented
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under a prototype called Distributed Remote Intelligent Visualization Environment (DRIVE) and is tested

over the Internet. DRIVE consists of a number of virtual service nodes deployed over the network that

work together to achieve minimal end-to-end delay through self-adaptive pipeline configuration. On a

large testbed involving supercomputers, PC clusters, and workstations deployed across the United States,

we show that our system computes and maintains an optimal pipeline configuration in response to user

interactions and dynamic system conditions. The cost models for computation and transfer times as well

as the dynamic programming method, can be easily extended to other remote visualization systems,

such as Vis5D+, ParaView, ASPECT, and EnSight [7], [8], [9], [10] to optimize their wide-area network

deployments. However, to achieve self-adaptation under dynamic environments, it is important to employ

an inherently reconfigurable underlying system to support our message-based control mechanism.

This paper is organized as follows. In Section II, we discuss previous related work on remote vi-

sualization systems. In Section III, we first describe a visualization pipeline along with an analytical

model suited for decomposition and mapping, and then present a polynomial-time solution based on

dynamic programming for computing optimal decomposition and mapping. In Section IV, we present

domain-specific methods for processing time estimates and link bandwidth measurements. A message-

based control flow method for pipeline self-adaptation is discussed in Section VI-D. Implementation details

and experimental results are provided in Section VI. We conclude our work in Section VII.

II. BACKGROUND AND RELATED WORK

Remote visualization is an intriguing topic for its immense potential research impact and its imperative

overarching needs of many different kinds of expertise. It requires advanced study of remote visualization

algorithms, working middleware that support development of real-world remote visualization applications,

in-depth understanding of various system-level factors that affect system latency, and the integration

of remote visualization systems with simulation modules to form a comprehensive system of practical

applicability. In this section, we will give a general survey of each of these subjects and discuss our novel

contributions in optimizing a complete pipeline involving simulation as well as remote visualization with

self-adaptive configuration.

There have been several works in developing remote visualization algorithms, particularly in achieving

the functionality and performance of “single site” systems over wide-area networks. Many remote visual-

ization systems aim to significantly reduce the amount of data transport by transforming the raw data into
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an intermediate form of compact sizes. These methods commonly apply various types of compression;

for example, [3], [4], [5] use highly compressed imagery data. In addition to the imagery sent across the

network as in [3], [4], Bethel et al. [5] also transmit the depth buffer resulted from volume rendering.

Besides the compression, view dependent techniques have also been widely used to cull down data

communications such that only the visible portions of an entire isosurface are transported [11], [12].

This way, data communications can be further reduced by limiting the amount of data sent to the client

to only when necessary. Compression and view-dependent data culling can be combined to achieve even

more reductions in data communications [6]. In addition, extensions to hardware acceleration methods for

remote visualization settings have also been studied and shown to be feasible [13].

At the same time, several works are underway in developing advanced middleware for remote and

distributed visualization systems. Foster et al. [14] studied the distance visualization in widely distributed

environments; major technical challenges are identified and an online collaborative system is described

to reconstruct and analyze tomographic data from remote X-ray sources and electron microscopes. Grid

Initiative and projects such as the Globus Toolkit [15], [16] provided toolkits and infrastructure to deploy

Grid computing systems. As a middleware extension, the Grid Visualization Kernel (GVK) [17], [18] was

proposed to exploit the power of the grid to provide visualization services to scientific users. GVK is able

to rearrange the visualization pipeline by moving filtering, visualization, and/or rendering away from the

client towards the server, according to changing network conditions. Each visualization module in GVK

is executed on either the client or the server side. Besides, since large datasets require optimized network

transmission to achieve the desired performance goals, optimization techniques, such as data compression,

level-of-detail filtering, occlusion culling, reference and image-based rendering, are also studied.

Several visualization applications have been built using the services provided by those middlewares.

Shalf and Bethal [19] examined the impact of the Grid on visualization and compared pipelines running

entirely on a local PC, partially on a cluster, and totally (apart from display) on a cluster. They demonstrated

that the local PC would give the best performance for small problem sizes, and thus argued that dynamic

scheduling of the pipeline is required. Although their approach lacks the self-adaptive capability for

task management, they suggest the need for a simulation environment in the context of Grid research.

Grimstead et al. [20] presented a distributed, collaborative grid enabled visualization environment that

supports automated resource discovery across heterogeneous machines. Running the Resource-Aware
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Visualization Environment (RAVE) as a background process using Grid/Web services, the system allows

sharing resources with other users as RAVE supports a wide range of machines, from hand-held PDAs to

high-end servers with large-scale stereo, tracked displays. Many other works, including image streaming via

Common Object Request Broker Architecture (CORBA) [21], remote image-based rendering on Logistical

Networking [4], and problem solving environment using the grid environment [22], also have similar

focused goals. A major advantage of leveraging these middleware technologies is a clean interface to

distributed systems and a reasonable guarantee of achieving the needed functionality. Our scheme can be

directly added as an extra middleware layer to compute and manage the optimal mappings of different

stages of the visualization pipeline onto a set of distributed nodes.

Recently, many researchers have been investigating frameworks for remote and distributed data analysis

and visualization. Beynon et al. [23] developed a filter-stream programming framework for data-intensive

applications that can query, analyze and manipulate very large datasets in a distributed environment.

They represented the processing structure of an application as a set of processing units, referred to as

filters. A set of filters collectively performing a computation for an application forms a filter group.

As they developed the problem of scheduling instances of a filter group, they were trying to seek the

answer to the following question: should a new instance be created, or an existing one be reused? They

experimentally investigated the impacts of instantiating multiple filter groups on performance under varying

application characteristics. Ahrens et al. [24] presented an architectural approach to handle large-scale

visualization problems with parallel data streaming. Their approach requires less memory than other

visualization systems while achieving high reuse of the code. Later, Luke and Hansen [25] proposed a

general framework capable of supporting multiple scenarios to partition a remote visualization system,

which was tested on a local network. Compared to their work, our approach has a more general scope and a

more systematic framework in addressing the performance of remote visualization systems over wide-area

networks. Boier-Martin [26] presents the idea of a unifying framework that allows visual representations

of information to be customized and mixed together into new ones. It is a fine-grained approach to

representing data, and is better suited to accessing and rendering it over networks. Although the focus is

on geometric models and 3D shape representations, many issues discussed are relevant to network-based

visualization in general.

One of our goals is to design effective cost models for various visualization modules so that we could
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more accurately predict and optimize the end-to-end delay of the entire pipeline. With a similar goal,

Bowman et al. [27] proposed solutions to examine the prediction of processing times of a visualization

algorithm, isosurface extraction, in particular, using an empirical linear model. These predictions are used

to allocate the computing resources to the visualization pipeline. Their approach is heuristic without a

general gauge of global optimality; furthermore, it requires manual configuration, which makes it difficult

to achieve run-time reconfiguration.

Several past works in remote visualization systems have focused on designing visualization systems

optimized for monolithic remote settings, which are typically set up in an initial configuration. Furthermore,

in configuring remote visualization systems, current methods are often ad-hoc with limited attempts to

systematically optimize the performance by taking into account node and network parameters. Even

if an initial configuration is optimal, these levels of performance cannot be sustained over time under

dynamic processor loads and varying network bandwidths. In particular, few current systems are capable of

switching to new processing nodes at runtime in response to increases in loads at currently deployed nodes

or decreases in available bandwidths to them. Our goal is to examine the component-level performance

parameters of the visualization pipeline and match them to both the computing and network resources

in an adaptive and optimal manner. Our system exploits the detailed information of the visualization

pipeline and computing nodes and network connections to dynamically optimize the end-to-end response

time. This system can be integrated into a visualization middleware to transparently achieve network and

host level performance optimization.

III. OPTIMAL VISUALIZATION PIPELINE

In Section III-A, we first describe a general pipeline of a visualization system, which will form a basis

for this paper. After defining an analytical model for various components in the pipeline in Section III-B,

we present our overall design and an optimization method based on dynamic programming in Section III-C.

A. General Visualization Pipeline

Visualization task can be decomposed into a number of subtasks, each of which is carried out by a

different module of the visualization pipeline [28]. In many scientific applications, raw data is organized

in formats such as CDF [29], HDF [30] and NetCDF [31]. In general, filtering modules perform the

necessary preprocessing to the data for more efficient subsequent processing. The subsequent modules

then convert the filtered data into graphical primitives which will be delivered for final display.
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M1 Mu-1 Mu Mv-1 Mw Mx-1

vs

vP[q-1]

vd

vP[2]

g1 g2 gq-1

mu-1 mv-1

ps pd

c1 cu-1 cu cv-1 cw cx-1

pP[2] pP[q-1]

Mx Mn+1

mx-1

cx cn+1

gq

b
s,P[2] bP[2],P[3]

b P[q-1],d

Fig. 1. Mathematical model for pipeline decomposition and network mapping.

B. Analytical Model

We now describe a mathematical model in Fig. 1 for a general visualization pipeline. The visualization

pipeline consists of a sequence of n+1 modules, M1, M2, . . ., Mu−1, Mu, . . ., Mv−1, . . . . . ., Mw, . . ., Mx−1,

Mx, . . ., Mn+1, where M1 is a data source. Module Mj, j = 2, . . . ,n+1, performs a computational task of

complexity c j on data of size m j−1 received from module Mj−1 and generates data of size m j, which

is then sent over a virtual network link to module Mj+1 for further processing. An underlying transport

network consists of k+1 geographically distributed computing nodes denoted by v1,v2, . . . ,vk+1. Node vi

has a normalized computing power pi
1 and is connected to its neighbor node v j, j �= i with a network link

Li, j of bandwidth bi, j and minimum link delay di, j. The minimum link delay is mostly contributed by

the link propagation and queuing delay, and is in general much smaller than the bandwidth-constrained

delay m/bi, j of transmitting a large message of size m. The communication network is represented by a

graph G = (V,E), |V |= k+1, where V denotes the set of nodes and E denotes the set of virtual links. The

network G may or may not be a complete graph, depending on whether the node deployment environment

is the Internet or a dedicated network.

We consider a path P of q nodes from a source node vs to a destination node vd in the network,

where q ∈ [2,min(k + 1,n + 1)] and path P consists of nodes vP[1] = vs,vP[2], . . . ,vP[q−1],vP[q] = vd . The

visualization pipeline is decomposed into q visualization groups denoted by g1,g2, . . . ,gq, which are

mapped one-to-one onto q nodes of path P. The data flow into a group is the one produced by the last

1For simplicity, we use a normalized quantity to reflect a node’s overall computing power without specifying in detail its memory
size, processor speed, and presence of co-processors; such details may result in different performances for both numeric and visualization
computations.
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module in the upstream group; in Fig. 1, we have m(g1) = mu−1,m(g2) = mv−1, . . . ,m(gq−1) = mx−1.

The client residing on the last node vd sends control messages such as visualization parameters, filter

types, visualization modes, and view parameters to one or more preceding visualization groups to support

interactive operations. However, since the size of a control message is typically of the order of bytes or

kilobytes, which is considerably smaller than the visualization data, we assume its transport time to be

negligible.

A very important requirement in many applications of remote visualization is the high-level interactivity,

which is characterized by the end-to-end delay given by:

Ttotal(Path P o f q nodes) = Tcomputing +Ttransport

= ∑q
i=1 Tgi +∑q−1

i=1 TLP[i],P[i+1]

= ∑q
i=1

(
1

pP[i]
∑ j∈gi, j≥2

(
c jm j−1

))
+∑q−1

i=1

(
m(gi)

bP[i],P[i+1]

)
.

(1)

Our goal is to minimize the end-to-end delay, which is the time incurred on the forward links, from the

source node to the destination node, to achieve the fastest response. Note that in Eq. 1, we assume the

transport time between modules within each group on the same computing node to be negligible. When

the number of groups q = 2, the system is reduced to a simple client-server setup.

C. Optimal Configuration

Based on a pipeline decomposition scheme shown in Fig. 1, we categorize the visualization modules into

four types of virtual nodes: client, central management (CM), data source (DS), and computing service

(CS). Each virtual node may correspond to a PC, supercomputer, cluster, rendering engine, display device,

or storage system running one or more specific modules.

These nodes are connected over a communication network, typically the Internet, to form a closed

visualization control loop as illustrated in Fig. 2. A visualization loop starts at a client that initiates a

particular visualization task by sending a request containing dataset of interest, list of variable names,

visualization method, and view parameters to a designated CM node. CM then determines the best pipeline

configuration to accomplish the visualization task. Based on a global knowledge of the entire system

as well as the available datasets, CM strategically decomposes the visualization pipeline into groups

and assigns them to an appropriate CS nodes for the execution of visualization modules. The resultant

pipeline decomposition and network mapping is represented as a Visualization Routing Table (VRT), which

is delivered sequentially along the rest of the loop to establish the visualization pipeline.
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Client 2

Data Source 1

Computing Service 1

WAN

Central Management 2

Computing Service 3

Client 1

Computing Service 2

Requests

Data

Data

Results

Requests

Data

Data

Results

Requests/Mapping/Routing
Central Management 1

Data Source 2

Requests/Mapping/Routing

Fig. 2. DRIVE architecture: constituent elements and visualization control loops.

Since there are many possible combinations of decompositions and mappings, for the highest interac-

tivity, it is necessary to search for the optimal combination that produces minimal end-to-end delay. We

now present a dynamic programming method to achieve this goal. Let T j(vi) denote the minimal total

delay with the first j messages (namely, the first j +1 visualization modules) mapped to a path from the

source node vs to node vi under consideration in G. Then, we have the following recursion leading to

T n(vd) [32], for j = 2, . . . ,n, vi ∈V :

T j(vi)

= min

⎛
⎝ T j−1(vi)+ c j+1m j

pvi
,

minu∈ad j(vi)

(
T j−1(u)+ c j+1m j

pvi
+ m j

bu,vi

)
⎞
⎠ (2)

with the base conditions computed as, for vi ∈V , vi �= vs:

T 1(vi) =
{ c2m1

pvi
+ m1

bvs,vi
, ∀evs,vi ∈ E

∞, otherwise,
(3)

as shown on the first column and on the first row in the 2D matrix in Fig. 3.

In Eq. 2, at each step of the recursion, T j(vi) takes the minimum of delays of two sub-cases. In the

first sub-case, we do not map the last message m j to any network link; instead we directly place the last

module Mj+1 at node vi itself. Therefore we only need to add the computing time of Mj+1 on node vi

to T j−1(vi), which is a sub-problem of node vi of size j−1. This sub-case is represented by the direct

inheritance link from its left neighbor element in the 2D matrix. In the second sub-case, the last message

m j is mapped to one of the incident network links from its neighbor nodes to node vi. The set of neighbor
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the
i-th

node
vi

mapping the first j messages to a path from vs to vi

vs

v2

v3

v4

.

.

.

1 2 3 4 ...... n-2 n-1 n

vd

T2(v2)T1(v2)

T1(vs)

Tn(vd)

Tn(vs)T2(vs)

Tn-1(vd)

u1

u2

u3

u1

u2

Fig. 3. Construction of 2D matrix in dynamic programming.

nodes of node vi is enclosed in the shaded area in Fig. 3. We calculate the total delay for each mapping

of an incident link of node vi and choose the one with the minimum delay, which is then compared with

the first sub-case. For each comparison step, the mapping scheme of T j(vi) is obtained as follows: we

either directly inherit the mapping scheme of T j−1(vi) by simply adding module Mj+1 to the last group,

or create a separate group for module Mj+1 and append it to the mapping scheme T j−1(u) of the neighbor

nodes u ∈ ad j(vi) of node vi. The computational complexity of this core algorithm is O(n×|E|), which

guarantees that our system scales well as the network size increases.

IV. COST MODELS

We present in this section the cost models for both visualization computing and network transport

modules to estimate the processing and communication times.

A. Processing Time Estimation

Optimization often plays an important role in the performance of a visualization technique. For instance,

volume rendering could use hardware accelerations of various kinds, while software volume rendering

may leverage sophisticated space leaping methods. Similarly, iso-surface extraction methods are also able

to leverage a number of advanced data structures to expedite searching process. The performance gained

by employing such choices could be very significant at times. For our study of remote visualization with

interactive operations, however, these acceleration methods require non-trivial pre-processing and the

resultant storage overheads, in addition to already high costs of large datasets. We consider the traditional
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coarse-grained mechanism, which widely used by both parallel and out-of-core communities. We partition

spatial volumes into blocks of equal size and perform space culling on a block basis. Accordingly, we

estimate processing times using a block-by-block procedure for volume visualization, including isosurface

extraction and volume rendering.

Herein, we model the overall computing time incurred by an entire volume Tv as:

Tv =
N

∑
i=1

Tbi, (4)

where, N is the number of nonempty blocks in the volume,and Tbi is the processing time for the i-th

volume block bi. Each block processing time Tbi is determined by a variety of factors, mainly including:

(i) the overall host processing power, which is further affected by the dynamic system overhead due

to the sharing of system resources among concurrent jobs; and (ii) the nonempty voxels, which depend

on selected iso-values or transfer functions. We model Tbi as an independent random variable with a

distribution (μi,σ2
i ), which is closely related to the block size, as observed in our experiments. Thus, in

order to obtain an accurate estimate of Tbi with a controllable small variation σ2
i , in practice, we conduct

a sufficiently large number of tests for a given block size so that the accumulated variance ∑N
i=1 σ2

i of Tv

is controlled within an acceptable range. As long as the processing time for that block size is accurately

estimated, the estimation accuracy of Tv in our method is not affected by the size of volume blocks. In

the following, we discuss our methods to compute Tbi for isosurface extraction and volume rendering.

1) Marching cubes: The exact number of voxel cells intersecting an isosurface, from now on referred

to as surface voxels, is not known a priori, nor is the spatial distribution of surface voxels throughout the

dataset. Therefore, it is not straightforward to accurately estimate the processing time of a volume using

the marching cubes algorithm.

However, we found out that it is feasible to make such estimation with a small amount of additional

meta data. Obviously, the processing time of a block should highly depend on the number of extracted

triangles. While a cell can generate triangles in different ways, previous researchers have identified the

topologically unique cases out of all possibilities [33].

We designed a simple experiment to examine the probabilities, pi, in which a surface voxel generates

i (=1,2,3,4) triangles, respectively. By computing a straight-forward weighted average as ∑4
i=1(i× pi), we

obtain the mathematical expectation of the number of triangles generated by a surface voxel. We call the
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Fig. 4. The Average-case Number of Triangles(ANT) distribution obtained from four datasets, each tested with three randomly selected
isovalues.

result of this weighted average Average-case Number of Triangles (ANT). Since different datasets as well

as different iso-values chosen for the same dataset could both affect the value of ANT, we experimented

with four different datasets (NegHip, Diesel Injection, UNC Head, MRI Skull) from scientific, engineering,

and medical applications. For each dataset, three different isovalues are randomly chosen. We show the

results of twelve (4× 3) scenarios in Fig. 4, where each individual bar represents a separate test. The

colored sections of each bar, in the bottom-up order, illustrate the values of (i× pi)’s for a surface voxel

that generates i = 1,2,3,4 triangles, respectively. Although the exact values of (i× pi)’s vary on a small

scale, the values of ANT remain relatively constant. The observed mean of ANT values is 1.99 with a

standard deviation of 0.02.

Based on our observation on the consistency in the values of ANT, we construct a linear cost model to

estimate Tbi’s for the marching cubes algorithm: Tmc = a×nsv +b, i.e. the constant a (the time to generate

two triangles) multiplied by the number of surface voxels nsv, and then combined with an additional

constant overhead b. To consider the effects of block sizes on the overall performance of CPU caches, a

and b, especially b, should vary for different block sizes.

We tested the linear cost model hypothesis using 64 cubed and 256 cubed volume blocks from four

datasets described above. The linear regression results shown in Fig. 5 indicate that our linear model

agrees with practical scenarios in both cases with a statistical significance of χ2 > 0.99.

In summary, our procedure to estimate the work load of marching cubes algorithm is the following.

First, for any block size and targeted computers chosen by a user, we move a small number of data blocks

of that size striped from actual datasets to the targeted machines. Second, to obtain each data point in
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Fig. 5. The linear performance model of marching cubes: different data points correspond to various iso-values chosen from the range
between 30 and 150, assuming 8-bit values on the voxels.

Fig 5, we repeatedly run a large number of tests on one block and then take the average of those tests

as Tbi . Such process is repeated for each block with different iso-values. Third, we compute the linear

regression model and store the coefficients a and b. Note the above three steps are performed on each

targeted machine separately. Finally, we compute a discrete nsv lookup table (NLUT) for a set of isovalues,

densely sampled in the range of all possible isovalues for a targeted dataset. Assuming the coherence in

nsv between similar isovalues, we interpolate the nsv value from NLUT at runtime. As shown later in our

results section, we consistently achieve a relative prediction error of less than 5.0% in actual runs.

2) Raycasting: For raycasting [34], a common acceleration technique is early ray termination, which

is a very simplistic yet very effective method on a single processor. Unfortunately, as shown by previ-

ous researchers [35], early ray termination does not scale well in parallel implementations. To achieve

scalability, visibility culling is usually performed at block level with pre-computed information such as

Plenoptic Opacity Function [35]. The transfer functions for volume rendering are typically selected to

produce semi-transparent volumes, in which case, early ray termination within voxel blocks may not lead

to significant speedups. Therefore, without significantly compromising performances, we rely solely on

block-based visibility culling. This way, all blocks are subject to the same computation cost, i.e. Tbi = c

where c is a constant. The estimation of c can be done by running the raycasting algorithm on a large

number of non-empty blocks and choosing the average time spent on a block. In our experiments on a

PC equipped with 2.4 GHz CPU and 2 GBytes memory, we ran the raycasting algorithm on a dataset

with 512 non-empty blocks of 643 voxels. The time to render each block is 0.387 seconds on average

with a relative standard deviation of 4.7%.
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Fig. 6. End-to-end delay measurements between ORNL and LSU.

B. Bandwidth Estimation

Due to the complex traffic distributions over wide-area networks and the non-linear nature of transport

protocols (particularly, TCP), the throughput as perceived by visualization modules are typically different

from the link capacities. We define effective path bandwidth (EPB) as the network transport throughput

observed on the virtual link connecting the visualization modules on two nodes. Obviously, EPB is heavily

influenced by conditions of cross traffic (i.e. concurrent traffic sharing network resources), and in addition

the transport protocol employed. Note that a virtual link connecting any two nodes in G may correspond

to a multi-hop data path in wide-area networks, which usually consists of multiple underlying physical

links. To estimate EPB, we approximate the end-to-end delay in transmitting a message of size r on a

path P as

d(P,r) = r/EPB(P). (5)

The active measurement technique generates a set of test messages of various sizes, sends them to a

destination node through a transport channel such as a TCP flow, and measures end-to-end delays. We

then fit a linear regression model to the obtained size-delay data points, whose slope corresponds to EPB.

For validation, we measured the actual delays between Louisiana State University (LSU) and Oak Ridge

National Laboratory (ORNL). We show both the measured results and the corresponding linear model in

Fig. 6. Here, each data point is an average of three separate measurements. From that linear model, we

estimate the EPB on this path to be about 1.0 Mb/s.

For high fidelity results, the active measurement operation uses the same transport method as that used

by the visualization modules. We note here that there exist publicly available network tools such as Iperf,

or NWS [36] that can also be used for estimating EPB. Our method for bandwidth estimation provides: (i)
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performance guarantee on the estimation [37], (ii) an automatic re-estimation triggered by drastic changes

in network conditions and user interactions, and (iii) utilization of the same transport modules for both

bandwidth estimation and data transmission.

V. MESSAGE-BASED CONTROL FLOW

Many previous remote visualization systems are based on a client-server model, which works very

well as long as end nodes have all the needed capabilities. Introducing intermediate nodes into remote

visualization systems could lead to enriched functionality and better system throughput. However, the

traditional client-server model lacks the capability to exploit the flexiblity and resources at the intermediate

nodes. However, this is a complex problem since different intermediate nodes may have been utilized at

different times depending on the nature of the visualization task.

To support dynamic configuration of a different visualization pipeline over networked nodes, we adopt a

message-based control flow. Each node in our system acts as an independent state machine. An operation is

always triggered by a message and the resultant outputs are sent as messages as well. On each node, three

threads are executed in endless loops for receiving messages (RecvThread), processing data (ProcThread),

and sending results (SendThread). While RecvThread and SendThread are the same among all nodes,

the nature of ProcThread determines the type of a node, namely client, CM, DS and CS as described in

Section III-C. The overall control flow for our entire system is summarized in Fig. 7.

A visualization task is initiated by a client sending a request to a designated CM, after which the system

is driven completely by user interaction (on the client) and control and data messages (for all other nodes

including CM, DS, CS). System control messages are used to initiate/terminate a visualization session

or report a service failure or establish/close visualization routing paths. Visualization control messages

are used to deliver visualization-specific information such as choice of visualization method, viewport

resolution, viewing parameters, feature value (i.e. iso-value), and appearance definitions. Data messages

are used to transmit raw data or visualization results such as geometry, intermediate volume rendered

imagery results and final framebuffer. As shown in Fig. 7, the ProcThreads in different nodes perform

their own specific actions in processng the incoming messages.

One critical task in our system design and implementation is the dynamic computation and setup of

a VRT by the CM node in response to a specific visualization request or sensed change in network

and computing environment. Upon receiving a new visualization request or modifications of visualization
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Fig. 7. DRIVE control flow diagram.

parameters (such as data source or visualization method), CM node employs the dynamic programming

method to create a new routing table, and compares it with an existing one if any. Routing decisions are

then made as per the following conditions: (i) if there is no existing routing path, CM initiates a new

path for the pipeline and sends the routing table to appropriate nodes; (ii) if the existing routing path is

different from the computed one, CM closes the existing path and establishes a new one by sending the

routing table to appropriate nodes; and (iii) if the routing path exists and is the same as the computed

one but has different assignments of computing modules, CM updates the module assignments. Upon

receiving a routing table, an intermediate node (DS or CS) simply creates a connection (if no connection

exists) and forwards the routing table to its immediate downstream node.

Our system uses the latest VRT for all later communications unless a new visualization request arrives,

a different visualization method is selected, or there are drastic changes in network traffic or node load

conditions.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Our prototype system, DRIVE, is implemented in C++ on Linux operating system using GTK+ for

the client GUI. In this section, we describe implementation details and present experimental results in
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Internet deployments.

A. DRIVE Functional Diagram

The functional diagram of four DRIVE elements is shown in Fig. 8. Each DRIVE node implements two

types of communication channels: server channel for receiving and client channel for sending. In general,

the incoming data is transmitted via the server channel from its upstream node, while the outgoing results

are transmitted via the client channel to its downstream node. Control messages can be carried in both

directions to report service failures, establish and close visualization routing paths.

The information on resource availability is collected by two measurement units, one estimating the

network bandwidth and the other estimating the processing power. The collected information is sent to

the CM periodically for calculating the optimal system configuration. This information update may also

be triggered by the observation of drastic changes in the current measurements. Particularly, to account

for the time-varying network utilizations and CPU occupations, the CM always issues an active inquiry

message to all participating hosts for immediate update on the resource information upon the arrival of

each new visualization request.

A client node usually resides on a host equipped with a display device ranging from a personal desktop

to a powerwall. It displays the final images and enables end users to interact with the visualization

application. The main function of CM node is to use the global information collected on data sources and

system resources to compute and establish the optimal visualization pipeline for a specific visualization

task.
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A DS node stores pre-computed archival datasets. For online computational/experimental monitoring

and steering, it might be a simulation running on a computing host or an experiment in progress on a

user facility. The retrieved data is sent to the downstream CS node along the routing path for further

processing. A CS node can be located anywhere in the network and can range from a workstation to a

cluster to a custom rendering engine. They receive data from upstream nodes, perform specific visualization

computations, and output final or intermediate visualization results to downstream nodes.

B. System Deployment

For testing purposes, we deployed the DRIVE system on a number of Internet nodes distributed across

the United States as shown in Fig. 9. These nodes consist of supercomputers, PC clusters, storage systems,

and PC Linux workstations 2. To demonstrate the capability of supporting multiple clients simultaneously,

we selected three representative client nodes located at North Carolina State University (NCSU, east

coast), University of California at Davis (UCD, west coast), and Louisiana State University (LSU, southern

US), respectively. Three CM nodes are set up at Pittsburgh, Los Angeles, and Kansas City, respectively,

gathering and storing time-varying information on data repository, node deployment, and cost models.

Since the actual computing tasks are performed on CS nodes, the selection of a different CM node

usually has a negligible impact on the overall system performance. However, to minimize communication

cost, a client typically selects CM node with a reliable and fast connection.

We collected a wide range of datasets generated by various scientific, medical, and engineering ap-

plications including Terascale Supernova Initiative (TSI) project [38], Visible Human Project [39], Jet

Shockwave Simulation of the Kelvin-Helmholz instability, and Rayleigh-Taylor hydrodynamic instability

simulations. The sizes of these datasets range from dozens of MBytes to hundreds of GBytes. In particular,

the TSI datasets generated on ORNL Cray supercomputer and archived on the storage system at ORNL are

about 300 GBytes, containing 128 time steps of 8643 volumes. The other smaller datasets are duplicated

on the storage systems deployed at The Ohio State University (OSU) and Georgia Institute of Technology

(GIT). In order to handle large-scale datasets, we utilized four PC clusters: hawk cluster at ORNL, boba

cluster at University of Tennessee at Knoxville (UTK), orbitty cluster at NCSU, and bale cluster at Ohio

Supercomputing Center (OSC).

2These workstations are either PlanetLab nodes or Linux boxes deployed at various collaborative sites.
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Fig. 9. System deployment and initial DRIVE configurations for three concurrent sessions of distributed visualization.

C. Initial Setup

As illustrated in Fig. 9, each of the three clients issues a particular remote visualization request and

in response the corresponding CM computes an initial optimal pipeline configuration. Note that these

three concurrent visualization loops determined by the optimization algorithm happen to be disjoint from

each other. This is likely the case if the nodes and links in the environment have comparable computing

and networking capabilities so that the visualization and transport subtasks tend to spread out for load

balancing. We would also like to point out that some parts of the visualization loops might overlap if

running simultaneously, for example, when a particular node or link has extremely higher computing

or bandwidth than others. In other words, these resources might be shared among several concurrent

visualization loops.

(A) Astrophysics Datasets: In the visualization task initiated by a scientific application at NCSU, an

astrophysicist uses the workstation dali.physics.ncsu.edu to visualize the TSI datasets located on the

ORNL storage system using the raycasting technique. The DRIVE system selects the nearby hawk

cluster at ORNL for computing, which delivers the final image to the client at NCSU over a wide-area

connection in each time step.

(B) Medical Application: In the visualization task initiated by a medical application at LSU, a physician

uses the workstation robot.rrl.lsu.edu to diagnose the visible woman MRI image rendered by the
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isosurface extraction technique. The DRIVE system retrieves the dataset from the storage system at

GIT and uses the boba cluster at UTK for both geometry extraction and rendering.

(C) Engineering Application: In the visualization task initiated at UCD, an engineer uses the workstation

jalapeno.cs.ucdavis.edu to investigate the rage simulation using the raycasting technique. The DRIVE

system retrieves the dataset from the storage system at OSU and selects the nearby bale cluster for

computing.

D. Self-Adaptation

We illustrate the self-adaptation capability of the DRIVE system, by changing visualization techniques

and parameters, and monitoring the variations in computing load and network traffic on each node3.

Especially, when the monitoring modules deployed on each node detect significant variations in network

traffic or computing load, they send the updated measurements of system conditions to the CM. Based

on the new measurements, the CM executes the dynamic programming-based optimization algorithm

immediately to calculate a new optimal visualization path that adapts to the current system conditions.

The routing decision made by the CM using the new visualization path is described in detail in . The events

that cause system reconfigurations, and the resultant performance estimators (described in Section IV) and

measurements of total delay along the DRIVE loop are tabulated in Fig. 10.

(A) Astrophysics Datasets: Event A.1 in Fig. 10 corresponds to the initial DRIVE configuration for the

TSI visualization request issued by the client at NCSU. A snapshot of the DRIVE client graphical

user interface (GUI) visualizing TSI datasets using raycasting technique is shown in Fig. 12. In Event

A.2, the client switches the visualization method to isosurface extraction with an isovalue of 218.

The system utilizes the same configuration of computing resources, including 8 nodes for parallel

computing on the hawk cluster. In Event A.3, the client selects a new isovalue of 21, which results

in a significantly reduced number of triangles. In response, the DRIVE system decides to transmit

the geometry data directly to the remote client workstation instead of rendering the geometries on

the hawk cluster. In Event A.4, there is a rapid increase of computing load on the hawk cluster. As

a result, a slight change of isovalue forces the system to shift the isosurface extraction task to the

orbitty cluster at NCSU using 32 processor nodes. The extracted geometry data is then sent via a

3The variations in transport and computing times are either due to external events such as cross traffic on the Internet and concurrent
workload on clusters or carefully designed experiments.
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Fig. 10. Adaptive reconfiguration of DRIVE visualization loops in response to system variations and client interactions.

fast LAN connection to the client for rendering.

(B) Medical Application: Event B.1 depicts the initial DRIVE configuration for the visualization of the

visible woman MRI data using isosurface extraction technique with an isovalue of 57. In Event B.2,

the client switches to the visualization of a brain CT dataset with an isovalue of 170. Since the size

of the geometry data extracted with this isovalue is comparable to the frame buffer size and the client

workstation is heavily loaded with several other concurrent graphics applications, the system transmits

the geometry data to an intermediate PlanetLab node planetlab2.csee.usf.edu deployed at University

of South Florida, which renders and sends the final image to the client for display. In Event B.3, due

to the drastic performance decrease on the boba cluster, the system chooses a duplicate of the brain

data on the OSU storage system and uses the bale cluster for isosurface extraction. The previous

rendering node in Florida is replaced by a new PlanetLab node planetlab2.hstn.internet2.planet-lab.org

at Houston to take advantage of the higher transport bandwidth of its connection to the selected bale

cluster. In Event B.4, the hand CT data on the GIT storage system is selected for visualization

using isosurface extraction technique. Due to the small data size, the system sends the entire raw

data directly to the client to avoid the unnecessary computing overhead (data partitioning and image
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gathering) incurred for parallel processing on a cluster.

(C) Engineering Application: Event C.1 corresponds to the initial network setup for the client at UCD that

requests to visualize the rage dataset. In Event C.2, the client switches to visualize the jet shockwave

simulation data using the raycasting technique. The dataset is then retrieved from GIT storage and sent

to the boba cluster for parallel rendering using 16 nodes. In Event C.3, the visualization method is

switched to isosurface extraction. Since at that moment, there is a substantial performance drop

on the clusters and only very limited bandwidth is available, the system chose the workstation

planetlab2.flux.utah.edu deployed at University of Utah among the network for isosurface extraction.

Due to its limited rendering capability, the extracted geometry data is sent to the client for final

rendering and display.

For all the events shown in Fig. 10, the overall estimation error of transport and computing times

is less than 5.0%, which demonstrates the accuracy of our performance models for both network and

visualization parts. We also observed that the system overhead is typically of less than one second, which

is about 7.0% of the total loop delay in Fig. 10. This overhead consists of two components: setup time and

loop time. The former is the time needed to compute VRT and establish a visualization path. An example

of VRT is illustrated in Fig. 11. The computing time for a VRT scales nicely with the number of nodes

in the network due to the polynomial computing time for the dynamic programming-based optimization

algorithm, as shown in Section III-C. The latter is the time spent in delivering control messages along

the network loop for interactive visualization operations.

The setup and loop times are related to the size of VRT’s and control messages. The size of a VRT

depends on the number of modules in a visualization pipeline. A typical pipeline of common visualization

techniques such as isosurface extraction and raycasting may produce a VRT of several hundred bytes. A

control message is generally of several dozen bytes, containing user-specified parameters. Hence, we can

conveniently pack a VRT or a control message in a single TCP segment or UDP datagram, which implies

that the loop time is roughly the sum of the minimum end-to-end link delays along a visualization loop.

Once a visualization path has been established, the system only has the loop time overhead, which is

generally less than half second, if the routing table remains the same. This amount of overhead is almost

negligible compared to the end-to-end delay on the order of dozens of seconds for large-scale remote

visualization.
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MODID
0
HOSTNAME
planetlab1.kscy.internet2.planet-lab.org
IPADDR
198.32.154.202
PORTNO
CENTRALMANAGEMENTLISTENPORT
MODTYPE
MODULE_NOACTION
SERVICE
SERVICE_MPIDISABLED

MODID
1
HOSTNAME
ccil.cc.gatech.edu
IPADDR
130.207.117.12
PORTNO
COMPUTINGNODELISTENPORT
MODTYPE
MODULE_SENDRAWDATA
SERVICE
SERVICE_MPIDISABLED

MODID
2
HOSTNAME
boba121.sinrg.cs.utk.edu
IPADDR
160.36.140.77
PORTNO
COMPUTINGNODELISTENPORT
MODTYPE
MODULE_ISOEXTRACTION
SERVICE
SERVICE_MPIENABLED

MODID
3
HOSTNAME
planetlab2.csee.usf.edu
IPADDR
131.247.2.242
PORTNO
COMPUTINGNODELISTENPORT
MODTYPE
MODULE_ISORENDERING
SERVICE
SERVICE_MPIDISABLED

MODID
 4
HOSTNAME
robot.rrl.lsu.edu
IPADDR
130.39.224.168
PORTNO
COMPUTINGNODELISTENPORT
MODTYPE
MODULE_DISPLAY
SERVICE
SERVICE_MPIDISABLED

NUMBER OF MODULES: 5

Fig. 11. An example of visualization routing table (VRT) in DRIVE.

Fig. 12. DRIVE client GUI with TSI simulation dataset rendered using raycasting technique.

It is interesting to point out that the advantage of utilizing an intermediate MPI module is not very

obvious for small datasets because of the overhead incurred by data distributions and communications

among cluster nodes. As a matter of fact, for datasets of several or dozens of MBytes, a simple PC-PC

configuration with any type of server/client mode might be sufficient to deliver reasonable performances for

remote visualization (such as Event B.4). However, for large-scale scientific datasets, parallel processing

modules have become an indispensable tool supporting the visualization task. Hence, it also becomes

increasingly important to select an appropriate set of processing nodes available in the Internet to map

the visualization pipeline for the optimal performance.

To show that our system has a relatively small control overhead, we also conducted performance compar-

isons between DRIVE and ParaView for the same visualization tasks. For these tasks, DRIVE consistently

achieved comparable or somewhat better performance compared to ParaView. The configuration, however,

had to be manually performed in ParaView setup, whereas in DRIVE the configuration is automatically
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computed and is self-adaptive. The performance advantage observed in DRIVE may have been caused by

higher processing and communication overhead incurred by visualization and network transfer functions

of ParaView. However, it is not our main goal to compare the performance of our visualization modules

with that of existing ones but rather to illustrate the performance of visualization pipeline mapping onto

network nodes.

VII. CONCLUSIONS

Interactive remote visualization of large-scale scientific datasets and on-going computations is a chal-

lenging research and development task. In this paper, we present a general framework for remote visual-

ization systems, which self-adapt over wide-area networks with dynamic host and network conditions. We

have found that it is practical to develop performance models for estimating times of both visualization

computation and network transport subtasks. In addition, using these performance estimations, we devel-

oped an efficient dynamic programming method for computing an optimal configuration of a visualization

pipeline to achieve minimal end-to-end delay. By integrating a message-driven control mechanism, our

system could efficiently self-adapt to dynamic scenarios. Even though we focused on volume visualizations,

our framework can be readily extended to supporting any other computing tasks with a pipelined process

flow.

It is of future interest to study various analytical formulations of this class of problems from the

viewpoint of computational complexity. For experimental research, we plan to deploy our distributed

visualization system over dedicated networks UltraScience Net [40] and CHEETAH [41] to evaluate

possibilities of handling terabyte datasets using remote visualization. Our near-term focus in that regard

involves incorporating latest network transport protocols for high-performance shared [42] and dedicated

connections [43] with optimized remote visualization algorithms. Finally, we note that although most

visualization techniques employ a linear pipeline without branches or loops, computational science tasks

involving comparative visualizations, and coordinated computational monitoring and steering, require more

complex configurations. We plan to expand our framework to address visualization pipelines with branches

and loops.
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