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EFFECTS OF ENDOPHYTE INFECTION IN TALL FESCUE (FESTUCA
ARUNDINACEA: POACEAE) ON COMMUNITY DIVERSITY

Greg Spyreas,1,*,† David J. Gibson,† and Beth A. Middleton†

*Illinois Natural History Survey, 607 E. Peabody Drive, Champaign, Illinois 61820-6917, U.S.A.; and †Department of
Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509, U.S.A.

Recent studies have suggested that the presence of endophytes in tall fescue can lead to decreased species
richness in the associated plant community. To assess the generality of this hypothesis, a field study tested the
effects of endophyte infection on a 3-yr-old successional field dominated by Festuca arundinacea. The potential
importance of endophyte infection relative to other environmental factors was tested by including two ad-
ditional treatments: the effects of soil fertility and mowing. Contrary to previous studies, a positive relationship
was found between endophyte infection frequency and diversity ( , , , ). A2N p 23 F p 5.23 R p 0.19 P ! 0.03
strong interaction was found between the mowing treatment and endophyte infection frequency in predicting
diversity ( , , , ), where the maximum species richness was present in2N p 22 F p 36.1 R p 0.84 P ! 0.0001
plots that were both mowed and highly endophyte infected. The relationship between endophytes and diversity
varied through the successional continuum (the mowing treatments) but was generally positive. The soil in
mowed plots was drier than in unmowed plots ( , , ). We suggest that heavy mowingt p 2.1 df p 28 P ! 0.05
decreases soil moisture levels enough to reduce the interspecific competitive ability of infected F. arundinacea,
thereby promoting local diversity. Endophyte presence is important, but the previously reported negative
relationship between endophyte infection and community diversity is probably overly simplistic in complex
ecological settings.

Keywords: community diversity, cool season grasses, C3, endophyte, Festuca arundinacea, tall fescue.

Introduction

An endophyte is a parasitic to mutualistic internal fungal
resident of a host plant that is asymptomatic for some portion
of the life cycle of the fungus (Carroll 1988; Clay 1988; Petrini
1996). Endophytic fungi in grasses occur throughout the
aboveground parts and have more fungal biomass than
endophytes of other plants. Many grass endophytes are ma-
ternally transmitted via the seed; these are an extremely host-
specific and specialized subset of perennial, systemic endo-
phytes (Clay 1988, 1992; Bills 1996; Petrini 1996). The
majority of these belong to the asexual genus Neotyphodium
(sexually Ascomycota; Clavicipitaceae) (White 1987; Glenn et
al. 1996) and infect the Pooideae grasses that dominate tem-
perate areas (Clay 1990a, 1997b). Thus, it is likely that Neo-
typhodium and the Pooideae are coevolutionarily linked (Clay
1990b).

Despite the knowledge of systemic fungal infections, the eco-
logical significance of endophytes was not realized until the
mid-1970s, when the connection between the presence of fungi
in forage and various livestock poisonings was made (Bacon
et al. 1977). Consequently, the majority of grass endophyte
studies have dealt with the two widely planted forage grasses,
Festuca arundinacea Shreber. (tall fescue) and Lolium perenne
L. (perennial ryegrass) and their predominantly mutualistic
endophytes (Morgan-Jones and Gams 1982; Siegel et al. 1987;

1 Author for correspondence; e-mail spyreas@inhs.uiuc.edu.
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Bacon and Siegel 1988; Siegel 1993; Clay 1998). Studies of F.
arundinacea are of particular importance since, while native
to Europe, it is widely planted in temperate regions of
the world, providing a mosaic of endophyte-infected and en-
dophyte-free populations (Gibson and Newman 2001; Spyreas
et al. 2001).

Benefits to the fungi include nutrition, long-term protection,
and improved dissemination (by seeds) (Siegel et al. 1987).
Reported host benefits include increased resistance to both
grazing and insect herbivory, decreased nematode predation,
antimicrobial and antifungal properties, both heat and drought
stress tolerance, and increased overall vigor (e.g., tiller pro-
duction, biomass, height, seed crop, seed germination; Clay
1987, 1990a, 1997b; Cheplick et al. 1989; Petroski et al. 1990;
Guo et al. 1992; Siegel 1993). Costs to the plant, though poorly
understood, are thought to be insignificant (Hill 1994; Bacon
and Hill 1996).

Previous Population and Community-Scale Studies

Greenhouse studies have indicated increased vegetative vigor
in infected versus uninfected individuals of the same species,
with and without herbivory (Clay 1997b). Festuca arundinacea
has almost exclusively been the species studied although field
observations suggest that increased vigor with endophytic in-
fection also occurs in other grass species (Clay 1997b). The
primary exception reported to this pattern may be a slight
advantage to uninfected F. arundinacea and Lolium perenne
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reported under low-nutrient conditions (Arachevaleta et al.
1989; Cheplick et al. 1989).

There have been several studies investigating both intraspe-
cific and interspecific competition in F. arundinacea under con-
trolled environmental conditions that have shown that infected
plants are better competitors both with and without herbivory
(Clay 1990a, 1997a; Hill et al. 1991; Marks et al. 1991; Clay
et al. 1993; Clay and Holah 1999). This may explain why
attempts to establish endophyte-free pastures from highly un-
infected seed have at times been unsuccessful as a few seeds
in the mix will contain live endophytes. Dramatic increases in
infection frequencies within pastures often result (Bouton et
al. 1993; Shelby and Dalrymple 1993), indicating high intra-
specific competitiveness from endophyte-infected plants.
However, infection frequency in wild fescues (including F.
arundinacea) varies greatly within and among populations,
suggesting that infected plants may not always outcompete
uninfected plants (Spyreas et al. 2001). Furthermore, compet-
itive ability may be highly variable under field environmental
conditions, and competition studies have been conducted
largely under greenhouse conditions.

There are a paucity of grass endophyte studies within natural
communities (Clay and Leuchtmann 1989; Clay 1997a,
1997b). One study correlated infection frequencies with di-
versity. A field was disked, tilled, and planted with endophyte-
free and endophyte-infected F. arundinacea of the commercial
KY-31 variety (Clay and Holah 1999). After 4 yr, endophyte-
infected fields showed less vascular-species diversity than en-
dophyte-free fields, probably because fescue biomass increased
with endophyte infection. The authors suggest that dominance
by endophyte-infected grasses can reduce the diversity of the
plant communities in which they occur. This idea has signifi-
cant implications since endophyte-infected grasses (e.g., F.
arundinacea, L. perenne, Dactylus glomerata, Phleum pra-
tense, Poa spp.) are more abundant now than at any other
time in history, and many planted fescues readily escape and
establish themselves in the local flora (Clay 1997a; Spyreas et
al. 2001).

Our study attempts to address the problem of relying on
greenhouse experiments to ascertain the role of endophytes in
grasslands. We examine the effects of endophyte infection on
plant a diversity in a naturally established grassland. We hy-
pothesized that endophyte-infected F. arundinacea would out-
compete other plants in the community, leading to lessened
community diversity compared with areas where uninfected F.
arundinacea occurs. We also assessed the importance of abiotic
factors on diversity through measuring several variables and
through experimental manipulation using fertilizer and mow-
ing treatments. Abiotic variables are hypothesized to be less
important than the endophyte-infection frequency of F. arun-
dinacea in controlling community diversity.

Material and Methods

Site Description and Sampling Methods

Our study was conducted at the Touch of Nature Environ-
mental Center at Southern Illinois University at Carbondale
(SIU-C) (lat. 37�37�15�N, long. 89�09�30�W). This area con-
sists of fine, silty-mixed soils of the order Typic Fragiudalfs.

The site was a successional old field containing infected and
uninfected Festuca arundinacea grassland (Spyreas et al. 2001).
This grassland lies on an upland ridge surrounded by dry-mesic
forest with some of the most common species including Pan-
icum anceps Michx., Cardamine hirsuta L., Andropogon vir-
ginicus L., Sorghum halepense (L.) Pers., Tridens flavus (L.)
Hitchcock., F. arundinacea, Vernonia missurica Raf., Setaria
faberi Hermm., and Lespedeza cuneata (Dum.-Cours.) G.
Don., as well as the invasive shrubs Elaeagnus umbellata
Thunb., Rubus pensylvanicus Poir., and Rosa multiflora
Thund. The area studied was used as cropland until 1949 and
then as a horse pasture until 1977. The field was plowed in
spring 1981 and mowed annually until 1987, when it was
abandoned. Our experiment was initiated in early spring 1996,
when the field was disked (Gibson et al. 1999). Mowing and
fertilizer treatments were initiated in late spring 1996. It is not
known when or if F. arundinacea was sown into the field, but
it was a dominant species before establishing the field exper-
iment in 1996. It reestablished without reseeding to become a
dominant species following establishment of the field experi-
ment in late spring 1996.

A split-plot experimental design was established with 32
0.01-ha plots in eight blocks of four plots each. Half of the
plots in each block were mowed and hand raked twice during
the growing season, with half of these plots serving as controls
(no mowing). The plots were randomly assigned to two fer-
tilizer treatments, including annual fertilizer and control (no
fertilizer). Each year, fertilized plots received 0.08 kg m�2 of
diammonium phosphate (18-46-0), 0.06 kg m�2 of potassium
(Potash K2O, 0-0-60), and 0.07 kg m�2 of ammonium nitrate
(33-0-0) in the spring and 0.07 kg m�2 of ammonium nitrate
in the fall. The fertilizer was in granular form and broadcast
evenly across each plot by hand. Soil tests revealed that added
nutrients did not leach into adjacent control plots.

Endophyte-infection sampling was conducted in April 1999.
Within each of the 32 plots sampled, up to 20 tillers (when
present) of F. arundinacea were collected randomly for testing
for endophytic infection. One tiller per F. arundinacea clump
was sampled, except where plots had less than 20 clumps and
then more than one sample per clump had to be taken to obtain
20 for the plot. Sample size was less than 32 in some analyses
using endophyte-infection frequency because only 24 plots
contained F. arundinacea tillers large enough to be sampled
and identified in the spring. Percentage canopy cover of all
vascular plants was estimated visually using a modified Dau-
benmire scale (0%–1%, 1%–5%, 6%–25%, 26%–50%,
51%–75%, 76%–95%, 96%–100% cover classes) (Abrams
and Hulbert 1987). The spring flora was sampled in the first
week of April 1999. All plots were resampled in the first week
of September to detect species that were unidentifiable (in-
cluding F. arundinacea) in the spring. On October 15, three
measurements of both soil pH and moisture were taken in
each plot using a Kelway soil tester (Kelway Instruments,
Wyckoff, N.J.). The average of the three measurements was
used in analyses.

Endophyte Staining

We used a quick-staining technique for detecting endophytic
infection in F. arundinacea (Clark et al. 1983). Tissue samples
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Table 1

Spearman’s Rank Correlations (R Values) for All Variables Correlated with Species Richness, Endophyte Infection (EI),
Fescue Cover (FC), Mowing (MO), and Fertilizer (FZ) at the Touch of Nature Field Site

MO FZ PH WA FC EI N1 N2

Species richness 0.86∗∗∗ �0.06 0.34 �0.39∗ 0.13 0.36† 0.84∗∗∗ 0.76∗∗∗

Endophyte infection 0.46∗ �0.07 0.06 �0.21 �0.13 … 0.3† 0.3†

Fescue cover 0.16 0.43∗ �0.04 0.03 … … 0.01 �0.05
Mowing … 0.0 0.26 �0.29 … … 0.78∗∗∗ 0.71∗∗∗

Fertilizer … … 0.52∗ 0.56∗∗ 0.43∗ … �0.08 �0.04

Note. Abbreviations are as follows: WA p soil moisture; PH p soil pH; N1, N2 p Hill’s diversity index; .n p 32
† .P ! 0.1
∗ .P ! 0.05
∗∗ .P ! 0.01
∗∗∗ .P ! 0.001

were taken from leaf sheath bases because these contain the
highest density of endophyte mycelium (Morgan-Jones and
Gams 1982). Plant tissues with visible epiphytic fungal infec-
tion that consisted of germinated surface spores, extensive col-
onization of netted, obviously saprobic fungal hypha, or se-
nescent leaf tissue were discarded. Staining methods are
described further in Spyreas (2000).

Explanation of Measured Variables

The mowing (MO) and fertilizer (FZ) treatments were re-
corded as binomial variables. Endophyte-infection frequency
(EI) is the percentage of the 20 tillers of F. arundinacea sampled
per plot in which endophyte infection was noted. Local di-
versity was estimated according to three measures of diversity
belonging to Hill’s family of numbers (Ludwig and Reynolds
1988), where SN is species richness, N1 incorporates the Shan-
non index to estimate the number of abundant species, and
N2 incorporates the Simpson index to estimate the number of
very abundant species. Abundant and very abundant can be
thought of as those species that are very common and domi-
nant in a given area, so much so that they preclude the pos-
sibility of a diverse community. High values of N1 indicate
that there were few abundant species with low overall even-
ness. High values of N2 indicate that there were few very
abundant species, with even lower evenness. Diversity mea-
sures were calculated using midpoints of the cover classes and
the number of species.

Data Analysis

The following general model was tested:

local diversity p a + b (% endophyte infection)

+ c (soil pH) + d (soil moisture)

+ e (fertilizer treatment)

+ f (mowing treatment).

It was expected that local diversity would be less correlated
with environmental variables or treatments than it would be
with endophyte infection. The values for endophyte infection
were found to contain two outliers that were omitted in the
analyses. The percentage variables, endophyte infection, and

soil moisture were nonnormal. Only endophyte-infection fre-
quency could be normalized with an arcsine transformation
(Kolmogorov-Smirnoff test; ) (Sigma Stat 3.0; Jan-P p 0.226
del Corporation 1995). All variables had equal variances (Lev-
ene median test; ) (Sigma Stat 3.0; Jandel Corporationa 1 0.05
1995). Residual values in all analyses were normal and had
equal variances (Sigma Stat 3.0; Jandel Corporation 1995).

Initial analysis (Spearman’s rank correlation) was performed
on the raw, untransformed data to determine whether multi-
collinearity existed among variables (SAS Institute 1990). Se-
lected variables were then analyzed (transformed and without
outliers) using linear regression analysis on continuous vari-
ables, one-way ANOVA on discrete variables, and multiple
regression analysis to generate predictor equations (SAS In-
stitute 1990). For all tests in the study, the significance level
was set at .P ! 0.05

Results

Spearman’s Rank Correlation Test for Multicollinearity

Species richness was not significantly correlated with en-
dophyte infection, but the data suggest a weakly positive cor-
relation. Species richness was negatively correlated with soil
moisture and positively correlated with mowing. Mowing was
also positively correlated with the two other diversity values
(N1, N2). Endophyte infection frequency was positively cor-
related with mowing, and fertilizer was positively correlated
with soil pH, soil moisture, and cover of Festuca arundinacea
(table 1).

ANOVA and Simple Regression

Variables of interest to our hypothesis were analyzed using
one-way ANOVA and simple linear regression. In all results,
summaries of the untransformed data are graphed while results
using transformed variables are presented in the text. All di-
versity measures (SN, N1, N2) were positively related to en-
dophyte infection (fig. 1; species richness: , ,F p 5.23 df p 23

, ). Species richness and endophyte infection2R p 0.19 P ! 0.03
were both higher in mowed versus unmowed plots (fig. 2A;
ANOVA: SN, , , ) (fig. 2B; EI,F p 9.4 df p 1,28 P ! 0.0001

, , ). Soil moisture was lower inF p 2.6 df p 1,22 P ! 0.02
mowed plots (fig. 2C; ANOVA: , ,F p 2.1 df p 1,28 P !

). A linear regression using endophyte infection as the0.05
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Fig. 1 Species diversity plot�1 by endophyte infection frequency
plot�1 at the Touch of Nature field site. Arcsine values were used in
calculations; raw data are plotted in this figure. Species richness p

infection) ( , ,26.339 + (0.060 # endophyte N p 24 R p 0.19 P !

); infection) ( , 20.03 N1 p 2.276 + (0.041 # endophyte N p 24 R p
, ); infection) (0.19 P ! 0.03 N2 p 1.549 + (0.036 # endophyte N p

, , ).224 R p 0.19 P ! 0.03

Fig. 2 A, Species richness ( SE) plot�1 by mowing treat-mean � 1
ment at the Touch of Nature field site ( , ,F p 9.4 df p 1, 28 P !

). B, Endophyte infection frequency ( SE) plot�1 by0.0001 mean � 1
mowing treatment at the Touch of Nature field site. Arcsine values
were used in calculations; raw data were plotted ( ,F p 2.6 df p

, ). C, Soil moisture ( SE) by mowing treatment1, 22 P ! 0.02 mean � 1
at the Touch of Nature field site ( , , ).F p 2.1 df p 1, 28 P ! 0.05

dependent variable and soil moisture as the independent var-
iable showed a significant negative relationship (fig. 3; F p

, , , ).25.99 df p 23 R p 0.21 P ! 0.02

Multiple Linear Regression

Multiple regression was performed on the three diversity
measurements (SN, N1, and N2) and their significant predictor
variables (table 2). Species richness was the primary dependent
variable used as it had the highest correlation with the mea-
sured independent variables. Species richness was found to be
best predicted by the single independent variable mowing (ta-
ble 2; , ). There were no other variables2R p 0.758 P ! 0.0001
that significantly predicted species richness for the plots. When
we deliberately added endophyte infection to the model to
assess its predictive value, it increased the R2 by only 0.002
and was not a significant individual predictor (table 2, model
1).

In unmowed plots, species richness decreased with infection
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Fig. 3 Endophyte infection frequency plot�1 by soil moisture plot�1

at the Touch of Nature field site. Arcsine values were used in calcu-
lations; raw data were plotted. Endophyte infection p 145.381 �

water) ( , , adj. , ).2(1.160 # soil F p 4.928 N p 24 R p 0.15 P ! 0.04

frequency, but in mowed plots, species richness increased with
increasing infection frequency (fig. 4; table 2, mowing #

interaction: ). The interactive term be-endophyte P ! 0.003
tween mowing and endophyte infection was added to the mul-
tiple regression model and was found to be a significant var-
iable (table 2; ). When the variable accounting forP ! 0.0001
the interaction was included in the regression analysis, the
simple predictor variables (main effects) become nonsignificant
(table 2, model 2).

Unless indicated, the results for the two diversity indices
(N1, N2) mirrored those for species richness. The best vari-
ables at predicting N1 and N2 were mowing and F. arundi-
nacea cover, though only mowing was a significant predictor
(table 2). b values in our regression model show that mowing
was associated with increased N2 levels and that F. arundi-
nacea cover was associated with lower N2 (diversity). N2 was
the only diversity value negatively correlated with F. arundi-
nacea abundance. This finding is not surprising because F.
arundinacea is a dominant species at the site, so those plots
with a major dominant absent likely will be more diverse.

Discussion

In our study, endophyte infection was positively related to
three separate measures of diversity (fig. 1). A previous study
using Festuca arundinacea seeded into a newly disked field
showed that endophyte-infected fields had much lower diver-
sity compared to endophyte-free fields after 4 yr (Clay and
Holah 1999). Our study used a previously established grass
growing within a diverse matrix of co-associates, so it likely
presents a more typical ecological picture of F. arundinacea
community dynamics.

Mowing

Mowing and other disturbances increase diversity in grass-
lands as predicted by the intermediate disturbance hypothesis
(Armesto and Pickett 1985; Wilson 1994; Collins et al. 1995).
Not surprisingly, in this study, the lowest levels of diversity
were found in unmowed plots because they were becoming
dominated by dense, woody brush (Eleagnus umbellata, Rubus
spp.) (fig. 2A).

Our study found a positive relationship between endophyte-
infection frequency and mowing (table 1; fig. 2B). In contrast,
Shelby and Dalyrymple (1993) found that uninfected, annually
mown plots of F. arundinacea remained endophyte free after
4 yr, while unmowed plots increased to 8% infection. It is
likely that drought was not a limiting factor for F. arundinacea
in their study because they were not mown as intensively. In-
creased infection without mowing (Shelby and Dalrymple
1993) is likely explained by the dispersal and establishment
of new, infected seed into their unmowed plots. In their study,
mown F. arundinacea had higher density and ground coverage
after 4 yr compared to unmown. These were cattle-grazed ar-
eas and because infected F. arundinacea seed can survive the
digestive tract of livestock, animals can be a significant source
of infected seed (Shelby and Schmidt 1991). Therefore, the
mowed areas were likely too dense to allow new, infected seed
recruitment. Van Santen et al. (1991) concluded that because
mown plots are denser than unmown plots, endophyte-infected
seedlings arising from the seed of neighboring fields do not
become established.

Drought Tolerance of Tall Fescue and Diversity

The most significant finding of our study was that the pattern
of species richness in unmowed versus mowed plots varied
with infec-
tion frequency; i.e., there was an interactive effect. Species
richness decreased with infection frequency in unmowed plots,
but in mowed plots, species richness increased with increasing
infection frequency (fig. 4). We expected richness to increase
with disturbance (Armesto and Pickett 1985), but we did not
expect endophyte-infected fescue to be more prominent in
mowed areas. We suggest that this interaction is partially at-
tributable to soil moisture/endophyte relationships. Mowed
plots were cut almost to the soil surface after mowing and had
increased solar radiation throughout the year (D. J. Gibson
and B. A. Middleton, unpublished data). Unmowed plots had
tall and often dense vegetation shading the fine, silty soil. The
more drought-prone mown plots likely had high frequencies
of infection because infected F. arundinacea has increased sur-
vivorship in droughts (West 1994). Thus, mowed F. arundi-
nacea likely suffered drought stress, and those individuals that
were infected were more likely to survive under summer stress.

In southern Illinois, F. arundinacea is commonly the dom-
inant competitor when established in areas with ample mois-
ture. Indeed, adjacent plots not used in this study that were
only mowed once annually often contained F. arundinacea in
over 100% of their area (D. J. Gibson and B. A. Middleton,
unpublished data). Therefore, increased diversity in mown
plots may be partially explained by a decreased interspecific
competitive ability of F. arundinacea in drier areas. This may
explain, in part, why soil moisture was negatively correlated
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Fig. 4 Interaction of mowing and endophyte infection frequency
plot�1 for species richness data at the Touch of Nature field site
( , , , ).2N p 24 R p 0.84 F p 36.1 P ! 0.0001

Table 2

Multiple Regression Analysis of Those Variables (Mowing, Fescue Festuca arundinacea Cover, and Endophyte Infection)
That Best Predict Diversity (N1, N2, and Species Richness) at the Touch of Nature Field Site

Partial R2 Model R2 Partial probability 1 F Model probability 1 F

Diversity index N1:
Mowing regime 0.5580 0.5580 0.0001 0.0001
Fescue cover 0.0510 0.6090 0.1120 0.0001

Diversity index N2:
Mowing regime 0.4000 0.4000 0.0001 0.0009
Fescue cover 0.1080 0.5080 0.0440 0.0006

Species richness (model 1):
Mowing regime 0.7580 0.7580 0.0001 0.0001
Endophyte infection 0.0020 0.7600 0.6610 0.0001

Species richness (model 2):
Endophyte infection # mowing 0.8400 0.8400 0.0030 0.0001
Mowing regime 0.0010 0.8410 0.7030 0.0001
Endophyte infection 0.0000 0.8410 1.0000 0.0001

Note. Hill’s diversity index ( , df , ). Hill’s diversity indexN1 p 4.4 + 4.05(mowing) +�0.021(fescue cover) N p 24 model p 2 df p 23
( , df , ). Species richness model 1 (using simpleN2 p 4.4 + 4.05(mowing) +�0.021(fescue cover) N p 24 model p 2 df p 23 variables) p

( , df , ). Species richness model 2 (using an interaction7.95 + 7.36(mowing regime) +�0.009(endophyte infection) N p 24 model p 2 df p 23
variable): interaction variables cannot be used in predictor equations ( , df , ).N p 24 model p 3 df p 23

with diversity (table 1) and why diversity decreased with F.
arundinacea dominance (table 2, N2). Competitive ability of
early successional plants can be very sensitive to varying levels
of water availability (Pickett and Bazzaz 1978; Bazzaz 1979).

Intraspecific advantage under drought stress has been shown
for some endophyte-infected species (Clay 1997b). Endophyte-
infected F. arundinacea has been found to have increased sur-
vivorship and growth under drought conditions (West 1994
and references within). Festuca arundinacea can be intolerant
of moderate summer water deficits in areas such as the south-
eastern United States (West 1994). Infected F. arundinacea
shows rapid stomatal closure under air-drying conditions and
drought (Elmi et al. 1990; Buck et al. 1997), leading to de-
creased overall transpiration (Elmi et al. 1990). Earlier and
greater leaf rolling and better long-term survival under water
stress are related to endophyte-infected versus uninfected F.
arundinacea (Arachevaleta et al. 1989). At high leaf temper-
atures, photosynthetic rates of up to 25% higher are found in
infected plants (Marks and Clay 1996). Under water stress,
infection-affected stomatal activity leads to reduced water loss
from transpiration (Malinowski et al. 1997) as well as main-
tained turgor pressure (Bacon and Hill 1996). In support of
this argument, we found that endophyte infection was nega-
tively correlated with soil moisture (fig. 3), and mowed plots
were significantly lower in soil-moisture levels (fig. 2C).

Endpophyte-related drought tolerance is coupled with in-
traspecific competitiveness in that maintenance of dense stands
interferes with establishment and reproductive efficiency of en-
dophyte-free plants (Clay 1991; Hill et al. 1991; West 1994).
West (1994) claims that under field conditions, greater growth
and persistence of infected plants probably results more from
both enhanced competitiveness and resistance to drought and
herbivory than from direct stimulation of growth. We assume
similar levels of herbivory on fescue in mowed and unmowed
plots, thus leaving drought stress as the factor likely affecting
the grass/endophyte relationship. Interestingly, it has been
shown that drought stress in infected F. arundinacea greatly

increased endophyte-synthesized ergopeptine and pyrrolizidine
concentrations (Belesky et al. 1989; Arachevaleta et al. 1992),
suggesting an interaction between drought and the production
of secondary compounds. Mechanisms for these changes in
physiology leading to increased drought/heat tolerance and
enhanced growth are not well understood. Influences might
include the production of osmotically active substances, hor-
mones, and alkaloids by the endophytes (Malinowski et al.
1997). Endophytes may produce or cause the plant to produce
auxin-like plant growth regulators and/or inhibitors, or they
may alter hormone metabolism. Auxin-like compounds have
been isolated from cultures of Balansia epichloë (Siegel et al.
1987).
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Further Examination of the Obligate Mutualism

We may assume that the diversity of this old field is not
driven by one dominant grass but by many interacting forces.
Though we suggest some beneficial effects from endophytes in
our study (drought tolerance), an obligate mutualism has not
been shown. The level to which mutualistic endophytes are
beneficial to grasses in natural systems has been questioned
for a number of reasons. Saikkonen et al. (1998) argue that
unlike the highly controlled agricultural studies conducted thus
far, endophyte-plant-herbivore interactions should be more
variable in natural systems. Other supporting arguments in-
clude the following:

1. Almost all research thus far has been on introduced spe-
cies or cultivars. These plants and their endophytes have
limited genotypic diversity because of selective breeding (Saik-
konen et al. 1998) and may not behave like their wild pro-
genitors in an ecological context. Indeed, Neotyphodium coen-
ophialum from KY-31 F. arundinacea sampled in the United
States was shown to be genetically depauperate compared to
two native fescues and all other F. arundinacea (Leuchtmann
and Clay 1990). We have also found variable infection fre-
quencies among native populations of F. arundinacea in Eng-
land, further supporting the nonobligate nature of the mutu-
alism (Spyreas et al. 2001).

2. A second point concerns the extent to which competitive
superiority can be attributed to herbivory-deterring alkaloids
in the grass. It is known that antipathogenic and antiherbivory
properties are conferred by a diverse array of fungally derived
alkaloids that become present in plant tissue (Bush et al. 1993;
Porter 1994). Many consider it to be logical that this rela-
tionship would evolve considering that within the plant king-
dom, the Poaceae are one of only a few groups lacking the
ability to produce secondary metabolites (such as alkaloids)
on their own (Bacon and Hill 1996).

However, alkaloid production is under the influence of both
the environment and host/fungal genomes (Arachevaleta et al.
1989; Leuchtmann 1992; Bacon 1993; Agee and Hill 1994;
Roylance et al. 1994). Thus, constraints upon biosynthesis
offer a wide spectrum of biological activity (Siegel and Bush
1997) and may not simply be a question of infected popula-
tions incurring less herbivory. The number of alkaloid types
and concentrations produced by cultivar grasses may be atyp-
ically high. This may be related to either artificial selection or
the atypically high-nutrient conditions of agricultural and turf-
grass systems (Cheplick et al. 1989; Christensen et al. 1998;
Saikkonen et al. 1998). Additionally, the frequency of infected
plants may be unrelated to alkaloid levels, as these are highly
variable among wild, infected plants, even within populations
(Saikkonen et al. 1998). Unlike cultivars of F. arundinacea,
which contain high levels of two or three types of alkaloids,
seven other species of Festuca tested for alkaloids produce none
or only one type of alkaloid (Siegel and Bush 1997). However,
the relationship between environmental variables, such as soil
fertility and endophytes, remains ambiguous, as a recent study
on F. arundinacea found no effects on the abundance of Neo-
typhodium hyphae under three fertilization treatments
(Hickam 1998). Similarly, field studies, including ours, show
no endophyte-by-soil-fertility relationship (Schulthess and
Faeth 1998) (table 1).

Wild Festuca arizonica and its endophyte Neotyphodium
starii produce only one alkaloid, which occurs at very low
levels and is typical of most native-grass populations (Siegel
and Bush 1996). Studies on this grass in its native range of
Pinus pondersa/bunchgrass communities in the western United
States indicate that Neotyphodium infection is actually lower
in cattle-, elk-, and deer-grazed areas, compared to areas un-
grazed for 20 yr (Schulthess and Faeth 1998), contradicting
the idea that infection deters herbivory and increases grass
survivorship. Most studies of endophyte-grass-herbivore in-
teractions have indicated deterred herbivory with infection and
have used either introduced livestock or nonnative, generalist
invertebrate pests. Specialist herbivores may be more resistant
to allelochemicals (Saikkonen et al. 1998), as most herbivore
invertebrate species are specialists with few hosts (Crawley
1983).

3. Though endophyte infection is assumed to deter herbiv-
ory, herbivory on grasses may have weak effects on overall
plant fitness and, therefore, population dynamics. Perennial
grasses can be adapted to tolerate high and consistent levels
of herbivory because of their basal meristems (Crawley 1983;
Marquis 1992). Our study site has high levels of resident her-
bivores, including deer and rabbits (G. Spyreas, personal ob-
servation), as no hunting is allowed. Whether herbivory on F.
arundinacea was detrimental to the vigor of the plant, as is
commonly assumed, is not known. However, we found no
indication that this was affecting competitiveness of infected
versus uninfected F. arundinacea differentially.

Ecology of F. arundinacea and Cool Season Grasses

Study and speculation concerning host grass success has
overwhelmingly emphasized the importance of herbivore de-
terrence by endophytes. The idea of a “super” grass, un-
encumbered by herbivory, outcompeting all other highly pal-
atable neighbors, is an idea we believe to be too often coupled
with endophytes. Though highly endophyte-infected cultivars
of tall fescue often act as a long-lasting pest species when
established, we found no evidence to indicate that endophyte-
infected tall fescue decreases local diversity any more than its
uninfected neighbors. Our study indirectly shows that herbiv-
ory is less important in explaining this potential mutualism
than previously thought and that endophyte-induced drought
tolerance may be more crucial. This and other studies show a
narrow ecological range where endophytes are markedly mu-
tualistic (Cheplick et al. 1989; West 1994; Marks and Clay
1996). For example, it is known that C3 grasses are less suc-
cessful than C4 in more xeric conditions (Barnes et al. 1983;
Archer 1984). Our research is consistent with the idea that
under drought-stressed conditions, in the absence of an altered
photosynthetic pathway, i.e., C4, CAM, some endophytes can
help cool season C3 grasses better survive and compete.
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