Southern Illinois University Carbondale OpenSIUC

Miscellaneous (presentations, translations, interviews, etc)

Random Dynamics (SIUC 2006 Outstanding Scholar Public Lecture)

Salah-Eldin A. Mohammed
Southern Illinois University Carbondale, salah@sfde.math.siu.edu

Follow this and additional works at: http:// opensiuc.lib.siu.edu/math_misc
Part of the Mathematics Commons
Public Lecture; 2006 Outstanding Scholar; Southern Illinois University; Carbondale, Illinois;
November 7, 2006

Recommended Citation

Mohammed, Salah-Eldin A., "Random Dynamics (SIUC 2006 Outstanding Scholar Public Lecture)" (2006). Miscellaneous (presentations, translations, interviews, etc). Paper 9.
http://opensiuc.lib.siu.edu/math_misc/9

RANDOM DYNAMICS

Salah Mohammed

a
http://sfde.math.siu.edu/

Public Lecture: 4:00pm, November 7, 2006
Life Science III Auditorium
Southern Illinois University
Carbondale, Illinois, USA
${ }^{a}$ Department of Mathematics, SIU-C, Carbondale, Illinois, USA

Acknowledgment

■ Collaborators: M. Scheutzow (Berlin, Germany) Y. Hu (Lawrence, KS), M. Arriojas (Caracas, Venezuela), G. Pap (Budapest, Hungary) .

Acknowledgment

- Collaborators: M. Scheutzow (Berlin, Germany) Y. Hu (Lawrence, KS), M. Arriojas (Caracas, Venezuela), G. Pap (Budapest, Hungary) .
- Research supported by NSF, NATO, Humboldt Foundation.

The Plan

The Plan

\square Background: How I became a mathematician?

The Plan

\square Background: How I became a mathematician?
\square A probabilist's glossary:

The Plan

\square Background: How I became a mathematician?
\square A probabilist's glossary:
Probability of an event.

The Plan

\square Background: How I became a mathematician?
\square A probabilist's glossary:
Probability of an event. Random variable.

The Plan

\square Background: How I became a mathematician?
\square A probabilist's glossary:
Probability of an event. Random variable.
Random process.

The Plan

\square Background: How I became a mathematician?
\square A probabilist's glossary:
Probability of an event. Random variable.
Random process.
Brownian motion.

The Plan

\square Background: How I became a mathematician?
\square A probabilist's glossary:
Probability of an event. Random variable.
Random process.
Brownian motion.
Calculus of K. Itô:

The Plan

\square Background: How I became a mathematician?

- A probabilist's glossary:

Probability of an event.
Random variable.
Random process.
Brownian motion.
Calculus of K. Itô: Random version of Newton's calculus. (1944-1951)

The Plan

\square Background: How I became a mathematician?
\square A probabilist's glossary:
Probability of an event.
Random variable.
Random process.
Brownian motion.
Calculus of K. Itô: Random version of Newton's calculus. (1944-1951)

- Examples of random systems with memory: from to stock market fluctuations.

The Plan-Contd

The Plan-Contd

- Evolution of random systems with memory.

The Plan-Contd

- Evolution of random systems with memory.
\square Encoding of the memory via "slicing" the random evolution path.

The Plan-Contd

- Evolution of random systems with memory.
- Encoding of the memory via "slicing" the random evolution path.
- Consider collection of all possible states (alias state space), furnished with algebraic operations (addition, subtraction, scaling) and measure of distance and angle between states.

The Plan-Contd

- Evolution of random systems with memory.
- Encoding of the memory via "slicing" the random evolution path.
- Consider collection of all possible states (alias state space), furnished with algebraic operations (addition, subtraction, scaling) and measure of distance and angle between states.
- State space is BIG, with infinitely many dimensions.

The Plan-Contd

- Evolution of random systems with memory.
- Encoding of the memory via "slicing" the random evolution path.
- Consider collection of all possible states (alias state space), furnished with algebraic operations (addition, subtraction, scaling) and measure of distance and angle between states.
- State space is BIG, with infinitely many dimensions.
- View dynamics/time-evolution of slice within the state space.

The Plan-Contd

- Evolution of random systems with memory.
- Encoding of the memory via "slicing" the random evolution path.
- Consider collection of all possible states (alias state space), furnished with algebraic operations (addition, subtraction, scaling) and measure of distance and angle between states.
- State space is BIG, with infinitely many dimensions.
- View dynamics/time-evolution of slice within the state space.
■ Mathematics gets harder but is still "doable".

The Plan-Contd

The Plan-Contd

Concept of "random flow" to describe dynamics in state space.

The Plan-Contd

- Concept of "random flow" to describe dynamics in state space.
- Equilibria: probabilistically stationary states.

The Plan-Contd

- Concept of "random flow" to describe dynamics in state space.
- Equilibria: probabilistically stationary states.
\square Stability of equilibria.

The Plan-Contd

- Concept of "random flow" to describe dynamics in state space.
- Equilibria: probabilistically stationary states.
\square Stability of equilibria.
- Random dynamics near equilibria: structure within chaos.

The Plan-Contd

- Concept of "random flow" to describe dynamics in state space.
- Equilibria: probabilistically stationary states.
\square Stability of equilibria.
- Random dynamics near equilibria: structure within chaos.
- Existence of non-linear stable/unstable "smooth portions" of the state space near equilibria. Such smooth portions are called manifolds.

How I became a mathematician?

How I became a mathematician?

- Born in Rufaa (Sudan), Sub-Saharan Africa.

How I became a mathematician?

- Born in Rufaa (Sudan), Sub-Saharan Africa. Grew up in a poverty-stricken semi-illiterate society-but a lot of motivation/support from parents, with a great deal of vision.

How I became a mathematician?

- Born in Rufaa (Sudan), Sub-Saharan Africa. Grew up in a poverty-stricken semi-illiterate society-but a lot of motivation/support from parents, with a great deal of vision.
- High school days in Atbara (North Sudan), "motivated" by free lunches(!) from school principal,

How I became a mathematician?

- Born in Rufaa (Sudan), Sub-Saharan Africa. Grew up in a poverty-stricken semi-illiterate society-but a lot of motivation/support from parents, with a great deal of vision.
- High school days in Atbara (North Sudan), "motivated" by free lunches(!) from school principal, and challenged by two Egyptian expatriate teachers:

How I became a mathematician?

- Born in Rufaa (Sudan), Sub-Saharan Africa. Grew up in a poverty-stricken semi-illiterate society-but a lot of motivation/support from parents, with a great deal of vision.
- High school days in Atbara (North Sudan), "motivated" by free lunches(!) from school principal, and challenged by two Egyptian expatriate teachers: To solve multi-starred ${ }^{(*, * *, * * *)}$ problems from Durell's high school geometry book.

How I became a mathematician?

- Born in Rufaa (Sudan), Sub-Saharan Africa. Grew up in a poverty-stricken semi-illiterate society-but a lot of motivation/support from parents, with a great deal of vision.
- High school days in Atbara (North Sudan), "motivated" by free lunches(!) from school principal, and challenged by two Egyptian expatriate teachers: To solve multi-starred ${ }^{(*, * *, * * *)}$ problems from Durell's high school geometry book.
- Supported by government scholarships through school, university and graduate school in the UK. Further details in web-site http://sfde.math.siu.edu/.

How I became-Contd

How I became-Contd

- University of Khartoum: Mathematics vs Medicine?

How I became-Contd

\square University of Khartoum: Mathematics vs Medicine?

- Started as a geometer in the UK (Warwick) and then moved into probability and stochastic analysis in Khartoum during the early eighties.

How I became-Contd

- University of Khartoum: Mathematics vs
- Started as a geometer in the UK (Warwick) and then moved into probability and stochastic analysis in Khartoum during the early eighties. Wrote two research monographs (Pitman 1978, 1984) in Khartoum during tough economic times.

How I became-Contd

- University of Khartoum: Mathematics vs
- Started as a geometer in the UK (Warwick) and then moved into probability and stochastic analysis in Khartoum during the early eighties. Wrote two research monographs (Pitman 1978, 1984) in Khartoum during tough economic times.
- Research in mathematics is "cheap"-ingredients: pencil, paper and books. Cf. experimental physics!

How I became-Contd

- University of Khartoum: Mathematics vs
- Started as a geometer in the UK (Warwick) and then moved into probability and stochastic analysis in Khartoum during the early eighties. Wrote two research monographs (Pitman 1978, 1984) in Khartoum during tough economic times.
- Research in mathematics is "cheap"-ingredients: pencil, paper and books. Cf. experimental physics!
- Immigrated to US (Carbondale) from Sudan (Khartoum) in 1984.

How I became-Contd

- University of Khartoum: Mathematics vs
- Started as a geometer in the UK (Warwick) and then moved into probability and stochastic analysis in Khartoum during the early eighties. Wrote two research monographs (Pitman 1978, 1984) in Khartoum during tough economic times.
- Research in mathematics is "cheap"-ingredients: pencil, paper and books. Cf. experimental physics!
- Immigrated to US (Carbondale) from Sudan (Khartoum) in 1984.
- Enormous support from family throughout.

A Probabilist's Glossary

A Probabilist's Glossary

Sample space Ω with sample points ω picked at random from Ω.

A Probabilist's Glossary

Sample space Ω with sample points ω picked at random from Ω.

Example:

A Probabilist's Glossary

Sample space Ω with sample points ω picked at random from Ω.

Example:
" A dicey situation."

A Probabilist's Glossary

Sample space Ω with sample points ω picked at random from Ω.

Example:
" A dicey situation."
A "fair" die is thrown with six equally likely outcomes

$$
\Omega=\{1,2,3,4,5,6\} .
$$

A Probabilist's Glossary

Sample space Ω with sample points ω picked at random from Ω.

Example:
" A dicey situation."
A "fair" die is thrown with six equally likely outcomes

$$
\Omega=\{1,2,3,4,5,6\} .
$$

A sample point ω could be any of the numbers

$$
1,2,3,4,5,6
$$

Glossary-contd

Glossary-contd

An event is a collection of sample points.

Glossary-contd

An event is a collection of sample points.
Examples of events are

$$
\begin{gathered}
A_{1}=\{5\}, A_{2}=\{2,4,3\}, A_{3}=\{1,2,3,4,5,6\} \\
A_{5}=\{\text { no number }\}
\end{gathered}
$$

Glossary-contd

An event is a collection of sample points.
Examples of events are

$$
\begin{gathered}
A_{1}=\{5\}, A_{2}=\{2,4,3\}, A_{3}=\{1,2,3,4,5,6\} \\
A_{5}=\{\text { no number }\}
\end{gathered}
$$

with probabilities

$$
\begin{aligned}
P\left(A_{1}\right)=\frac{1}{6}, P\left(A_{2}\right)=\frac{3}{6} & =\frac{1}{2}, P\left(A_{3}\right)=\frac{6}{6}=1 \\
P\left(A_{5}\right) & =0
\end{aligned}
$$

Glossary-contd

An event is a collection of sample points.
Examples of events are

$$
\begin{gathered}
A_{1}=\{5\}, A_{2}=\{2,4,3\}, A_{3}=\{1,2,3,4,5,6\} \\
A_{5}=\{\text { no number }\}
\end{gathered}
$$

with probabilities

$$
\begin{aligned}
P\left(A_{1}\right)=\frac{1}{6}, P\left(A_{2}\right)=\frac{3}{6} & =\frac{1}{2}, P\left(A_{3}\right)=\frac{6}{6}=1 \\
P\left(A_{5}\right) & =0
\end{aligned}
$$

A_{3} is a sure event, A_{5} is an impossible event.

Glossary-Contd

Glossary-Contd

A random variable is a (numerical) function from the sample space Ω to the real numbers R :

Glossary-Contd

A random variable is a (numerical) function from the sample space Ω to the real numbers R :

$$
\begin{aligned}
X: \Omega & \rightarrow \mathbf{R} \\
\omega & \mapsto X(\omega)
\end{aligned}
$$

Glossary-Contd

A random variable is a (numerical) function from the sample space Ω to the real numbers R :

$$
\begin{aligned}
X: \Omega & \rightarrow \mathbf{R} \\
\omega & \mapsto X(\omega)
\end{aligned}
$$

It has the property that for any two numbers $a<b$ (in \mathbf{R}), the collection of all sample points ω with $a<X(\omega)<b$ is an event.

Glossary-Contd

A random variable is a (numerical) function from the sample space Ω to the real numbers \mathbf{R} :

$$
\begin{aligned}
X: \Omega & \rightarrow \mathbf{R} \\
\omega & \mapsto X(\omega)
\end{aligned}
$$

It has the property that for any two numbers $a<b$ (in \mathbf{R}), the collection of all sample points ω with $a<X(\omega)<b$ is an event.
The probabilities $P(a<X<b)$ of all such events determine the distribution of the random variable X.

Glossary-Contd

A random variable is a (numerical) function from the sample space Ω to the real numbers R :

$$
\begin{aligned}
X: \Omega & \rightarrow \mathbf{R} \\
\omega & \mapsto X(\omega)
\end{aligned}
$$

It has the property that for any two numbers $a<b$ (in \mathbf{R}), the collection of all sample points ω with $a<X(\omega)<b$ is an event.

The probabilities $P(a<X<b)$ of all such events determine the distribution of the random variable X.

Random variables may have values in more general spaces than the real numbers \mathbf{R}.

Glossary-Contd

Glossary-Contd

Another Example:

Glossary-Contd

Another Example:

Roll two dice. The sum X of their faces is a random variable on the sample space

$$
\begin{gathered}
\Omega=\{(i, j): i, j=1,2,3,4,5,6\} \\
\omega=(i, j), X(\omega)=i+j, i, j=1,2,3,4,5,6 .
\end{gathered}
$$

Glossary-Contd

Another Example:
Roll two dice. The sum X of their faces is a random variable on the sample space

$$
\begin{gathered}
\Omega=\{(i, j): i, j=1,2,3,4,5,6\} \\
\omega=(i, j), X(\omega)=i+j, i, j=1,2,3,4,5,6 .
\end{gathered}
$$

The random variable X takes all integer values between 2 and 12.

Glossary-Contd

Another Example:
Roll two dice. The sum X of their faces is a random variable on the sample space

$$
\begin{gathered}
\Omega=\{(i, j): i, j=1,2,3,4,5,6\} \\
\omega=(i, j), X(\omega)=i+j, i, j=1,2,3,4,5,6 .
\end{gathered}
$$

The random variable X takes all integer values between 2 and 12.

Distribution function of X is

$$
F(x):=P(X \leq x)
$$

where x runs through all possible values of X

Glossary-Contd

A random variable $X: \Omega \rightarrow \mathbf{R}$ has normal distribution $N\left(\mu, \sigma^{2}\right)$ if

$$
P(X \leq x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\} d y
$$

for all real x. Exponential-base $e=2.71828$ approx.

Glossary-Contd

A random variable $X: \Omega \rightarrow \mathbf{R}$ has normal distribution $N\left(\mu, \sigma^{2}\right)$ if

$$
P(X \leq x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\} d y
$$

for all real x. Exponential-base $e=2.71828$ approx.
The mean (or average) of X is μ and the variance is σ^{2}.

Glossary-Contd

A random variable $X: \Omega \rightarrow \mathbf{R}$ has normal distribution $N\left(\mu, \sigma^{2}\right)$ if

$$
P(X \leq x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\} d y
$$

for all real x. Exponential-base $e=2.71828$ approx.
The mean (or average) of X is μ and the variance is σ^{2}.
Normal distributions are important building blocks for modelling random evolution.

Normal Density

Normal Density

Normal Density $N\left(\mu, \sigma^{2}\right)$

Normal Density

Normal Density $N\left(\mu, \sigma^{2}\right)$

Glossary-contd

Glossary-contd

Two random variables $X_{1}, X_{2}: \Omega \rightarrow \mathbf{R}$ are independent if the probability of the event

$$
\left(a_{1}<X_{1}<b_{1} \text { and } a_{2}<X_{2}<b_{2}\right)
$$

is equal to the product

$$
P\left(a_{1}<X_{1}<b_{1}\right) \cdot P\left(a_{2}<X_{2}<b_{2}\right)
$$

Glossary-contd

Two random variables $X_{1}, X_{2}: \Omega \rightarrow \mathbf{R}$ are independent if the probability of the event

$$
\left(a_{1}<X_{1}<b_{1} \text { and } a_{2}<X_{2}<b_{2}\right)
$$

is equal to the product

$$
P\left(a_{1}<X_{1}<b_{1}\right) \cdot P\left(a_{2}<X_{2}<b_{2}\right)
$$

A random process is a family of random variables

$$
X(t): \Omega \rightarrow \mathbf{R}
$$

indexed by real t (usually time).

Glossary-contd

Two random variables $X_{1}, X_{2}: \Omega \rightarrow \mathbf{R}$ are independent if the probability of the event

$$
\left(a_{1}<X_{1}<b_{1} \text { and } a_{2}<X_{2}<b_{2}\right)
$$

is equal to the product

$$
P\left(a_{1}<X_{1}<b_{1}\right) \cdot P\left(a_{2}<X_{2}<b_{2}\right)
$$

A random process is a family of random variables

$$
X(t): \Omega \rightarrow \mathbf{R}
$$

indexed by real t (usually time). View a random process as a function $X(t, \omega)$ of time t and chance ω.

Glossary-contd

Glossary-contd

Brownian motion is a random process $W(t): \Omega \rightarrow \mathbf{R}$ satisfying the following:

Glossary-contd

Brownian motion is a random process $W(t): \Omega \rightarrow \mathbf{R}$ satisfying the following:

- Sample space Ω consists of all continuous paths from positive reals \mathbf{R}^{+}to \mathbf{R}, with an appropriate selection of events and their probabilities. Constructed by N. Wiener.

Glossary-contd

Brownian motion is a random process $W(t): \Omega \rightarrow \mathbf{R}$ satisfying the following:

- Sample space Ω consists of all continuous paths from positive reals \mathbf{R}^{+}to \mathbf{R}, with an appropriate selection of events and their probabilities.
Constructed by N. Wiener.
- Each $W(t)$ has mean zero.

Glossary-contd

Brownian motion is a random process $W(t): \Omega \rightarrow \mathbf{R}$ satisfying the following:

- Sample space Ω consists of all continuous paths from positive reals \mathbf{R}^{+}to \mathbf{R}, with an appropriate selection of events and their probabilities.
Constructed by N. Wiener.
- Each $W(t)$ has mean zero.
\square Increments $W\left(t_{2}\right)-W\left(t_{1}\right), W\left(t_{3}\right)-W\left(t_{2}\right)$ are independent for $t_{1}<t_{2}<t_{3}$.

Glossary-contd

Brownian motion is a random process $W(t): \Omega \rightarrow \mathbf{R}$ satisfying the following:

- Sample space Ω consists of all continuous paths from positive reals \mathbf{R}^{+}to \mathbf{R}, with an appropriate selection of events and their probabilities.
Constructed by N. Wiener.
- Each $W(t)$ has mean zero.
- Increments $W\left(t_{2}\right)-W\left(t_{1}\right), W\left(t_{3}\right)-W\left(t_{2}\right)$ are independent for $t_{1}<t_{2}<t_{3}$.
- Each increment $W\left(t_{2}\right)-W\left(t_{1}\right)$ is normal with mean zero and variance $t_{2}-t_{1}$.

Glossary-Contd

Glossary-Contd

For each ω, the Brownian sample path

$$
t \mapsto W(t, \omega)
$$

is continuous (no breaks in graph) but has no tangents anywhere!

Glossary-Contd

For each ω, the Brownian sample path

$$
t \mapsto W(t, \omega)
$$

is continuous (no breaks in graph) but has no tangents anywhere!

Here is a "Theorem" (that is, a mathematical fact):

Glossary-Contd

For each ω, the Brownian sample path

$$
t \mapsto W(t, \omega)
$$

is continuous (no breaks in graph) but has no tangents anywhere!

Here is a "Theorem" (that is, a mathematical fact):
Theorem:
Brownian motion is Markov (with no memory).

Glossary-Contd

For each ω, the Brownian sample path

$$
t \mapsto W(t, \omega)
$$

is continuous (no breaks in graph) but has no tangents anywhere!

Here is a "Theorem" (that is, a mathematical fact):
Theorem:
Brownian motion is Markov (with no memory).
"Markov" means that distributionally speaking, the future states of W are independent of their past history.

Glossary-Contd

Glossary-Contd

A physical realization of Brownian motion is a plume of smoke. It can be curtailed at any point without affecting the future distribution of its particles.

Glossary-Contd

A physical realization of Brownian motion is a plume of smoke. It can be curtailed at any point without affecting the future distribution of its particles.
Movement of particles in atmosphere, or of pollen in liquid, is described by "Brownian movement" (as discovered by the Scottish botanist Robert Brown-1827).

Glossary-Contd

A physical realization of Brownian motion is a plume of smoke. It can be curtailed at any point without affecting the future distribution of its particles.
Movement of particles in atmosphere, or of pollen in liquid, is described by "Brownian movement" (as discovered by the Scottish botanist Robert Brown-1827).

Theorem:

The true Brownian paths are infinitely rough with no tangents-hence invisible to the naked eye!

Glossary-Contd

A physical realization of Brownian motion is a plume of smoke. It can be curtailed at any point without affecting the future distribution of its particles.
Movement of particles in atmosphere, or of pollen in liquid, is described by "Brownian movement" (as discovered by the Scottish botanist Robert Brown-1827).

Theorem:

The true Brownian paths are infinitely rough with no tangents-hence invisible to the naked eye!

Nevertheless, I will go ahead and show you one!

Brownian Sample Path

Brownian Sample Path

Glossary-Contd

Each Brownian shift

$$
\theta(t, \cdot): \Omega \rightarrow \Omega, \quad t \in \mathbf{R}
$$

$$
\theta(t, \omega)(s):=W(t+s, \omega)-W(t, \omega), \quad s \in \mathbf{R}, \omega \in \Omega .
$$

transforms the probability space Ω into itself (by moving the sample points ω around) while preserving the probabilities of all events.

Glossary-Contd

Each Brownian shift

$$
\theta(t, \cdot): \Omega \rightarrow \Omega, \quad t \in \mathbf{R}
$$

$$
\theta(t, \omega)(s):=W(t+s, \omega)-W(t, \omega), \quad s \in \mathbf{R}, \omega \in \Omega .
$$

transforms the probability space Ω into itself (by moving the sample points ω around) while preserving the probabilities of all events.

Theorem:

Glossary-Contd

Each Brownian shift

$$
\begin{gathered}
\theta(t, \cdot): \Omega \rightarrow \Omega, \quad t \in \mathbf{R} \\
\theta(t, \omega)(s):=W(t+s, \omega)-W(t, \omega), \quad s \in \mathbf{R}, \omega \in \Omega .
\end{gathered}
$$

transforms the probability space Ω into itself (by moving the sample points ω around) while preserving the probabilities of all events.

Theorem:

The probability space Ω is perfectly mixed by the Brownian shift $\theta(t)$: The only events that are unchanged are either sure or impossible. (alias "ergodicity")

Examples: Noisy Feedback

Examples: Noisy Feedback

Examples: Noisy Feedback

Box N : Input signal $=y(t), \quad$ output $=x(t)$ at time $t>0$ related by

$$
\frac{d x(t)}{d t}=y(t) \frac{d W(t)}{d t}
$$

where $W(t)$ is Brownian motion "white noise" in EE.

Noisy Feedback- Cont’d

Proportion σ of output signal is fedback from processor D into N with a time delay r.

Noisy Feedback- Cont’d

Proportion σ of output signal is fedback from processor D into N with a time delay r. Get:

$$
\begin{equation*}
\frac{d x(t)}{d t}=\sigma x(t-r) \frac{d W(t)}{d t}, \quad t>0 \tag{I}
\end{equation*}
$$

Noisy Feedback- Cont'd

Proportion σ of output signal is fedback from processor D into N with a time delay r. Get:

$$
\begin{equation*}
\frac{d x(t)}{d t}=\sigma x(t-r) \frac{d W(t)}{d t}, \quad t>0 \tag{I}
\end{equation*}
$$

Call (I) a stochastic differential equation with delay (memory). Use shorthand:

$$
\begin{equation*}
d x(t)=\sigma x(t-r) d W(t), \quad t>0 \tag{I}
\end{equation*}
$$

Noisy Feedback- Cont'd

Proportion σ of output signal is fedback from processor D into N with a time delay r. Get:

$$
\begin{equation*}
\frac{d x(t)}{d t}=\sigma x(t-r) \frac{d W(t)}{d t}, \quad t>0 \tag{I}
\end{equation*}
$$

Call (I) a stochastic differential equation with delay (memory). Use shorthand:

$$
\begin{equation*}
d x(t)=\sigma x(t-r) d W(t), \quad t>0 \tag{I}
\end{equation*}
$$

To solve (I), need an initial process $\eta(t),-r \leq t \leq 0$:

$$
x(t)=\eta(t) \quad-r \leq t \leq 0
$$

Noisy Feedback-Contd

View (I) as a stochastic integral

$$
x(t)=\eta(0)+\int_{0}^{t} \sigma x(u-r) d W(u), \quad t>0
$$

Noisy Feedback-Contd

View (I) as a stochastic integral

$$
x(t)=\eta(0)+\int_{0}^{t} \sigma x(u-r) d W(u), \quad t>0
$$

Use idea of stochastic integration with respect to Brownian motion (K. Itô):

Noisy Feedback-Contd

View (I) as a stochastic integral

$$
x(t)=\eta(0)+\int_{0}^{t} \sigma x(u-r) d W(u), \quad t>0
$$

Use idea of stochastic integration with respect to Brownian motion (K. Itô):

Partition time interval $[0, t]$ by points

$$
0=u_{0}<u_{1}<u_{2}<\cdots u_{i}<u_{i+1}<\cdots u_{n}=t
$$

which get closer and closer to each other as n gets infinitely large.

Partition of $[0, t]$

Noisy Feedback-Contd

The corresponding sums:

$$
\sum_{i=0}^{n-1} \sigma x\left(u_{i}-r\right)\left[W\left(u_{i+1}\right)-W\left(u_{i}\right)\right]
$$

will approach the Itô stochastic integral:

$$
\int_{0}^{t} \sigma x(u-r) d W(u)
$$

as the number of partition points n gets larger and larger.

Noisy Feedback-contd

To solve

$$
\begin{equation*}
d x(t)=\sigma x(t-r) d W(t), \quad t>0 \tag{I}
\end{equation*}
$$

proceed by successive forward (stochastic) integrations:

$$
0 \leq t \leq r, r \leq t \leq 2 r, 2 r \leq t \leq 3 r, \cdots,
$$

Noisy Feedback-contd

To solve

$$
\begin{equation*}
d x(t)=\sigma x(t-r) d W(t), \quad t>0 \tag{I}
\end{equation*}
$$

proceed by successive forward (stochastic) integrations:

$$
0 \leq t \leq r, r \leq t \leq 2 r, 2 r \leq t \leq 3 r, \cdots,
$$

The current value $x(t)$ of the solution x of (I) is non-Markov.

Segment Process

Segment Process

The segment x_{t} is a path $[-r, 0] \rightarrow \mathbf{R}$ defined by

$$
x_{t}(s):=x(t+s), \quad-r \leq s \leq 0
$$

Segment Process-Contd

The solution $x(t)$ of the stochastic delay equation

$$
d x(t)=\sigma x(t-r) d W(t), \quad t>0
$$

is non-Markov, but the segment process x_{t} is Markov within the state space of all paths η.

Segment Process-Contd

The solution $x(t)$ of the stochastic delay equation

$$
d x(t)=\sigma x(t-r) d W(t), \quad t>0
$$

is non-Markov, but the segment process x_{t} is Markov within the state space of all paths η.
In order to capture the true dynamics of the stochastic delay equation, we observe the random evolution of the segment x_{t} rather than the current value $x(t)$

Feedlback Without Delay

Conside the case $\mathrm{r}=0$: (I) becomes a linear stochastic differential equation (without memory)

$$
d x(t)=\sigma x(t) d W(t), \quad t>0
$$

Feedback Without Delay

Conside the case $\mathrm{r}=0$: (I) becomes a linear stochastic differential equation (without memory)

$$
d x(t)=\sigma x(t) d W(t), \quad t>0
$$

and has closed form solution

$$
x(t)=x(0) \exp \left\{\sigma W(t)-\frac{\sigma^{2} t}{2}\right\}, \quad t \geq 0 .
$$

Feedback Without Delay

Conside the case $\mathrm{r}=0$: (I) becomes a linear stochastic differential equation (without memory)

$$
d x(t)=\sigma x(t) d W(t), \quad t>0
$$

and has closed form solution

$$
x(t)=x(0) \exp \left\{\sigma W(t)-\frac{\sigma^{2} t}{2}\right\}, \quad t \geq 0
$$

Can be checked using stochastic differentiation via K. Itô's calculus.

Feedback Without Delay

Conside the case $\mathrm{r}=0$: (I) becomes a linear stochastic differential equation (without memory)

$$
d x(t)=\sigma x(t) d W(t), \quad t>0
$$

and has closed form solution

$$
x(t)=x(0) \exp \left\{\sigma W(t)-\frac{\sigma^{2} t}{2}\right\}, \quad t \geq 0
$$

Can be checked using stochastic differentiation via K. Itô's calculus.
$x(t)$ is Markov (no delay= no memory).

Simple Population Dynamics

- Consider a large population $x(t)$ at time t evolving with a constant birth rate $\beta>0$ and a constant death rate α per capita.

Simple Population Dynamics

- Consider a large population $x(t)$ at time t evolving with a constant birth rate $\beta>0$ and a constant death rate α per capita.
- Assume immediate removal of the dead from the population.

Simple Population Dynamics

- Consider a large population $x(t)$ at time t evolving with a constant birth rate $\beta>0$ and a constant death rate α per capita.
- Assume immediate removal of the dead from the population.
\square Let $r>0$ (fixed, non-random= 9 months, e.g.) be the development period of each individual.

Simple Population Dynamics

- Consider a large population $x(t)$ at time t evolving with a constant birth rate $\beta>0$ and a constant death rate α per capita.
- Assume immediate removal of the dead from the population.
\square Let $r>0$ (fixed, non-random $=9$ months, e.g.) be the development period of each individual.
\square Assume there is migration whose overall rate is distributed like white noise $\sigma \dot{W}$ (mean zero and variance $\sigma>0$), where W is one-dimensional Brownian motion.

Simple Population - Cont'd

The change in population $\Delta x(t)$ over a small time interval $(t, t+\Delta t)$ is

$$
\Delta x(t)=-\alpha x(t) \Delta t+\beta x(t-r) \Delta t+\sigma \dot{W} \Delta t
$$

Simple Population - Cont'd

The change in population $\Delta x(t)$ over a small time interval $(t, t+\Delta t)$ is

$$
\Delta x(t)=-\alpha x(t) \Delta t+\beta x(t-r) \Delta t+\sigma \dot{W} \Delta t
$$

Letting $\Delta t \rightarrow 0$ and using Itô stochastic differentials,

$$
d x(t)=\{-\alpha x(t)+\beta x(t-r)\} d t+\sigma d W(t), \quad t>0 .
$$

Simple Population - Cont’d

The change in population $\Delta x(t)$ over a small time interval $(t, t+\Delta t)$ is

$$
\Delta x(t)=-\alpha x(t) \Delta t+\beta x(t-r) \Delta t+\sigma \dot{W} \Delta t
$$

Letting $\Delta t \rightarrow 0$ and using Itô stochastic differentials, $d x(t)=\{-\alpha x(t)+\beta x(t-r)\} d t+\sigma d W(t), \quad t>0$.

Associate with the above stochastic delay equation the initial path η

$$
x(s)=\eta(s), \quad-r \leq s \leq 0 .
$$

Logistic Population

A population $x(t)$ at time t evolving logistically with development (incubation) period $r>0$ under Gaussian type noise (e.g. migration on a molecular level):

Logistic Population

A population $x(t)$ at time t evolving logistically with development (incubation) period $r>0$ under Gaussian type noise (e.g. migration on a molecular level):

$$
\frac{d x(t)}{d t}=[\alpha-\beta x(t-r)] x(t)+\gamma x(t) \frac{d W(t)}{d t}, t>0,
$$

Logistic Population

A population $x(t)$ at time t evolving logistically with development (incubation) period $r>0$ under Gaussian type noise (e.g. migration on a molecular level):

$$
\frac{d x(t)}{d t}=[\alpha-\beta x(t-r)] x(t)+\gamma x(t) \frac{d W(t)}{d t}, t>0,
$$

i.e.

$$
d x(t)=[\alpha-\beta x(t-r)] x(t) d t+\gamma x(t) d W(t), t>0,
$$

Logistic Population

A population $x(t)$ at time t evolving logistically with development (incubation) period $r>0$ under Gaussian type noise (e.g. migration on a molecular level):

$$
\frac{d x(t)}{d t}=[\alpha-\beta x(t-r)] x(t)+\gamma x(t) \frac{d W(t)}{d t}, t>0
$$

i.e.
$d x(t)=[\alpha-\beta x(t-r)] x(t) d t+\gamma x(t) d W(t), t>0$, with initial condition

$$
x(t)=\eta(t) \quad-r \leq t \leq 0 .
$$

Fluid Flow

$$
\begin{gathered}
\alpha x(t-r) \\
(\mathrm{gm} / \mathrm{cc})
\end{gathered}
$$

Fluid Flow

$$
\longrightarrow \begin{gathered}
\beta=\sigma \dot{W}(t) \\
(\mathrm{cc} / \mathrm{sec})
\end{gathered} \quad V \quad \longrightarrow \begin{gathered}
\beta=\sigma \dot{W}(t) \\
(\mathrm{cc} / \mathrm{sec})
\end{gathered}
$$

$$
\begin{gathered}
\alpha x(t) \\
(\mathrm{gm} / \mathrm{cc})
\end{gathered} \downarrow \quad \uparrow \begin{gathered}
\alpha x(t-r) \\
(\mathrm{gm} / \mathrm{cc})
\end{gathered}
$$

Main canal has dye (pollutant) with concentration $x(t)$ (gm/cc) at time t.
A fixed proportion of fluid in the main canal is pumped into the side canal(s).

Fluid Flow- Cont’d

The fluid takes $r>0$ seconds to traverse the side canal. Assume flow rate ($\mathrm{cc} / \mathrm{sec}$) in the main canal is Gaussian with constant mean and variance σ.

Fluid Flow- Cont'd

The fluid takes $r>0$ seconds to traverse the side canal. Assume flow rate (cc/sec) in the main canal is Gaussian with constant mean and variance σ.
Write equation for rate of dye transfer through a fixed part V of the main canal.

Fluid Flow- Cont’d

The fluid takes $r>0$ seconds to traverse the side canal. Assume flow rate (cc/sec) in the main canal is Gaussian with constant mean and variance σ.

Write equation for rate of dye transfer through a fixed part V of the main canal.
Then get the following stochastic delay equation:

Fluid Flow- Cont'd

The fluid takes $r>0$ seconds to traverse the side canal. Assume flow rate (cc/sec) in the main canal is Gaussian with constant mean and variance σ.

Write equation for rate of dye transfer through a fixed part V of the main canal.
Then get the following stochastic delay equation:

$$
\left.\begin{array}{rl}
d x(t) & =\{\nu x(t)+\mu x(t-r))\} d t+\sigma x(t) d W(t), t>0 \\
x(s) & =\eta(s), \quad-r \leq s \leq 0
\end{array}\right\}
$$

where η is a path $[-r, 0] \rightarrow \mathbf{R}, \nu$ and μ are real constants.

Delayed Stock Model

Consider a stock whose price $S(t)$ at any time t satisfies the following stochastic delay differential equation (sdde):

Delayed Stock Model

Consider a stock whose price $S(t)$ at any time t satisfies the following stochastic delay differential equation (sdde):

$$
\left.\begin{array}{rl}
d S(t) & =h(S(t-a)) S(t) d t+g(S(t-b)) S(t) d W(t), \\
S(t) & =\eta(t), \quad t \in[-L, 0]
\end{array}\right\}
$$

Delayed Stock Model

Consider a stock whose price $S(t)$ at any time t satisfies the following stochastic delay differential equation (sdde):

$$
\left.\begin{array}{rl}
d S(t) & =h(S(t-a)) S(t) d t+g(S(t-b)) S(t) d W(t), \\
S(t) & =\eta(t), \quad t \in[-L, 0]
\end{array}\right\}
$$

Continuous drift h, volatility function g, positive delays a, b, maximum delay $L:=\max \{a, b\}$.

Delayed Stock Model

Consider a stock whose price $S(t)$ at any time t satisfies the following stochastic delay differential equation (sdde):

$$
\begin{aligned}
d S(t) & =h(S(t-a)) S(t) d t+g(S(t-b)) S(t) d W(t), \\
& t \in[0, T] \\
S(t) & =\eta(t), \quad t \in[-L, 0]
\end{aligned}
$$

Continuous drift h, volatility function g, positive delays a, b, maximum delay $L:=\max \{a, b\}$.
Trading Strategy: $\pi_{S}(t)$ shares of stock $S(t)$ and $\pi_{B}(t)$ of bond $B(t)$.

Delayed Stock Model-contd

Delayed Stock Model-contd

Continuous initial path: $\eta:[-L, 0] \rightarrow \mathbf{R}$.

Delayed Stock Model-contd

Continuous initial path: $\eta:[-L, 0] \rightarrow \mathbf{R}$.
Brownian motion W : one-dimensional.

Delayed Stock Model-contd

Continuous initial path: $\eta:[-L, 0] \rightarrow \mathbf{R}$.
Brownian motion W : one-dimensional.
An admissible strategy is said to be an arbitrage opportunity if with no initial investment the portfolio yields a positive return at a later time:
arbitrage = free lunch!

Delayed Stock Model-contd

Continuous initial path: $\eta:[-L, 0] \rightarrow \mathbf{R}$.
Brownian motion W : one-dimensional.
An admissible strategy is said to be an arbitrage opportunity if with no initial investment the portfolio yields a positive return at a later time:

$$
\text { arbitrage }=\text { free lunch! }
$$

Delayed option-pricing model admits no arbitrage.

Delayed Stock Model-contd

Continuous initial path: $\eta:[-L, 0] \rightarrow \mathbf{R}$.
Brownian motion W : one-dimensional.
An admissible strategy is said to be an arbitrage opportunity if with no initial investment the portfolio yields a positive return at a later time:

$$
\text { arbitrage }=\text { free lunch! }
$$

Delayed option-pricing model admits no arbitrage.
Constant volatility g and h corresponds to Black-Scholes model.

Stock Dynamics

Stock Dynamics

Stock prices when $h=$ constant, $b=2, T=365, L=100$. Stock data: DJX Index at CBOE.

Delayed BS Formula

(->)

"Now let's do the math"!

Stochastic Systems with Memory

Combine all dynamic models encountered so far in a single stochastic equation of the form

$$
\left.\begin{array}{rl}
d x(t) & =h\left(x_{t}\right) d t+g\left(x_{t}\right) d W(t), \quad t>0 \\
x_{0} & =\eta
\end{array}\right\}
$$

Stochastic Systems with Memory

Combine all dynamic models encountered so far in a single stochastic equation of the form

$$
\left.\begin{array}{rl}
d x(t) & =h\left(x_{t}\right) d t+g\left(x_{t}\right) d W(t), \quad t>0 \\
x_{0} & =\eta
\end{array}\right\}
$$

W is Brownian motion; x_{t} is the segment process (encoding the memory of the solution process x); η is a given initial path $[-r, 0] \rightarrow \mathbf{R}$ (starting process for x).

State Space

Collect all possible initial states η in a state space, denoted by H, which contains all continuous paths $[-r, 0] \rightarrow \mathbf{R}$.
The state space H is furnished with

State Space

Collect all possible initial states η in a state space, denoted by H, which contains all continuous paths $[-r, 0] \rightarrow \mathbf{R}$.
The state space H is furnished with
algebraic operations (addition and scaling of graphs)

State Space

Collect all possible initial states η in a state space, denoted by H, which contains all continuous paths $[-r, 0] \rightarrow \mathbf{R}$.
The state space H is furnished with
algebraic operations (addition and scaling of graphs)
distance between two paths η_{1} and η_{2} :

$$
\left(\int_{-r}^{0}\left[\eta_{1}(s)-\eta_{2}(s)\right]^{2} d s\right)^{1 / 2}
$$

State Space-contd

State Space-contd

angle between paths: η_{1} and η_{2} in H are perpendicular if

$$
\int_{-r}^{0} \eta_{1}(s) \eta_{2}(s) d s=0
$$

State Space-contd

angle between paths: η_{1} and η_{2} in H are perpendicular if

$$
\int_{-r}^{0} \eta_{1}(s) \eta_{2}(s) d s=0
$$

The state space is BIG: has infinite dimension. That is infinitely many mutually perpendicular paths:
$\sin \left(\frac{\pi s}{r}\right), \sin \left(\frac{2 \pi s}{r}\right), \sin \left(\frac{3 \pi s}{r}\right), \cdots, \sin \left(\frac{n \pi s}{r}\right), \cdots$

State Space-contd

angle between paths: η_{1} and η_{2} in H are perpendicular if

$$
\int_{-r}^{0} \eta_{1}(s) \eta_{2}(s) d s=0
$$

The state space is BIG: has infinite dimension. That is infinitely many mutually perpendicular paths:

$$
\begin{gathered}
\sin \left(\frac{\pi s}{r}\right), \sin \left(\frac{2 \pi s}{r}\right), \sin \left(\frac{3 \pi s}{r}\right), \cdots, \sin \left(\frac{n \pi s}{r}\right), \cdots \\
\int_{-r}^{0} \sin \left(\frac{\pi s}{r}\right) \sin \left(\frac{2 \pi s}{r}\right) d s=0
\end{gathered}
$$

Existence

A random dynamical system with memory is a relation between the current rate of change of the system and its past random states.

Existence

A random dynamical system with memory is a relation between the current rate of change of the system and its past random states.

Theorem:

Under appropriate (fairly general) conditions on the coefficients h, g, the stochastic equation with memory has a unique solution x for each choice of the initial state η in the state space H.

Random Dynamics with Memory

- Exploit idea of the segment as paradigm for encoding the memory as an infinite-dimensional object that evolves randomly in infinite-dimensional space (even if the original stochastic signal is one-dimensional).

Random Dynamics with Memory

\square Exploit idea of the segment as paradigm for encoding the memory as an infinite-dimensional object that evolves randomly in infinite-dimensional space (even if the original stochastic signal is one-dimensional).

- Idea amounts to removing the memory from the original system but at the cost of lifting the system to infinitely many dimensions.

Random Dynamics with Memory

- Exploit idea of the segment as paradigm for encoding the memory as an infinite-dimensional object that evolves randomly in infinite-dimensional space (even if the original stochastic signal is one-dimensional).
- Idea amounts to removing the memory from the original system but at the cost of lifting the system to infinitely many dimensions.
- Within this setting the mathematics is harder but doable: No free lunch! For example, the Itô calculus fails for the encoded process, although it works for the original signal.

Random Dynamics with Memory

- Exploit idea of the segment as paradigm for encoding the memory as an infinite-dimensional object that evolves randomly in infinite-dimensional space (even if the original stochastic signal is one-dimensional).
- Idea amounts to removing the memory from the original system but at the cost of lifting the system to infinitely many dimensions.
\square Within this setting the mathematics is harder but doable: No free lunch! For example, the Itô calculus fails for the encoded process, although it works for the original signal.
- Random dynamics is described via the flow.

Random Dynamics-Contd

- Introduce idea of stochastic/random equilibrium: a random process that is probabilistically stationary in distribution.

Random Dynamics-Contd

- Introduce idea of stochastic/random equilibrium: a random process that is probabilistically stationary in distribution.
\square Describe the random dynamics near the equilibrium:

Random Dynamics-Contd

- Introduce idea of stochastic/random equilibrium: a random process that is probabilistically stationary in distribution.
- Describe the random dynamics near the equilibrium:
\square Existence of random expanding and contracting smooth portions of the state space called unstable and stable manifolds.

Random Dynamics-Contd

\square Introduce idea of stochastic/random equilibrium: a random process that is probabilistically stationary in distribution.

- Describe the random dynamics near the equilibrium:
\square Existence of random expanding and contracting smooth portions of the state space called unstable and stable manifolds.
\square The expanding manifolds have fixed (non-random) finite dimension.

Random Dynamics-Contd

\square Introduce idea of stochastic/random equilibrium: a random process that is probabilistically stationary in distribution.
\square Describe the random dynamics near the equilibrium:
\square Existence of random expanding and contracting smooth portions of the state space called unstable and stable manifolds.

- The expanding manifolds have fixed (non-random) finite dimension.
- The contracting manifolds have infinite dimension.

Theorem:

Under regularity conditions, for each sample point ω, we can observe the whole state space as it mixes under the random flow.

The Flow

The Flow

The solution of the random equation with memory can be viewed as a function

$$
X(t, \eta, \omega)
$$

of three variables: time t, state η and chance ω, changing continuously in (t, η) and satisfying:

The Flow

The solution of the random equation with memory can be viewed as a function

$$
X(t, \eta, \omega)
$$

of three variables: time t, state η and chance ω, changing continuously in (t, η) and satisfying:
$\square X(t, \eta, \omega)={ }^{\eta} x_{t}(\omega)$, the segment of the solution;

The Flow

The solution of the random equation with memory can be viewed as a function

$$
X(t, \eta, \omega)
$$

of three variables: time t, state η and chance ω, changing continuously in (t, η) and satisfying:
$\square X(t, \eta, \omega)={ }^{\eta} x_{t}(\omega)$, the segment of the solution;
$\square X\left(t_{1}+t_{2}, \cdot, \omega\right)=X\left(t_{2}, \cdot, \theta\left(t_{1}, \omega\right)\right) \circ X\left(t_{1}, \cdot, \omega\right)$
for all $t_{1}, t_{2} \in \mathbf{R}^{+}$, all $\omega \in \Omega$.

The Flow

The solution of the random equation with memory can be viewed as a function

$$
X(t, \eta, \omega)
$$

of three variables: time t, state η and chance ω, changing continuously in (t, η) and satisfying:
$\square X(t, \eta, \omega)={ }^{\eta} x_{t}(\omega)$, the segment of the solution;
$\square X\left(t_{1}+t_{2}, \cdot, \omega\right)=X\left(t_{2}, \cdot, \theta\left(t_{1}, \omega\right)\right) \circ X\left(t_{1}, \cdot, \omega\right)$ for all $t_{1}, t_{2} \in \mathbf{R}^{+}$, all $\omega \in \Omega$.
$\square X(0, \eta, \omega)=\eta$ for all initial paths $\eta \in H$, and all $\omega \in \Omega$.

The Nlow Property

Stationary Point-Equilibrium

A random variable $Y: \Omega \rightarrow H$ is a stationary point for the flow (X, θ) if

$$
X(t, Y(\omega), \omega)=Y(\theta(t, \omega))
$$

for all $t \in \mathbf{R}^{+}$and every $\omega \in \Omega$.

Stationary Point-Equilibrium

A random variable $Y: \Omega \rightarrow H$ is a stationary point for the flow (X, θ) if

$$
X(t, Y(\omega), \omega)=Y(\theta(t, \omega))
$$

for all $t \in \mathbf{R}^{+}$and every $\omega \in \Omega$.
Denote a stationary trajectory by

$$
X(t, Y)=Y(\theta(t))
$$

Random Tubes

Theorem:

Within the state space H, each stationary point $Y(\omega)$ has a ball $B(Y(\omega), \rho(\omega))$ center $Y(\omega)$ and radius $\rho(\omega)$ with the property that for any $\eta \in B(Y(\omega), \rho(\omega))$ the distance between $X(t, \eta, \omega)$ and $Y(\omega)$ grows like $e^{\lambda_{i} t}$ for large t where

Random Tubes

Theorem:

Within the state space H, each stationary point $Y(\omega)$ has a ball $B(Y(\omega), \rho(\omega))$ center $Y(\omega)$ and radius $\rho(\omega)$ with the property that for any $\eta \in B(Y(\omega), \rho(\omega))$ the distance between $X(t, \eta, \omega)$ and $Y(\omega)$ grows like $e^{\lambda_{i} t}$ for large t where

$$
\left\{\cdots<\lambda_{i+1}<\lambda_{i}<\cdots<\lambda_{2}<\lambda_{1}\right\}
$$

are fixed countable and non-random. These represent exponential growth rates of the random flow near its equilibrium.

A Random Tube

Hyperbolicity

An equilibrium $Y(\omega)$ is hyperbolic if all exponential growth rates λ_{i} are non-zero:

$$
\left\{\cdots \lambda_{i}<\cdots \lambda_{i_{0}}<0<\lambda_{i_{0}-1}<\cdots<\lambda_{1}\right\} .
$$

Hyperbolicity

An equilibrium $Y(\omega)$ is hyperbolic if all exponential growth rates λ_{i} are non-zero:

$$
\left\{\cdots \lambda_{i}<\cdots \lambda_{i_{0}}<0<\lambda_{i_{0}-1}<\cdots<\lambda_{1}\right\} .
$$

$\lambda_{i_{0}}=$ largest negative growth rate.

Hyperbolicity

An equilibrium $Y(\omega)$ is hyperbolic if all exponential growth rates λ_{i} are non-zero:

$$
\left\{\cdots \lambda_{i}<\cdots \lambda_{i_{0}}<0<\lambda_{i_{0}-1}<\cdots<\lambda_{1}\right\} .
$$

$\lambda_{i_{0}}=$ largest negative growth rate.
$\lambda_{i_{0}-1}=$ least positive growth rate.

Let Y be a hyperbolic equilibrium of the stochastic delay equation. Then there is a random tube $B(Y(\omega), \rho(\omega))$ around Y, a smooth stable manifold $\mathcal{S}(\omega)$, and unstable one $\mathcal{U}(\omega)$ in $B(Y(\omega), \rho(\omega))$ with the following properties:

Theorem

Let Y be a hyperbolic equilibrium of the stochastic delay equation. Then there is a random tube $B(Y(\omega), \rho(\omega))$ around Y, a smooth stable manifold $\mathcal{S}(\omega)$, and unstable one $\mathcal{U}(\omega)$ in $B(Y(\omega), \rho(\omega))$ with the following properties:

The stable manifold $\mathcal{S}(\omega)$ is the set of all states η in $B(Y(\omega), \rho(\omega))$ such that the distance between $X(t, \eta, \omega)$ and $Y(\theta(t, \omega))$ decays like $e^{\lambda_{i_{0}} t}$ for large t.

Theorem-contd

(Flow-invariance of the stable manifolds):
The stable manifold $\mathcal{S}(\omega)$ is eventually transported into $\mathcal{S}(\theta(t, \omega))$: That is
$X(t, \cdot, \omega)(\mathcal{S}(\omega))$ is a subset of $\mathcal{S}(\theta(t, \omega))$ for all large t.

Theorem-contd

The unstable manifold $\mathcal{U}(\omega)$ is the set of all states η in $B(Y(\omega), \rho(\omega))$ such that there is a unique continuous-time history process also denoted by $y(\cdot, \omega):(-\infty, 0] \rightarrow H$ such that $y(0, \omega)=\eta$, $X(t, y(s, \omega), \theta(s, \omega))=y(t+s, \omega)$ for all $s \leq 0$, $0 \leq t \leq-s$, and the distance between $y(-t, \omega)$ and $Y(\theta(-t, \omega))$ decays like $e^{-\lambda_{i_{0}-1} t}$ for large t.

Theorem-contd

The unstable manifold $\mathcal{U}(\omega)$ is the set of all states η in $B(Y(\omega), \rho(\omega))$ such that there is a unique continuous-time history process also denoted by $y(\cdot, \omega):(-\infty, 0] \rightarrow H$ such that $y(0, \omega)=\eta$, $X(t, y(s, \omega), \theta(s, \omega))=y(t+s, \omega)$ for all $s \leq 0$, $0 \leq t \leq-s$, and the distance between $y(-t, \omega)$ and $Y(\theta(-t, \omega))$ decays like $e^{-\lambda_{i_{0}-1} t}$ for large t.

The dimension of the unstable manifold $\mathcal{U}(\omega)$ is finite and non-random.

Theorem-contd

(Flow-invariance of the unstable manifolds):
The remote history of the unstable manifold $\mathcal{U}(\omega)$ may be traced back to $\mathcal{U}(\theta(-t, \omega))$: That is $\mathcal{U}(\omega)$ is a subset of $X(t, \cdot, \theta(-t, \omega))(\mathcal{U}(\theta(-t, \omega)))$ for sufficiently large t.

$$
\mathcal{U}(\omega) \subseteq X(t, \cdot, \theta(-t, \omega))(\mathcal{U}(\theta(-t, \omega)))
$$

Stable/Unstable Manifolds

Proof

[M.S]

RENERENCES

Mo. 1 Mohammed, S.-E. A., Stochastic Functional Differential Equations, Research Notes in Mathematics, no. 99, Pitman Advanced Publishing Program, Boston-London-Melbourne (1984).(<-)

Mo. 2 Mohammed, S.-E. A., Non-Linear Flows for Linear SDDEs, Stochastics, Vol. 17 \#3, (1987), 207-212.

Mo. 3 Mohammed, S.-E. A., The Lyapunov spectrum and stable manifolds for stochastic linear delay equations, Stochastics and Stochastic Reports, Vol. 29 (1990), 89-131.

RENERENCES-contd

Mo. 4 Mohammed, S.-E. A., Retarded Functional Differential Equations: A Global Point of View, Research Notes in Mathematics No. 21, Pitman Publishing Ltd., London-San Francisco-Melbourne (1978).(<-)
M.S Mohammed, S.-E. A., and Scheutzow, M. K. R., The stable manifold theorem for non-linear stochastic systems with memory. I: Existence of the semifbw. II: The local stable manifold theorem, JFA , 2003-4, (271-305, 253-306).(<-)

REFERENCES-contd

M.Z.Z Mohammed, S.-E. A., Zhang, T. S., and Zhao, H., The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Part I: The stochastic semifbw, pp. 83; Part II: Existence of stable and unstable manifolds, pp. 52. (<-)

Ru. 1 Ruelle, D., Ergodic theory of differentiable dynamical systems, Publ. Math. Inst. Hautes Etud. Sci. (1979), 275-306.

Ru. 2 Ruelle, D., Characteristic exponents and invariant manifolds in Hilbert space, Annals of Math. 115 (1982), 243-290.

THE END!

THANK YOU!

