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The Plan

Background: How I became a mathematician?

A probabilist’s glossary:

Probability of an event.
Random variable.
Random process.
Brownian motion.
Calculus of K. Itô: Random version of Newton’s
calculus. (1944-1951)

Examples of random systems with memory: from
feedback control to stock market fluctuations.
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The Plan-Contd

Evolution of random systems with memory.

Encoding of the memory via “slicing” the random
evolution path.

Consider collection of all possible states (alias state
space), furnished with algebraic operations
(addition, subtraction, scaling) and measure of
distance and angle between states.

State space is BIG, with infinitely many dimensions.

View dynamics/time-evolution of slice within the
state space.

Mathematics gets harder but is still “doable”.
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The Plan-Contd

Concept of “random flow” to describe dynamics in
state space.

Equilibria: probabilistically stationary states.

Stability of equilibria.

Random dynamics near equilibria: structure within
chaos.

Existence of non-linear stable/unstable “smooth
portions" of the state space near equilibria. Such
smooth portions are called manifolds.
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How I became a mathematician?

Born in Rufaa (Sudan), Sub-Saharan Africa.
Grew up in a poverty-stricken semi-illiterate
society-but a lot of motivation/support from parents,
with a great deal of vision.

High school days in Atbara (North Sudan),
“motivated" by free lunches(!) from school
principal, and challenged by two Egyptian
expatriate teachers: To solve multi-starred(∗,∗∗,∗∗∗)

problems from Durell’s high school geometry book.

Supported by government scholarships through
school, university and graduate school in the UK.
Further details in web-site http://sfde.math.siu.edu/.
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How I became-Contd

University of Khartoum: Mathematics vs Medicine?

Started as a geometer in the UK (Warwick) and then
moved into probability and stochastic analysis in
Khartoum during the early eighties. Wrote two
research monographs (Pitman 1978, 1984) in
Khartoum during tough economic times.

Research in mathematics is “cheap”–ingredients:
pencil, paper and books. Cf. experimental physics!

Immigrated to US (Carbondale) from Sudan
(Khartoum) in 1984.

Enormous support from family throughout.
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http://www.uofk.edu
http://www.maths.warwick.ac.uk
http://www.uofk.edu
http://www.uofk.edu
http://www.pnm.my/mtcp/images/maps/Sudan-map.jpg


How I became-Contd

University of Khartoum: Mathematics vs Medicine?

Started as a geometer in the UK (Warwick) and then
moved into probability and stochastic analysis in
Khartoum during the early eighties. Wrote two
research monographs (Pitman 1978, 1984) in
Khartoum during tough economic times.

Research in mathematics is “cheap”–ingredients:
pencil, paper and books. Cf. experimental physics!

Immigrated to US (Carbondale) from Sudan
(Khartoum) in 1984.

Enormous support from family throughout.

RANDOM DYNAMICS – p.7/68

http://www.uofk.edu
http://www.maths.warwick.ac.uk
http://www.uofk.edu
http://www.uofk.edu
http://www.pnm.my/mtcp/images/maps/Sudan-map.jpg


How I became-Contd

University of Khartoum: Mathematics vs Medicine?

Started as a geometer in the UK (Warwick) and then
moved into probability and stochastic analysis in
Khartoum during the early eighties.

Wrote two
research monographs (Pitman 1978, 1984) in
Khartoum during tough economic times.

Research in mathematics is “cheap”–ingredients:
pencil, paper and books. Cf. experimental physics!

Immigrated to US (Carbondale) from Sudan
(Khartoum) in 1984.

Enormous support from family throughout.

RANDOM DYNAMICS – p.7/68

http://www.uofk.edu
http://www.maths.warwick.ac.uk
http://www.uofk.edu
http://www.uofk.edu
http://www.pnm.my/mtcp/images/maps/Sudan-map.jpg


How I became-Contd

University of Khartoum: Mathematics vs Medicine?

Started as a geometer in the UK (Warwick) and then
moved into probability and stochastic analysis in
Khartoum during the early eighties. Wrote two
research monographs (Pitman 1978, 1984) in
Khartoum during tough economic times.

Research in mathematics is “cheap”–ingredients:
pencil, paper and books. Cf. experimental physics!

Immigrated to US (Carbondale) from Sudan
(Khartoum) in 1984.

Enormous support from family throughout.

RANDOM DYNAMICS – p.7/68

http://www.uofk.edu
http://www.maths.warwick.ac.uk
http://www.uofk.edu
http://www.uofk.edu
http://www.pnm.my/mtcp/images/maps/Sudan-map.jpg


How I became-Contd

University of Khartoum: Mathematics vs Medicine?

Started as a geometer in the UK (Warwick) and then
moved into probability and stochastic analysis in
Khartoum during the early eighties. Wrote two
research monographs (Pitman 1978, 1984) in
Khartoum during tough economic times.

Research in mathematics is “cheap”–ingredients:
pencil, paper and books. Cf. experimental physics!

Immigrated to US (Carbondale) from Sudan
(Khartoum) in 1984.

Enormous support from family throughout.

RANDOM DYNAMICS – p.7/68

http://www.uofk.edu
http://www.maths.warwick.ac.uk
http://www.uofk.edu
http://www.uofk.edu
http://www.pnm.my/mtcp/images/maps/Sudan-map.jpg


How I became-Contd

University of Khartoum: Mathematics vs Medicine?

Started as a geometer in the UK (Warwick) and then
moved into probability and stochastic analysis in
Khartoum during the early eighties. Wrote two
research monographs (Pitman 1978, 1984) in
Khartoum during tough economic times.

Research in mathematics is “cheap”–ingredients:
pencil, paper and books. Cf. experimental physics!

Immigrated to US (Carbondale) from Sudan
(Khartoum) in 1984.

Enormous support from family throughout.

RANDOM DYNAMICS – p.7/68

http://www.uofk.edu
http://www.maths.warwick.ac.uk
http://www.uofk.edu
http://www.uofk.edu
http://www.pnm.my/mtcp/images/maps/Sudan-map.jpg


How I became-Contd

University of Khartoum: Mathematics vs Medicine?

Started as a geometer in the UK (Warwick) and then
moved into probability and stochastic analysis in
Khartoum during the early eighties. Wrote two
research monographs (Pitman 1978, 1984) in
Khartoum during tough economic times.

Research in mathematics is “cheap”–ingredients:
pencil, paper and books. Cf. experimental physics!

Immigrated to US (Carbondale) from Sudan
(Khartoum) in 1984.

Enormous support from family throughout.

RANDOM DYNAMICS – p.7/68

http://www.uofk.edu
http://www.maths.warwick.ac.uk
http://www.uofk.edu
http://www.uofk.edu
http://www.pnm.my/mtcp/images/maps/Sudan-map.jpg


A Probabilist’s Glossary

Sample space Ω with sample points ω picked at random
from Ω.

Example:

“ A dicey situation."

A “fair” die is thrown with six equally likely outcomes

Ω = {1, 2, 3, 4, 5, 6}.

A sample point ω could be any of the numbers

1, 2, 3, 4, 5, 6.
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Glossary-contd

An event is a collection of sample points.
Examples of events are

A1 = {5}, A2 = {2, 4, 3}, A3 = {1, 2, 3, 4, 5, 6}

A5 = {no number}
with probabilities

P (A1) =
1

6
, P (A2) =

3

6
=

1

2
, P (A3) =

6

6
= 1

P (A5) = 0

A3 is a sure event, A5 is an impossible event.
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6

6
= 1

P (A5) = 0

A3 is a sure event, A5 is an impossible event.
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Glossary-Contd

A random variable is a (numerical) function from the
sample space Ω to the real numbers R:

X : Ω → R

ω 7→ X(ω)

It has the property that for any two numbers a < b (in
R), the collection of all sample points ω with
a < X(ω) < b is an event.

The probabilities P (a < X < b) of all such events
determine the distribution of the random variable X .
Random variables may have values in more general

spaces than the real numbers R.
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Glossary-Contd

Another Example:

Roll two dice. The sum X of their faces is a random
variable on the sample space

Ω = {(i, j) : i, j = 1, 2, 3, 4, 5, 6}

ω = (i, j), X(ω) = i + j, i, j = 1, 2, 3, 4, 5, 6.

The random variable X takes all integer values between
2 and 12.

Distribution function of X is

F (x) := P (X ≤ x)

where x runs through all possible values of X .
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Glossary-Contd

A random variable X : Ω → R has normal distribution
N(µ, σ2) if

P (X ≤ x) =
1√
2πσ

∫ x

−∞
exp

{

−(y − µ)2

2σ2

}

dy

for all real x. Exponential-base e = 2.71828 approx.

The mean (or average) of X is µ and the variance is σ2.

Normal distributions are important building blocks for

modelling random evolution.
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Normal Density

xµ − σ µ µ + σ

1√
2πσ 1√

2πσ
e
−
(x − µ)2

2σ2

Normal Density N(µ, σ2)
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Glossary-contd

Two random variables X1, X2 : Ω → R are independent
if the probability of the event

(a1 < X1 < b1 and a2 < X2 < b2)

is equal to the product

P (a1 < X1 < b1) · P (a2 < X2 < b2)

A random process is a family of random variables

X(t) : Ω → R

indexed by real t (usually time). View a random process
as a function X(t, ω) of time t and chance ω.
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Glossary-contd

Brownian motion is a random process W (t) : Ω → R
satisfying the following:

Sample space Ω consists of all continuous paths
from positive reals R+ to R, with an appropriate
selection of events and their probabilities.
Constructed by N. Wiener.

Each W (t) has mean zero.

Increments W (t2) − W (t1), W (t3) − W (t2) are
independent for t1 < t2 < t3.

Each increment W (t2) − W (t1) is normal with
mean zero and variance t2 − t1.
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Glossary-Contd

For each ω, the Brownian sample path

t 7→ W (t, ω)

is continuous (no breaks in graph) but has no tangents
anywhere!

Here is a “Theorem” (that is, a mathematical fact):

Theorem:

Brownian motion is Markov (with no memory).
“Markov” means that distributionally speaking, the

future states of W are independent of their past history.
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Glossary-Contd

A physical realization of Brownian motion is a plume of
smoke. It can be curtailed at any point without affecting
the future distribution of its particles.

Movement of particles in atmosphere, or of pollen in
liquid, is described by “Brownian movement” (as
discovered by the Scottish botanist Robert Brown-1827).

Theorem:

The true Brownian paths are infinitely rough with no
tangents-hence invisible to the naked eye!

Nevertheless, I will go ahead and show you one!
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Brownian Sample Path

t

W (·, ω)

Brownian Sample Path
t 7→ W (t, ω) RANDOM DYNAMICS – p.18/68
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Glossary-Contd

Each Brownian shift

θ(t, ·) : Ω → Ω, t ∈ R

θ(t, ω)(s) := W (t + s, ω) − W (t, ω), s ∈ R, ω ∈ Ω.

transforms the probability space Ω into itself (by moving
the sample points ω around) while preserving the
probabilities of all events.

Theorem:

The probability space Ω is perfectly mixed by the
Brownian shift θ(t): The only events that are unchanged
are either sure or impossible. (alias “ergodicity”)
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Examples: Noisy Feedback

N D
y(t) x(t)

σx(t − r)
σx(t − r)

x(t − r) − σx(t − r)

Box N: Input signal = y(t), output = x(t) at time
t > 0 related by

dx(t)

dt
= y(t)

dW (t)

dt

where W (t) is Brownian motion “white noise” in EE.

RANDOM DYNAMICS – p.21/68



Examples: Noisy Feedback

N D
y(t) x(t)

σx(t − r)
σx(t − r)

x(t − r) − σx(t − r)

Box N: Input signal = y(t), output = x(t) at time
t > 0 related by

dx(t)

dt
= y(t)

dW (t)

dt

where W (t) is Brownian motion “white noise” in EE.

RANDOM DYNAMICS – p.21/68



Examples: Noisy Feedback

N D
y(t) x(t)

σx(t − r)
σx(t − r)

x(t − r) − σx(t − r)

Box N: Input signal = y(t), output = x(t) at time
t > 0 related by

dx(t)

dt
= y(t)

dW (t)

dt

where W (t) is Brownian motion “white noise” in EE.
RANDOM DYNAMICS – p.21/68



Noisy Feedback– Cont’d

Proportion σ of output signal is fedback from processor
D into N with a time delay r.

Get:

dx(t)

dt
= σx(t − r)

dW (t)

dt
, t > 0 (I)

Call (I) a stochastic differential equation with delay
(memory). Use shorthand:

dx(t) = σx(t − r) dW (t), t > 0 (I)

To solve (I), need an initial process η(t), −r ≤ t ≤ 0:

x(t) = η(t) − r ≤ t ≤ 0
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Noisy Feedback-Contd

View (I) as a stochastic integral

x(t) = η(0) +

∫ t

0

σx(u − r) dW (u), t > 0

Use idea of stochastic integration with respect to
Brownian motion (K. Itô):

Partition time interval [0, t] by points

0 = u0 < u1 < u2 < · · · ui < ui+1 < · · · un = t

which get closer and closer to each other as n gets in-

finitely large.
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Partition of [0, t]

0=u0 u1 u2 ui ui+1 un−1 un = t
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Noisy Feedback-Contd

The corresponding sums:

n−1
∑

i=0

σx(ui − r)[W (ui+1) − W (ui)]

will approach the Itô stochastic integral:
∫ t

0

σx(u − r) dW (u)

as the number of partition points n gets larger and larger.
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Noisy Feedback-contd

To solve

dx(t) = σx(t − r) dW (t), t > 0 (I)

proceed by successive forward (stochastic) integrations:

0 ≤ t ≤ r, r ≤ t ≤ 2r, 2r ≤ t ≤ 3r, · · · ,

The current value x(t) of the solution x of (I) is
non-Markov.
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Segment Process

−r t − r 0 t

η
xt

x(t)

||||
|
||
|||
||||||||||||||

|
|
|
|
|||||

|||
|

The segment xt is a path [−r, 0] → R defined by

xt(s) := x(t + s), −r ≤ s ≤ 0

xt is Markov.
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Segment Process-Contd

The solution x(t) of the stochastic delay equation

dx(t) = σx(t − r) dW (t), t > 0

is non-Markov, but the segment process xt is Markov
within the state space of all paths η.

In order to capture the true dynamics of the stochastic
delay equation, we observe the random evolution of the
segment xt rather than the current value x(t)
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Feedback Without Delay

Conside the case r = 0: (I) becomes a linear stochastic
differential equation (without memory)

dx(t) = σx(t) dW (t), t > 0

and has closed form solution

x(t) = x(0) exp

{

σW (t) − σ2t

2

}

, t ≥ 0.

Can be checked using stochastic differentiation via K.
Itô’s calculus.

x(t) is Markov (no delay= no memory).
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Simple Population Dynamics

Consider a large population x(t) at time t evolving
with a constant birth rate β > 0 and a constant death
rate α per capita.

Assume immediate removal of the dead from the
population.

Let r > 0 (fixed, non-random= 9 months, e.g.) be
the development period of each individual.

Assume there is migration whose overall rate is
distributed like white noise σẆ (mean zero and
variance σ > 0), where W is one-dimensional
Brownian motion.
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Simple Population – Cont’d

The change in population ∆x(t) over a small time
interval (t, t + ∆t) is

∆x(t) = −αx(t)∆t + βx(t − r)∆t + σẆ∆t

Letting ∆t → 0 and using Itô stochastic differentials,

dx(t) = {−αx(t) + βx(t − r)} dt + σdW (t), t > 0.

Associate with the above stochastic delay equation the
initial path η

x(s) = η(s), −r ≤ s ≤ 0.
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Logistic Population

A population x(t) at time t evolving logistically with
development (incubation) period r > 0 under Gaussian
type noise (e.g. migration on a molecular level):

dx(t)

dt
= [α − βx(t − r)] x(t) + γx(t)

dW (t)

dt
, t > 0,

i.e.

dx(t) = [α − βx(t − r)] x(t) dt + γx(t)dW (t), t > 0,

with initial condition

x(t) = η(t) − r ≤ t ≤ 0.
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Fluid Flow

β = σẆ (t)
(cc/sec) V

β = σẆ (t)
(cc/sec)

αx(t)
(gm/cc)

αx(t − r)
(gm/cc)

Main canal has dye (pollutant) with concentration x(t)
(gm/cc) at time t.

A fixed proportion of fluid in the main canal is pumped

into the side canal(s).
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Fluid Flow– Cont’d

The fluid takes r > 0 seconds to traverse the side canal.
Assume flow rate (cc/sec) in the main canal is Gaussian
with constant mean and variance σ.

Write equation for rate of dye transfer through a fixed
part V of the main canal.

Then get the following stochastic delay equation:

dx(t) = {νx(t) + µx(t − r))} dt + σx(t) dW (t), t > 0

x(s) = η(s), −r ≤ s ≤ 0

}

where η is a path [−r, 0] → R, ν and µ are real constants.
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Delayed Stock Model

Consider a stock whose price S(t) at any time t satisfies
the following stochastic delay differential equation
(sdde):

dS(t) = h(S(t − a))S(t) dt + g(S(t − b))S(t) dW (t),

t ∈ [0, T ]

S(t) = η(t), t ∈ [−L, 0]











Continuous drift h, volatility function g, positive
delays a, b, maximum delay L := max{a, b}.

Trading Strategy: πS(t) shares of stock S(t) and πB(t) of

bond B(t).
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Delayed Stock Model-contd

Continuous initial path: η : [−L, 0] → R.

Brownian motion W : one-dimensional.

An admissible strategy is said to be an arbitrage
opportunity if with no initial investment the portfolio
yields a positive return at a later time:

arbitrage = free lunch!

Delayed option-pricing model admits no arbitrage.

Constant volatility g and h corresponds to Black-Scholes

model.
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Stock Dynamics
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Stock prices when h = constant, b = 2, T = 365, L = 100.
Stock data: DJX Index at CBOE.
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Delayed BS Formula

(–>)
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“Now let’s do the math”!
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Stochastic Systems with Memory

Combine all dynamic models encountered so far in a
single stochastic equation of the form

dx(t) = h(xt) dt + g(xt)dW (t), t > 0

x0 = η

}

W is Brownian motion; xt is the segment process (en-

coding the memory of the solution process x); η is a given

initial path [−r, 0] → R (starting process for x).
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State Space

Collect all possible initial states η in a state space,
denoted by H , which contains all continuous paths
[−r, 0] → R.
The state space H is furnished with

algebraic operations (addition and scaling of graphs)

distance between two paths η1 and η2:

(
∫ 0

−r

[η1(s) − η2(s)]
2 ds

)1/2
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State Space-contd

angle between paths: η1 and η2 in H are perpendicular if
∫ 0

−r

η1(s)η2(s) ds = 0

The state space is BIG: has infinite dimension. That is
infinitely many mutually perpendicular paths:

sin

(

πs

r

)

, sin

(

2πs

r

)

, sin

(

3πs

r

)

, · · · , sin

(

nπs

r

)

, · · ·

∫ 0

−r

sin

(

πs

r

)

sin

(

2πs

r

)

ds = 0
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Existence

A random dynamical system with memory is a relation
between the current rate of change of the system and its
past random states.

Theorem:

Under appropriate (fairly general) conditions on the co-

efficients h, g, the stochastic equation with memory has a

unique solution x for each choice of the initial state η in

the state space H .
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Random Dynamics with Memory

Exploit idea of the segment as paradigm for
encoding the memory as an infinite-dimensional
object that evolves randomly in infinite-dimensional
space (even if the original stochastic signal is
one-dimensional).

Idea amounts to removing the memory from the
original system but at the cost of lifting the system
to infinitely many dimensions.

Within this setting the mathematics is harder but
doable: No free lunch! For example, the Itô calculus
fails for the encoded process, although it works for
the original signal.

Random dynamics is described via the flow.
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Random Dynamics-Contd

Introduce idea of stochastic/random equilibrium: a
random process that is probabilistically stationary in
distribution.

Describe the random dynamics near the equilibrium:

Existence of random expanding and contracting
smooth portions of the state space called unstable
and stable manifolds.

The expanding manifolds have fixed (non-random)
finite dimension.

The contracting manifolds have infinite dimension.
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Theorem:

Under regularity conditions, for

each sample point ω, we can ob-

serve the whole state space as it

mixes under the random flow.
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The Flow

The solution of the random equation with memory can
be viewed as a function

X(t, η, ω)

of three variables: time t, state η and chance ω, changing
continuously in (t, η) and satisfying:

X(t, η, ω) =η xt(ω), the segment of the solution;

X(t1 + t2, ·, ω) = X(t2, ·, θ(t1, ω)) ◦ X(t1, ·, ω)
for all t1, t2 ∈ R+, all ω ∈ Ω.

X(0, η, ω) = η for all initial paths η ∈ H , and all
ω ∈ Ω.
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The Flow Property

H H H

Ω
ω θ(t1, ω) θ(t1 + t2, ω)

t = 0 t = t1 t = t1 + t2

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

•η

•
X(t1, η, ω) •X(t1 + t2, η, ω)
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Stationary Point-Equilibrium

A random variable Y : Ω → H is a stationary point for
the flow (X, θ) if

X(t, Y (ω), ω) = Y (θ(t, ω))

for all t ∈ R+ and every ω ∈ Ω.

Denote a stationary trajectory by

X(t, Y ) = Y (θ(t)).
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Random Tubes

Theorem:

Within the state space H, each stationary point
Y (ω) has a ball B(Y (ω), ρ(ω)) center Y (ω) and
radius ρ(ω) with the property that for any
η ∈ B(Y (ω), ρ(ω)) the distance between X(t, η, ω)

and Y (ω) grows like eλit for large t where

{· · · < λi+1 < λi < · · · < λ2 < λ1}

are fixed countable and non-random. These represent

exponential growth rates of the random flow near its

equilibrium.
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A Random Tube

ρ(ω)
Y (ω)

X(t, η, ω)

Y (θ(t, ω))

•

•

•
•

•

•

•
•

η

ρ(θ(t, ω))
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Hyperbolicity

An equilibrium Y (ω) is hyperbolic if all exponential
growth rates λi are non-zero:

{· · ·λi < · · ·λi0 < 0 < λi0−1 < · · · < λ1}.

λi0 = largest negative growth rate.

λi0−1 = least positive growth rate.
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Theorem

Let Y be a hyperbolic equilibrium of the stochastic
delay equation. Then there is a random tube
B(Y (ω), ρ(ω)) around Y , a smooth stable manifold
S(ω), and unstable one U(ω) in B(Y (ω), ρ(ω)) with
the following properties:

The stable manifold S(ω) is the set of all states

η in B(Y (ω), ρ(ω)) such that the distance between

X(t, η, ω) and Y (θ(t, ω)) decays like eλi0
t for large t.
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Theorem-contd

(Flow-invariance of the stable manifolds):
The stable manifold S(ω) is eventually transported
into S(θ(t, ω)): That is

X(t, ·, ω)(S(ω)) is a subset of S(θ(t, ω)) for all large
t.
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Theorem-contd

The unstable manifold U(ω) is the set of all states η

in B(Y (ω), ρ(ω)) such that there is a unique
continuous-time history process also denoted by
y(·, ω) : (−∞, 0] → H such that y(0, ω) = η,
X(t, y(s, ω), θ(s, ω)) = y(t + s, ω) for all s ≤ 0,
0 ≤ t ≤ −s, and the distance between y(−t, ω) and

Y (θ(−t, ω)) decays like e−λi0−1t for large t.

The dimension of the unstable manifold U(ω) is finite

and non-random.
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Theorem-contd

(Flow-invariance of the unstable manifolds):

The remote history of the unstable manifold U(ω)
may be traced back to U(θ(−t, ω)): That is
U(ω) is a subset of X(t, ·, θ(−t, ω))(U(θ(−t, ω))) for
sufficiently large t.

U(ω) ⊆ X(t, ·, θ(−t, ω))(U(θ(−t, ω)))
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Stable/Unstable Manifolds

ω θ(t, ω)Ω

X(t, ·, ω)

θ(t, ·)

TS(ω)

TU(ω)

S(ω)

U(ω)

TU(θ(t,ω))

S(θ(t,ω))

TS(θ(t,ω))

U(θ(t,ω))

H H

Y (ω)
Y (θ(t,ω))
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Proof

[M.S]
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THE END!
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THANK YOU!
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