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Applications of Robust Distances for Regression

David J. Olive

Department of Mathematics

Southern Illinois University
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July 21, 2003

Abstract

The DD plot, introduced by Rousseeuw and Van Driessen (1999), is a plot

of classical vs robust Mahalanobis distances: MDi vs RDi. The DD plot can be

used as a diagnostic for multivariate normality and elliptical symmetry, and to as-

sess the success of numerical transformations towards elliptical symmetry. In the

regression context, many procedures can be adversely affected if strong nonlinear-

ities are present in the predictors. Even if strong nonlinearities are present, the

robust distances can be used to help visualize important regression models such as

generalized linear models.

KEY WORDS: Elliptically Contoured Distributions; GLM; Regression Graphics.
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1 INTRODUCTION

Consider the multivariate model where the n iid observations xi are p× 1 vectors from a

distribution with location/dispersion parameters (µ,Σ) where µ is a p× 1 vector and Σ

is a p×p symmetric positive definite matrix. Let X be the n×p matrix with ith row xT
i ,

let T (X) be a p× 1 multivariate location estimator, and let the p× p symmetric positive

definite matrix C(X) be a covariance estimator. Then the ith squared Mahalanobis

distance is the scalar

D2
i = D2

i (T (X), C(X)) = (xi − T (X))TC−1(X)(xi − T (X)) (1.1)

for each observation xi. The classical Mahalanobis distance uses the sample mean x̄ and

sample covariance matrix S for (T, C) and will be denoted by MDi. When T (X) and

C(X) are alternative estimators, Di will sometimes be denoted by RDi (Rousseeuw and

van Zomeren 1990).

The DD plot, introduced by Rousseeuw and Van Driessen (1999), is a plot of the

MDi vs the RDi. Assume that E(x) = µ and that the covariance matrix of x is cxΣ

for some constant cx > 0. Then the classical estimator (x̄, S) is a consistent estimator

for (µ, cxΣ). Section 2 shows that if the alternative estimator (T, C) is a consistent

estimator for (µ, aΣ) where a > 0 is some constant, then the plotted points will cluster

tightly about the line through the origin with unit slope (identity line).

Regression is the study of the conditional distribution of y given predictors x. An

important class of regression models has the form

y = g(βT x, e) (1.2)
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where g is the link function, β is a p × 1 vector, and e is an error. Li and Duan

(1989, p. 1014) note that this class of models includes generalized linear models (GLM),

transformation models, dichotomous regression models, censored regression models, and

projection pursuit models. Multiple linear regression and many nonlinear regression

models are also included.

Dimension reduction attempts to reduce the dimension of the vector of predictors x

without losing information about the conditional distribution of y|x. The central subspace

Sy|x(η) is the subspace spanned by the columns of η, where y is independent of x given

ηT x and η is a p× d matrix with the smallest possible value of d. The central subspace

is a super parameter that is used to characterize y|x, and greater information reductions

are attained with smaller values of d (Cook 1996, 1998b).

The assumption that the predictor distribution is elliptically contoured (symmetric)

is often used in regression theory. Following Johnson (1987, p. 107-108), if x has density

f(x) = kp|Σ|−1/2g[(x − µ)TΣ−1(x − µ)] (1.3)

for some constant kp and for some function g, then x has an elliptically contoured

ECp(µ,Σ, g) distribution. The characteristic function of x − µ is

φx−µ(t) = exp(itT µ)ψ(tTΣt) (1.4)

for some function ψ. If the second moments exist, then

E(x) = µ and Cov(x) = cxΣ (1.5)

where

cx = −2ψ′(0). (1.6)
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The population squared Mahalanobis distance

W ≡ D2(µ,Σ) = (x − µ)TΣ−1(x − µ) (1.7)

has the univariate density

h(w) =
πp/2

Γ(p/2)
kpw

p/2−1g(w). (1.8)

A spherically symmetric distribution is an ECp(0, I, g) distribution, and for the multi-

variate normal Np(µ,Σ) distribution, h(w) has the Chi-square χ2
p density, kp = (2π)−p/2,

and g(a) = exp(−a/2).

Under the assumption that the predictors x follow an EC distribution, inverse regres-

sion can be used to suggest response transformations (Cook 1998b, p. 21) and to identify

semiparametric regression functions (Cook 1998b, pp. 56-57), as well as to determine the

central subspace dimension d (Cook 1998b, pp. 144, 188, 191, and 197). The assump-

tion is also used to show that sliced inverse regression (SIR), principal Hessian directions

(pHd), and sliced average variance estimation (SAVE) provide information about the

central subspace (Cook 1998b, pp. 204, 225, and 250 respectively) and to derive the

asymptotic theory of associated statistics (Cook 1998b, pp. 211, 228, 230). See also Li

(1991), Cook (1998a), Cook and Critchley (2000), and Cook and Lee (1999).

Cook (1993) and Cook and Croos-Dabrera (1998) show that partial residual plots

perform best when the predictor distribution is EC. “Backfitting” uses partial residual

plots for fitting models, with applications including projection pursuit regression, gener-

alized additive models, additive spline models, and smoothing spline ANOVA. See Buja,

Hastie, and Tibshirani (1989), Ansley and Kohn (1994), Luo (1998), and Wand (1999).
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Many of these complex regression procedures seem to work well as long as there are

no strong nonlinearities in the predictors. If the distribution of x is EC, then strong

nonlinearities are not present since the conditional expectation E(x|φTx) is linear for all

conforming matrices φ (Eaton 1986, Cook 1998b, p. 130). Li and Duan (1989) and Cook

(1998b) show that these procedures can provide useful results if a subset of the data can

be selected such that the distribution of the predictors in the subset is closer to being

EC.

Section 2 justifies the assertion that the DD plot will look like the identity line if the

data follow a target EC distribution with finite second moments, and Section 3 examines

possible estimators for computing the RDi. Section 4 suggests how to make certain

regression procedures resistant to nonlinearities in the predictors.

2 CONSTRUCTING THE DD PLOT

The following proposition shows that if consistent estimators are used to construct the

distances, then the DD plot will tend to cluster tightly about the line segment through

(0, 0) and (MDn,α,RDn,α) where 0 < α < 1 and MDn,α is the α sample percentile of the

MDi. Let K > 0 be a large constant, e.g. the 99th percentile of the χ2
p distribution.

Proposition 1. Assume that x1, ...,xn are iid observations from a distribution with pa-

rameters (µ,Σ) where Σ is a symmetric positive definite matrix. Let aj > 0 and as-

sume that (µ̂j,n, Σ̂j,n) are consistent estimators of (µ, ajΣ) for j = 1, 2. Let Di,j be the

ith Mahalanobis distance computed from (µ̂j,n, Σ̂j,n). Consider the cases in the region

R = {i|0 ≤ Di,j ≤ K, j = 1, 2}. Let rn denote the correlation between Di,1 and Di,2 for
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the cases in R (thus rn is the correlation of the distances in lower left corner of the DD

plot). Then rn → 1 as n→ ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n and Σ̂2,n

have inverses. Then P (Bn) → 1 as n→ ∞. The result follows since for fixed x

D2
j ≡ (x − µ̂j)

T Σ̂
−1

j (x − µ̂j) =
1

aj

(x − µ)TΣ−1(x − µ)

+
2

aj
(x−µ)TΣ−1(µ−µ̂j)+

1

aj
(µ−µ̂j)

TΣ−1(µ−µ̂j)+
1

aj
(x−µ̂j)

T [ajΣ̂
−1

j −Σ−1](x−µ̂j)

(2.1)

on Bn, and the last three terms converge to zero in probability. QED

To prove that the correlation tends to one for all of the distances requires more

restrictions. Hardin and Rocke (1999) show that there exist distances computed from

robust estimators that have an asymptotic χ2
p distribution if the underlying distribution

of x is multivariate normal. Nevertheless, the variability in the DD plot may increase

with the distances.

An algorithm estimator (TA, CA) (where the subscript “A” stands for “algorithm”)

of (µj,Σj) can be constructed so that the DD plot follows the identity line. Let RDi(A)

denote the distances constructed using (TA, CA). By proposition 1, the plot of MDi vs

RDi(A) will follow the line segment defined by the origin (0, 0) and the point of medians,

(med(MDi),med(RDi(A))). This line segment has slope med(RDi(A))/med(MDi) which

is generally not one. Let RDi = τRDi(A) denote the distances actually used in the DD

plot where τ > 0 is some constant; i.e., the estimator (TA, CA/τ
2) is used to construct

the RDi. Using the notation from Proposition 1, let (a1, a2) = (aM , aA) (where “M”

stands for “Mahalanobis”). The classical estimator is a consistent estimator of (µ, aMΣ)
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where µ = E(x) and Cov(x) = aMΣ, and the algorithm estimator (TA, CA) tends to

be consistent for (µ, aAΣ) on the class of EC distributions and biased otherwise. The

constant τ can be chosen so that the DD plot is simultaneously a diagnostic for elliptical

symmetry and a diagnostic for the target distribution. That is, the plotted points follow

the identity line if the data arise from a target EC distribution such as the multivariate

normal distribution, but the points follow a line with non-unit slope if the data arise from

an alternative EC distribution. In addition the DD plot can often detect departures

from elliptical symmetry such as outliers, the presence of two groups, or the presence

of a mixture distribution. These facts make the DD plot a useful alternative to other

graphical diagnostics for target distributions. See Easton and McCulloch (1990), Li,

Fang, and Zhu (1997), and Liu, Parelius, and Singh (1999) for references.

As an example, first assume that the target is the multivariate normal Np(µ,Σ)

distribution. Then the (MDi)
2 are asymptotically χ2

p random variables. If x = µ, then

both the classical and the algorithm distances should be close to zero. Since the target

distribution is Gaussian, let

RDi =

√
χ2

p,0.5

med(RDi(A))
RDi(A) (2.2)

where χ2
p,0.5 is the median of the χ2

p distribution.

Note that the DD plot can be tailored to any target elliptically contoured distribution

that has 2nd moments. If it is known that med(MDi) ≈ MED where MED is the

target population analog (obtained, for example, via simulation, or from the actual target

distribution as in equations (1.6) and (1.8)), then we use

RDi =
MED

med(RDi(A))
RDi(A). (2.3)
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3 CHOICE OF THE ROBUST DISTANCES

The choice of the algorithm used to produce the estimator is important. Ideally, the

(hyper) ellipsoids determined by the classical and alternative estimators should be ap-

proximately concentric if the data distribution is EC, but otherwise far from concentric

for as large a class of non-EC-distributions as possible. Moreover, if the underlying

distribution of the data is not EC, then the algorithm should try to select a subset of

the data that is much more elliptically contoured than the data set as a whole. Let

(TR, CR) = (TA, CA/τ
2) denote the scaled estimators used to construct the DD plot. In

this plot, the points below the hth ordered distance RD(h) correspond to cases that are

in the ellipsoid

{x : (x − TR(X))TC−1
R (x − TR(X)) < RD2

(h)} (3.1)

while points to the left ofMD(h) are in an ellipsoid determined by the classical estimators.

Two robust estimators of location/dispersion that have the desired properties are the

minimum covariance determinant (MCD(c)) estimator and the minimum volume ellip-

soid (MVE(c)) estimator. The MCD finds the subset of c ≈ n/2 observations whose

classical covariance matrix has the lowest determinant. Then (TMCD, CMCD) is the clas-

sical sample mean and covariance matrix of these c observations. The MCD estimator

produces an ellipsoid that covers c cases and has small volume (recall that the volume of

the ellipsoid given by equation (3.1) is proportional to the determinant of the covariance

matrix CR), but the MVE finds the ellipsoid with the smallest volume that covers the c

cases. See Rousseeuw and Leroy (1987, pp. 262-263) and Rousseeuw (1984).

Computing these estimators is very expensive, so approximations based on iterative
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algorithms are used. The basic idea begins with the classical estimator computed from

an initial randomly selected subset of p + 1 points called a “start,” from which the

Mahalanobis distances {Di : i = 1, ..., n} are computed for all n points. At the next

iteration, the classical estimator is computed on the c cases corresponding to the smallest

distances. This iteration continues until convergence. We call the final subset of c cases

the “attractor” of the start. We use K starts and compute K estimators from the

resulting attractors. The algorithm estimator is the one that minimizes the MCD criteria.

The FMCD algorithm of Rousseeuw and Van Driessen (1999) is available from the web

site (http://win-www.uia.ac.be/u/statis/) while Hawkins and Olive (1999) describe a

similar algorithm that is available from (http://www.stat.umn.edu).

The DD plot will tend to be very linear if the algorithm produces consistent es-

timators, but the algorithms described above are inconsistent if K is fixed (Lopuhaä

1999). We use the estimator (TFMCD, CFMCD) to compute the RDi(A) provided that

K ≥ max(500, n/100) starts are used. (The default for the Splus function cov.mcd is

K = 500 starts.) This estimator is seeking the most concentrated ellipsoid that contains

c ≈ n/2 cases. If the data distribution is not EC, then the distribution of the c cases is

probably much closer to being EC. The DD plot will follow the identity line closely only

if med(MDi) ≈ MED, and RD2
i =

(xi − TFMCD)T [(
MED

med(RDA,i)
)2C−1

FMCD](xi − TFMCD) ≈ (xi − x̄)TS−1(xi − x̄) = MD2
i

for i = 1, ..., n. When the distribution is not EC, (TFMCD, CFMCD) and (x̄, S) will often

produce ellipsoids that are far from concentric.

This choice is certainly not perfect. There exist data sets with outliers or two groups
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such that both the classical and robust estimators produce ellipsoids that are nearly

concentric. We suspect that the situation worsens as p increases. In a simulation study,

Np(0, Ip) data were generated and the affine equivariant estimator cov.mcd was used to

compute first the RDi(A), and then the RDi using equation (2.2). The results are shown

in Table 1. Each choice of n and p used 100 runs, and the 100 correlations between the

RDi and the MDi were computed. The mean and minimum of these correlations are

reported along with the percentage of correlations that were less than 0.95 and 0.80. The

simulation shows that small data sets (of roughly size n < 8p+20) yield plot distances that

may not cluster tightly about the identity line even if the data distribution is Gaussian.

Figure 1 shows the DD plots for 3 artificial data sets. The DD plot for 200 N3(0, I3)

points shown in Figure 1a resembles the identity line. The DD plot for 200 points from

the elliptically contoured distribution 0.6N3(0, I3)+0.4N3(0, 25 I3) in Figure 1b clusters

about a line through the origin with a slope close to 2.0.

A weighted DD plot uses only the cases with RDi <
√
χ2

p,.975. This emphasis on the

lower left corner of the DD plot can magnify features that are obscured when large RDi’s

are present. If the distribution of x is EC, proposition 1 implies that the correlation of

the points in the weighted DD plot will tend to one and that the points will cluster about

a line passing through the origin. For example, the plotted points in the weighted DD

plot (not shown) for the non-Gaussian EC data of Figure 1b are highly correlated and

still follow a line through the origin with a slope close to 2.0.

Figures 1c and 1d illustrate how to use the weighted DD plot. The ith case in

Figure 1c is (exp(xi,1), exp(xi,2), exp(xi,3))
T where xi is the ith case in Figure 1a; i.e.,
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the marginals follow a lognormal distribution. The plot does not resemble the identity

line, correctly suggesting that the distribution of the data is not Gaussian; however, the

correlation of the plotted points is rather high. Figure 1d is the weighted DD plot where

cases with RDi ≥
√
χ2

3,.975 ≈ 3.06 are given zero weight. Notice that the correlation of

the plotted points is not close to one and that the best fitting line in Figure 1d may not

pass through the origin. These results suggest that the distribution of x is not EC.

It is easier to use the DD plot as a diagnostic for a target distribution than as a

diagnostic for elliptical symmetry. If the data arise from the target distribution, then

the DD plot will tend to be a useful diagnostic when the sample size n is such that the

sample correlation coefficient in the DD plot is at least 0.80 with high probability. As a

diagnostic for elliptical symmetry, it may be useful to add the OLS line to the DD plot

and weighted DD plot as a visual aid, along with numerical quantities such as the OLS

slope and the correlation of the plotted points.

4 APPLICATIONS

The DD plot can be used to diagnose elliptical symmetry, to detect outliers, and to assess

the success of numerical methods for transforming data towards an elliptically contoured

distribution. Since many statistical methods assume that the underlying data distribu-

tion is Gaussian or EC, there is an enormous literature on numerical tests for elliptical

symmetry. Bogdan (1999) and Czörgö (1986) provide references for tests for multivari-

ate normality while Koltchinskii and Li (1998) have references for tests for elliptically

contoured distributions. The DD plot can be used simultaneously as a diagnostic for
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whether the data arise from a Gaussian distribution or from another EC distribution.

EC data will cluster about a straight line; Gaussian data in particular will cluster about

the identity line.

Numerical methods for transforming data towards a target EC distribution have been

developed. Generalizations of the Box-Cox transformation towards a multivariate nor-

mal distribution are described in Velilla (1993). Alternatively, Cook and Nachtsheim

(1994) offer a two-step numerical procedure for transforming data towards a target EC

distribution. The first step simply gives zero weight to a fixed percentage of cases that

have the largest robust Mahalanobis distances, and the second step uses Monte Carlo

case reweighting with Voronoi weights.

Example. Buxton (1920, pp. 232-5) gives 20 measurements of 88 men. We will

examine whether the multivariate normal distribution is a plausible model for the mea-

surements head length, nasal height, bigonal breadth, and cephalic index where one case

has been deleted due to missing values. This data set can be downloaded from the

web site (http://www.stat.umn.edu/hawkins). Figure 2a shows the DD plot. Five head

lengths were recorded to be around 5 feet and are massive outliers. Figure 2b is the DD

plot computed after deleting these points and suggests that the normal distribution is

plausible.

The DD plot complements rather than replaces the numerical procedures. For exam-

ple, if the goal of the transformation is to achieve a multivariate normal distribution and

if the data points cluster tightly about the identity line, as in Figure 1a, then perhaps no

transformation is needed. For the data in Figure 1c, a good numerical procedure should
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suggest coordinatewise log transforms. Following this transformation, the resulting plot

shown in Figure 1a indicates that the transformation to normality was successful.

Robust distances can also be used to estimate h and cβ in models of the form

y = h(βT x) + e = ma,c(a+ cβT x) + e (4.1)

where both h and β may be unknown and

ma,c(u) = h(
u− a

c
)

for some constants a and c 6= 0. Notice that if the signal to noise ratio is high, the plot

of a+ cβT x vs y will suggest a functional form for h.

Let the OLS estimator (α̂, β̂
T
)T be computed from the regression of y on the predictors

x plus a constant. Li and Duan (1989) and Aldrin, Bφlviken, and Schweder (1993) show

that β̂ is a consistent estimator of kβ when the predictor distribution is EC. Without

loss of generality, assume that βT Σxβ = 1. Then β̂ estimates the population parameter

βOLS = Σ−1
x Σx,y = k(x)β + B(x)

where Σx = Cov(x), Σx,y = Cov(x, y), k(x) = E[βT (x − E(x))h(βT x)], and B(x) is

the bias vector defined by B(x) = Σ−1
x E[h(βT x)u] where u = x−E(x)−(Σxβ)βT (x−

E(x)). If the predictor distribution is EC then B = 0 and the bias can also be small

if no strong nonlinearities are present in the predictors. Hence β̂ estimates kβ, and h

can be visualized with a graph of β̂
T
x vs y if the predictor distribution is EC. With two

predictors and a non-EC distribution, Cook and Weisberg (1999, ch. 8) demonstrate that

h can be visualized using a three-dimensional plot with y on the vertical axis and the two

predictors on the horizontal and out of page axes. When we rotate the plot about the
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vertical axis, each combination of the predictors gives a two dimensional “view.” We then

search for the view that has a smooth mean function and the smallest possible variance

function.

For higher dimensions, the bias B can often be made small by trimming K% of the

cases with the largest robust distances (recall Winsor’s principle: “all data are roughly

Gaussian in the middle,” see Hoaglin, Mosteller and Tukey 1983, p. 363), and then

computing the OLS estimator β̂K from the retained cases. Use K = 0, 10, 20, 30, 40,

50, 60, 70, 80, and 90 to generate ten plots of β̂
T

Kx vs y using all n cases. In analogy

with the Cook and Weisberg procedure for visualizing h with two predictors, the plot

with a smooth mean function and the smallest variance function will be called the “best

trimmed view.”

As an example, suppose that the predictors are the lognormal data from Figure 1c and

that y = (x1 + 2x2 + 3x3)
3 + e where e is a N(0, 1) random variable; i.e., nonlinearities

are present in the predictors and β = (1, 2, 3)T . Figure 3a shows the plot of βT x vs

y, called the “true view.” The OLS estimate β̂ = (641.427, 2977.751, 2864.351)T , and

the corresponding vector of OLS standard errors is (167.38, 138.75, 189.02)T . Figure 3b

shows that the OLS view has considerable bias. The 70% trim gives the “best trimmed

view” and β̂K = (94.715, 203.507, 301.730)T ≈ 100β. The best trimmed view, shown

in Figure 3c (where the fitted values β̂
T

Kx are denoted by the label “BESTFIT”), is

almost the same as the true view. Trimming was effective in reducing the bias for the

estimation of cβ. If the same function were generated with the Gaussian data of Figure

1a, then β̂ = (41.548, 87.465, 120.671)T ≈ 42β, the corresponding vector of OLS standard
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errors is (7.21, 7.33, 7.34)T , and β̂K = (12.386, 25.095, 37.414)T ≈ 12.5β. In this case 50%

trimming gives the best trimmed view but all ten views were close to the true view.

The trimmed view has many applications. The response y can be predicted for a

given x by finding the value of β̂
T

Kx on the horizontal axis and the corresponding y value

on the vertical axis. The trimmed view can also be used as a graphical diagnostic for

linearity or monotonicity of h. See Heckman and Zamar (2000) for the importance of

detecting monotonicity in regression. The plot can also suggest parametric forms for h

and starting values for nonlinear regression. If it is assumed that y = t−1(βT x+e) where

t−1 is monotone, then the inverse response plot of y vs β̂
T

T x will suggest a functional

form for t. Hence the trimmed view can make the Cook and Weisberg (1994) procedure

for response transformations resistant to nonlinearities in the predictors.

It should be noted that the OLS view and best trimmed view can fail if h is symmetric

about E(βT
OLSx) so that Cov(x, y) = 0. A useful view for visualizing h can sometimes

be found if a subset of the predictors can be extracted for which the correlation between

the OLS fitted values and the response y is nonzero. As an example, let y = (x1 + 2x2 +

3x3)
2 + e where e is N(0, 1) and the predictors are the same as those used to construct

Figure 1a. Figure 4a shows the true view while Figure 4b shows the OLS view. The

OLS estimate suggests that the order of importance of the predictors is reversed from

the true order of importance since β̂ = (2.329, 2.275, 0.990)T . The correlation between

the response y and the OLS fitted values β̂
T
x is nearly zero, but the correlation between

y and β̂
T
x is positive if the cases that have β̂

T
x < med(β̂

T
x) ≈ 0 are given zero weight.

With this weighting, ten trimmed views were generated, the best of which trimmed 60%
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of the retained cases yielding β̂K = (2.648, 6.075, 8.085)T (see Figure 4c).

5 Discussion

The proposed applications of the robust distances RDi are simple to construct and inter-

pret. Programs for the DD plots and trimmed views can be written in a few lines using

Splus (MathSoft 1999) or R (http://www.r-project.org/). If the data distribution is mul-

tivariate normal, then the points in the DD plot will cluster tightly about the identity

line; if the distribution is non-Gaussian but EC, the points will still cluster tightly about

a line but with non-unit slope.

The ten trimmed views for a smooth mean function and a small variance function

are especially informative if the signal to noise ratio is high. Even with high noise levels,

views similar to the true view can be obtained.

The construction of the views is not limited to OLS. Li and Duan (1989) show that

maximum likelihood type estimators such as those used to estimate GLM’s will also

produce consistent estimators of cβ in models of the form y = g(βT x, e).

Making other regression methods such as SAVE resistant to the presence of strong

nonlinearities in the predictors will require further research. If the points in the DD plot

do not cluster about a line, then nonlinearity may be present. Marginal or multivariate

transformations (e.g. Box-Cox) can be very effective for eliminating gross nonlinearities

as can the transformation of Cook and Nachtsheim (1994). Using robust distances to

select a subset of data can also be effective, but specific recommendations will depend

on the regression procedure.
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Table 1: Corr(RDi,MDi) for Np(0, Ip) Data, 100 Runs

p n mean min % < 0.95 % < 0.8

3 44 0.866 0.541 81 20

3 100 0.967 0.908 24 0

7 76 0.843 0.622 97 26

10 100 0.866 0.481 98 12

15 140 0.874 0.675 100 6

15 200 0.945 0.870 41 0

20 180 0.889 0.777 100 2

20 1000 0.998 0.996 0 0

50 420 0.894 0.846 100 0
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