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A Methodology to Perform Online Self-Testing for
Field-Programmable Analog Array Circuits

Amit Laknaur and Haibo Wang

Abstract—This paper presents a methodology to perform online
self-testing for analog circuits implemented on field-programmable
analog arrays (FPAAs). It proposes to partition the FPAA circuit
under test into subcircuits. Each subcircuit is tested by replicating
the subcircuit with programmable resources on the FPAA chip,
and comparing the outputs of the subcircuit and its replication. To
effectively implement the proposed methodology, this paper pro-
poses a simple circuit partition method and develops techniques to
address circuit stability problems that are often encountered in the
proposed testing method. Furthermore, error sources in the pro-
posed testing circuit are studied and methods to improve the accu-
racy of testing results are presented. Finally, experimental results
are presented to demonstrate the validity of the proposed method-
ology.

Index Terms—Analog online testing, built-in-self-testing (BIST),
field-programmable analog array (FPAA).

1. INTRODUCTION

IELD-PROGRAMMABLE analog arrays (FPAAs) are the

counterparts of field programmable gate arrays (FPGAs)
in analog domain. In the past few years, numerous efforts have
been devoted to developing FPAA technologies [1]-[3]. At
present, quite a few commercial FPAA products are already
on the market."’2’3 Such devices have been used to imple-
ment signal conditioning, filtering, and other analog functions
for a wide range of applications. As FPAAs can be reconfig-
ured in the field, they are very promising for implementing
analog circuits with self-testing and self-repairing capabilities.
Such circuits are extremely desirable in military, space, and
certain commercial applications, in which electronic systems
operate in harsh environments without easy access for main-
tenance. Although promising experiments have been reported
on conducting fault-recovery operations on FPAA circuits [4],
the design of self-testing and self-repairing analog circuits on
FPAA platforms remains an open question. One obstacle to
FPAA self-repairing circuits is the lack of techniques to perform
self-testing and consequently locate faulty blocks on FPAA
circuits. To address this challenge, this paper presents an effi-
cient online testing method for FPAA circuits. The developed
method is also capable of locating faulty FPAA blocks, making
it suitable for the design of self-repairing FPAA circuits.
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Several FPAA testing techniques have previously been de-
veloped [5]-[8]. However, these techniques mainly focus on
FPAA offline testing. In this paper, we refer to online testing
as a testing process that does not affect the normal operation
of the circuit under test (CUT). On the contrary, offline testing
needs to halt the normal operation of the CUT for testing pur-
poses. For general analog circuits, online testing is conducted
using either redundancy-based or nonredundancy-based ap-
proach. The redundancy-based approach duplicates a portion
or the entire CUT, and compares the outputs of the original
circuit and its replication [9]-[11]. The nonredundancy-based
approach relies on built-in-self-testing (BIST) circuits to mea-
sure certain performance metrics of the CUT, such as current
consumption [12], statistical properties of circuit character-
istics [13], common-mode signal levels in fully differential
circuits [14]-[16], and other types of signal values [17]-[21].
By taking advantage of special properties of the CUT, the
nonredundancy-based approach normally requires small hard-
ware overhead. However, this approach sometimes involves
testing circuits that are difficult to design. On the contrary,
the redundancy-based approach usually results in significant
hardware cost. Yet it is easy to implement and, more inter-
estingly, can be used to locate malfunctioning circuit blocks.

The proposed testing methodology takes the redun-
dancy-based approach. It partitions the CUT into subcircuits.
To test a subcircuit, programmable resources on the FPAA chip
are configured to replicate the subcircuit. The subcircuit under
test and its replication are fed with the same inputs, and their
outputs are compared to check if faults have occurred in the
circuit. Since the same FPAA programmable resources can be
reconfigured to duplicate different subcircuits, this approach
results in small hardware overhead and provides additional
flexibility. To efficiently implement the proposed methodology,
this paper presents a simple partition method for FPAA circuits.
Also, it develops circuit techniques to address stability prob-
lems, which are often encountered in the redundancy-based
online testing approach. Furthermore, error sources in the
proposed testing circuits are studied, and methods to improve
the accuracy of testing results are presented. Finally, experi-
mental results are presented to demonstrate the feasibility of
the proposed testing methodology.

The rest of the paper is organized as follows. Section II gives
a brief introduction to FPAA technologies. In Section III, the
proposed online testing methodology is described. Section IV
discusses the partition method for FPAA circuits. Techniques to
solve circuit stability problems and methods to improve testing
accuracy are presented in Section V. Experimental results are pre-
sented in Section VI, and the paper is concluded in Section VII.

0018-9456/$20.00 © 2005 IEEE
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FPAA structure [22]. (a) FPAA layout. (b) FPAA CAB structure.

Fig. 1.

II. FPAA TECHNOLOGIES

An FPAA device typically contains configurable analog
blocks (CABs), interconnect networks, I/O circuits, and
on-chip memories. CABs consist of primitive analog compo-
nents whose values and connections can be programmed to
implement simple analog functions. Programmable intercon-
nects route signals around CABs to realize more sophisticated
analog functions. I/O circuits provide interface between FPAA
internal circuits and outside systems. Finally, on-chip memories
store FPAA configuration bitstreams.

Among various circuit techniques to implement FPAA cir-
cuits [1], switched-capacitor (SC) technology is particularly at-
tractive to the design of FPAAs, mainly because SC circuits
have high accuracy, are insensitive to parasitics, and can be
easily programmed. As an example, Fig. 1 shows an SC-based
FPAA architecture [22], [23], which was produced by Motorola.
A modified version of this FPAA architecture is currently pro-
duced by Anadigm Inc. As shown in Fig. 1, this architecture
contains 20 CABs, arranged into a4 X 5 array. Around the three
sides of the CAB array, there are 13 I/O circuits. Each CAB con-
sists of an operational amplifier (op-amp), five programmable
capacitor banks, and a number of switches. The values of ca-
pacitor banks as well as the states of the switches can be config-
ured to implement different functions. Since SC circuits are dis-
crete-time circuits by nature, exact circuit analysis for SC-based
FPAAs should be performed in the z domain. However, when
signal frequencies are significantly smaller than (e.g. smaller
than one-tenth of) the clock frequencies of SC circuits, FPAA
circuits can be approximately treated as continuous-time cir-
cuits and, hence, their operations can be analyzed in the s do-
main. Under this approximation, a capacitor with its associated
switches in a CAB can be programmed to be a capacitor, pos-
itive resistor, or negative resistor. Configurations for realizing
these three types of components are described in Fig. 2. When a
resistor (either positive or negative) is configured, the absolute
value of the resistance is given by

T

R=—

- (D
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Fig.2. Programming hardware resources in CABs. (a) Hardware resource. (b)
Capacitor configuration. (c) Positive resistor configuration. (d) Negative resistor
configuration.

where 7' is the period of the clock in the FPAA circuit and C is
the capacitor value. In this paper, we often treat circuits imple-
mented on SC-based FPAAs as continuous-time circuits. Also,
to simplify circuit diagrams, we use conventional resistor and
capacitor symbols to represent circuits shown in Fig. 2(b)—(d)
whenever detail circuit implementations are not needed in
analysis.

III. PROPOSED ONLINE TESTING APPROACH

In the proposed testing approach, the FPAA circuit under test
is first partitioned into subcircuits. Then, unused hardware re-
sources on the FPAA chip are configured to sequentially test
partitioned subcircuits. As illustrated in Fig. 3, an FPAA circuit
is partitioned into three blocks: gain stage, filter 1, and filter 2.
To test the gain stage, spare FPAA resources are configured to
implement a replication of the gain stage and a comparator. The
replication circuit has the same input as the original circuit. If
there are no faults in the circuit, the original circuit and its repli-
cation should have the same output (or the difference between
the two outputs should be within a certain tolerance range, re-
ferred to as a guardband). However, if there are faulty compo-
nents in either the original or the replication circuit, the outputs
of the two circuits will potentially exhibit a large difference and

Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on May 28, 2009 at 17:36 from IEEE Xplore. Restrictions apply.
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Fig. 3. Online testing scheme for FPAA circuits.

consequently trigger the output of the comparator to indicate the
occurrence of faults.

In the implementation of the proposed testing method, a
time slot is assigned for testing each partitioned subcircuit.
If there are no faults detected after the allocated period for a
subcircuit expires, spare FPAA resources will be reconfigured
to test another subcircuit. Depending on the vulnerability of
subcircuits, time slots with different lengths can be assigned to
different subcircuits in the testing process. subcircuits which
are prone to faults can be given longer testing periods than
those that are robust. Also, according to power budget, the
above testing process can be either performed once in a while
or conducted continuously in a periodic manner. With the help
of simple digital hardware, sophisticated testing schedules can
be easily implemented. Also, testing schedules can be altered
in the field in order to meet changing reliability requirements.

In the testing process, if the configured testing circuit is
faulty, the comparator output will also indicate the occurrence
of faults. To eliminate such false alarms, the configured BIST
circuit must be guaranteed fault-free. This can be achieved by
periodically configuring hardware resources, which are reserved
for implementing BIST circuits, to test themselves. In such self-
checking operations, online testing for the CUT is temporarily
suspended. Hence, the testing for resources reserved for BIST
circuits canbe carried outin an offline manner. Various techniques
developed for analog offline BIST can be exploited for this
purpose. Another issue in the implementation of the proposed
testing approach is to select proper guardbands. Due to circuit
mismatches and other parasitic effects, the CUT output may
slightly differ from its replication output in fault-free scenarios.
Such differences have been investigated with using statistical
analysis and methods to optimally place guardbands have been
reported [24], [25].

The proposed method does not intend to utilize powerful
processors to synthesize testing circuits in the field. Instead,
testing circuits are designed before the implementation of the
system. During the operation, configuration bitstreams, which
are stored in a memory, are loaded into the FPAA chip to
implement various FPAA testing circuits. This approach re-
quires FPAAs having the capability to perform partial dynamic
reconfiguration. Currently, some FPAAs already support this
feature . With the advance of technology, more sophisticated
partially configurable FPAAs will be developed for self-re-
pairing applications. Finally, circuit initial conditions caused
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by partial reconfiguration need to be carefully treated. For
SC-based FPAAs, if op-amps used in the FPAAs have large
slew rates and FPA A capacitors have small values, the impact to
the CUT caused by adding testing circuits is negligible. This is
because such FPAA circuits operate in sample-and-hold mode
and no additional feedback is introduced when connecting
testing circuits to the CUT. Contrary to the FPAA circuit under
test, testing circuits do need certain settling time before they
can produce correct testing results. To address this problem, a
digital timing circuit (e.g., a counter) can be used to temporarily
invalidate the testing result during the settling time period of
the testing circuit.

IV. CIRCUIT PARTITION METHOD

As discussed early, a key step in the proposed testing method-
ology is to partition the CUT into subcircuits. This paper pro-
poses to partition the FPAA circuit under test into subcircuits
such that each subcircuit takes only a single CAB. For example,
Fig. 4 shows a third-order low-pass Chebyshev filter [26]. Ac-
cording to its implementation, the filter circuit is partitioned into
four subcircuits.

The most apparent advantage of this partition method is its
easy implementation. Once analog circuits are mapped onto
FPAA chips, circuit partitions are automatically generated.
Additionally, this partition approach results in small BIST
circuits. Since each subcircuit takes a single CAB, only one
spare CAB is needed to replicate the subcircuit under test. Also,
the simplest comparator can be implemented using a single
CAB. Therefore, BIST circuits resulted from this partition
method require only two CABs. Finally, this FPAA partition
method also facilitates locating faulty circuit blocks at CAB
level. In the testing process, abnormal comparator outputs will
automatically identify faulty CABs.

An important metric in evaluating a circuit partition method
for testing purposes is how circuit testability is affected after
circuit partition. For the proposed testing approach, circuit
testability can be measured by |(V, —V.)/V,|, where V,, and V]
are signals at the testing point in fault-free and faulty scenarios. It
is shown in [27] that partitioning linear active circuits normally
improves circuit testability. This can be justified as follows.
Most linear active circuits contain negative feedback paths
in order to make circuits stable and insensitive to parasitic
effects. However, from the testing point of view, negative
feedback generally makes it difficult to detect circuit faults.
Performing circuit partitions at CAB level frequently breaks
negative feedback paths and consequently enhances circuit
testability.

By performing circuit partition at CAB level, subcircuits
that are moderately off their performance specifications may
be identified as faulty circuits. However, due to either negative
feedback or fault-cancellation effects, these subcircuits may
not significantly affect the overall performance of the CUT.
It can be argued that such partitioned subcircuits should be
classified as fault-free circuits because the overall performance
of the CUT is not significantly affected. If this is the designer’s
intention, the threshold of the comparator in the BIST circuit
can be accordingly adjusted in order to label these subcircuits

Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on May 28, 2009 at 17:36 from IEEE Xplore. Restrictions apply.



1754

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 5, OCTOBER 2005

Fig. 4. FPAA circuit partition.

as fault-free circuits. However, the effectiveness of negative
feedback and fault cancellation often varies with different input
signal characteristics. For systems that require extremely high
reliability, a more prudent approach is to treat these subcircuits,
which are moderately off their performance specifications, as
faulty circuits.

V. TECHNIQUES TO ADDRESS CIRCUIT STABILITY

After circuit partition, resultant subcircuits may possess un-
stable transfer functions that have poles in the right-hand-side
or the jw-axis of the s plane. Thanks to negative feedback paths
in the unpartitioned FPAA circuit, these subcircuits are stable
in the context of the entire FPAA circuit. However, when these
subcircuits are duplicated in the testing module, their associated
global feedback paths, which cross multiple CABs, are not repli-
cated. As aresult, any disturbance or small mismatches between
the original circuit and its replication will cause the output of
the replication circuit to oscillate or be saturated, consequently
invalidating the testing result. A similar problem has been ad-
dressed in literature [10] for online testing SC ladder filters. Al-
though the technique presented in [10] can be applied in this
testing approach, it normally results in large online testing mod-
ules. This not only increases implementation cost but also makes
it difficult to find proper placement and routing solutions for
the resulted testing circuits. To avoid the above drawbacks, this
paper presents a more cost-effective alternative for addressing
circuit stability problems.

The proposed circuit technique is explained using the ex-
ample circuit shown in Fig. 5. The subcircuit under test (cir-
cuit in the top rectangle) has a pole located at the origin of the
s-plane. Instead of simply replicating the original circuit, we
change the amplifier feedback component from a capacitor (C
in the original circuit) to a resistive component R; in the repli-
cation circuit. In SC-based FPAA circuits, R; can be imple-
mented as shown in Fig. 2(c). In this implementation, the am-
plifier feedback path in the replication circuit is broken during
¢2 clock phase [refer to Fig. 2(c)]. To address this problem, a
small capacitor C, is added into the amplifier feedback path.
The value of C|, is selected small enough such that its impact
on the circuit transfer function is negligible. Since the subcircuit
under test and its counterpart in the testing module are not ex-
actly the same, conventional comparator circuits cannot be used

to compare their outputs. In the proposed comparator circuit,
voltage-mode inputs are first converted into current-mode sig-
nals. Such conversion is accomplished by using the same type
of components that are used in amplifier feedback in the original
circuit and its counterpart in the testing module. For example, in
Fig. 5, capacitor C; is used in the amplifier feedback path of the
original circuit. In the comparator circuit, capacitor C5 converts
the output of the original circuit into current signal I, whose
value is given by

Co <Vin1(3) Vin2(3)>
LLi(s) = —- + . 2
=52 T Z @
If C; = Cs, the above equation can be simplified as
‘/inl(s) ‘/inQ(s)
Ii(s) = . 3
RO IR @

Similarly, negative resistor Ro, whose implementation is shown
in Fig. 2(d), converts the output of the replication circuit into
current signal I5. If |Ry| = | Rz|, then we have

Vvinl(s) Vvin2(s)
Ir(s) = — — . 4
S A A @

The comparator output V, can be expressed as
Ve(s) = (Iu(s) + Ia(s)) - Rs. Q)

Note that capacitor Cj, in the comparator circuit is another small
capacitor for stabilizing the output of the amplifier when the
resistive feedback path is broken. Its effect is neglected in the
above analysis. If no faults occur in the circuit, I; should equal
—I5. Therefore, the comparator output should be zero. On the
contrary, if there are faults, I1 will differ from — /5. The com-
parator circuit will amplify the current difference and its output
will indicate the occurrence of faults.

There are two factors that mainly affect the accuracy of the
testing circuit depicted in Fig. 5. The first error source is the
amplifier stabilization capacitor C,, which slightly changes the
impedance of the amplifier feedback path in the replication cir-
cuit. The second cause for the inaccuracy is the negative resistor
used in the comparator circuit. Detailed circuit analysis in [28]
shows that the negative resistor causes the comparator circuit

Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on May 28, 2009 at 17:36 from IEEE Xplore. Restrictions apply.
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comparing signals generated in different FPAA clock cycles.
Due to these error sources, input currents I;(s) and I(s) of
the comparator in Fig. 5 are not exactly the same even if the
circuit is fault-free. The current mismatch caused by the above
two factors is defined as the intrinsic error € of the testing cir-
cuit shown in Fig. 5. The intrinsic error, measured by |(I1(s) —
I5(s))/I1(s)], can be estimated using the following equation:

c=or fin fin C(l,
Jeix Jex Cr

where fi, and f. are the frequencies of the circuit input and
FPAA clock; C,, is the amplifier stabilization capacitor and C'r
is the FPAA capacitor used to implement resistive component
R; in Fig. 5. The derivation of the above equation is sketched in
Appendix I. The accuracy of the estimation equation is verified
by both simulation and measurement results as shown in Fig. 6.
Note that there is relatively large difference between measure-
ment and estimation results at the low-frequency range, which
is mainly due to measurement errors as discussed in [28].

+ 27 (6)

In (6), term 27(fin/fek)(Ca/CRr) represents the intrinsic
error caused by amplifier stabilizing capacitor C,; term
27(fin/ fox) is due to the use of the negative resistor in the
comparator circuit. If the FPAA circuit under test satisfies
constraints of f;, < (1/10) fox and C, < (1/10)Cr, the upper
bound of the intrinsic error caused by C|, is approximately 6%.
However, when FPAA input signal frequency fi, is one-tenth
of the FPAA clock frequency, the intrinsic error caused by the
negative resistor can be as high as 63%. Since the intrinsic error
caused by the negative resistor has a predominant effect on
the accuracy of the proposed testing circuit, it is worth taking
a close look at the implementation of the negative resistor in
the comparator circuit. Fig. 7 shows two comparator circuits
with different negative resistor implementations. For the con-
venience of description, the two comparators are referred to as
Comparator 1 and Comparator 2 as shown in Fig. 7. Comparator
1 is the circuit that is used in Fig. 5 and is referred to in the
previous discussion. It compares signals generated in different
clock cycles and potentially causes large mismatches when
signal frequency is high. If the clock schemes of the switches
used in the negative resistor circuit are configured as shown
in Fig. 7(b), the drawback of comparing signals generated in
different clock cycles can be avoided. However, this configu-
ration results in large spikes at the output of the comparator,
because capacitors C; and Cs transfer charge to the virtual
ground node (the node connecting to the negative input of the
amplifier) during different clock phases. To eliminate spikes at
the output of Comparator 2, a sample-and-hold circuit [23] can
be used to sample the comparator output as shown in Fig. 8. The
superiority of this new comparator, referred to as Comparator
3, has been demonstrated through simulation. Fig. 9 compares
simulated peak-to-peak voltages that are caused by intrinsic
errors at the outputs of Comparators 1 and 3. As Comparator
3 avoids the intrinsic error resulted from the negative resistor
its output exhibits significantly smaller peak-to-peak voltage.
Note that Comparator 3 is still affected by the intrinsic error
caused by stabilization capacitor C,. That is why the output
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800 ' ' ' ' ' ' ' and parametric faults in FPAA circuits. The FPAA device used
700 1 in our experiments is a Motorola FPAA chip [22], [23].4 In real
—— Comparator 3 applications, the input signal of the CUT can be any type of
< 600 + signals. Since it is impractical to examine all possible input sig-
E nals, we feed the CUT with sinusoidal, square, triangular, and
2 500 frequency modulation (FM) signals in the experiment. Results
3 400 obtained from these scenarios should provide useful inferences
:g for general cases.
S 300 One of the circuits that we tested is a low-pass biquad filter,
£ whose implementation is shown in Fig. 10. In the experiment,
O 200 the corner frequency of the filter is configured to 20 kHz. The
100 filter inputs are sinusoidal, square, and triangular signals with
frequency 10 kHz, magnitude 1.5 V, and offset voltage 2.5 V.
0 . . . . . . . In order to minimize hardware overhead caused by testing cir-
10 15 20 25 30 35 40 45 50

Frequency (KHz)
Fig. 9. Simulated comparator outputs.

of Comparator 3 is not exactly zero when it is used to test a
fault-free circuit during simulation.

VI. EXPERIMENTAL RESULTS

To demonstrate the feasibility of the proposed testing method-
ology, experiments are conducted to detect both catastrophic

cuits, Comparator 1 is used in our experiments. In fault-free
scenarios, the comparator output is close to 2.5 V, which is the
signal ground in the FPAA circuit. In faulty scenarios, if the
comparator output is beyond the voltage window 2-3 'V, the fault
is detected. Otherwise, the testing circuit fails to detect the fault.

With the above setup, experiments are first conducted to de-
tect catastrophic faults associated with switches in the filter cir-
cuit. In the experiment, selected switches are programmed to be

4Since the FPAA used in our experiments is an early product, it does not
support partial dynamic reconfiguration. Therefore, each time when we repro-
gram the testing module, the operation of the entire circuit will be suspended
for loading the configuration bitstreams into the chip. This problem will be fully
solved by using new FPAA devices that support partial dynamic reconfiguration.
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TABLE 1
EXAMINED CATASTROPHIC FAULTS

Fault index Fault description
1 S1 stuck-on, Sy stuck-off
2 S stuck-off, Sy stuck-off
3 Ss stuck-on, Sy stuck-off
4 S3 stuck-off, S stuck-off
5 S5 stuck-on, Sg stuck-off
6 Sy stuck-off, Sg stuck-off
7 S7 stuck-on, Sg stuck-off
8 S7 stuck-off, Sg stuck-off
9 Sy stuck-on, S stuck-off
10 Sg stuck-off, Sy stuck-off
11 S11 stuck-on, S stuck-off
12 S11 stuck-off, Sp9 stuck-off
13 S13 stuck-on, Sy4 stuck-off
14 S14 stuck-off, Sy 4 stuck-off
15 S5 stuck-on, Sy¢ stuck-off
16 S15 stuck-off, Sy stuck-off

-Agilent Technologies

Avg(1): 323.4mV
4 Source 4 Select:
2 Pk-Pk

—Pk( 1) 2 OBV Pk-Pk(2):
‘Qettmgb

1.45v |

Fig. 11. Captured comparator output.

always-on or always-off to emulate stuck-on or stuck-off cata-
strophic faults. Due to programming restrictions on the FPAA
device, at least two catastrophic faults have to be injected into
the filter circuit in each experiment. Table I lists all catastrophic
faults examined in our experiments. All of them are detected
by the proposed testing method. Fig. 11 shows captured wave-
forms when the testing circuit detects fault scenario 16 listed in
the table. The top waveform is the comparator output, ranging
from 0-2.09 V. The bottom waveform is the filter input, which
is a sinusoidal signal with the magnitude of 1.5 V.

CAB2 s) s gl
S(¢2) | JS ¢2)
IRV AR T

TABLE 1I
MDPFs IN THE LOW-PASS BIQUAD FILTER CIRCUIT
Cap. | Cap. Input Signal
Names | values | Sinusoidal | Square | triangular
Ch 20 15% 15% 20%
Co 20 25% 15% 30%
Cs 159 30% 16% 38%
Cy 20 25% 20% 30%
Cs 20 25% 25% 30%
Cs 159 54% 40% | 60% T
fMinimum detecable value-decrease fault
TABLE 11
MDPFS IN THE LEAPFROG FILTER CIRCUIT
Equivalent | FPAA Cap. | MDPFs
Comp. values values
Ry 125k 8 13%
Ry 125k 8 25%
Rg 125k 8 25%
Cy 255pf 255 14%
Rs 125kQ 8 13%
Ry 125kQ 8 13%
Ry 1250 8 13%
Rs 125kQ 8 13%
Co 125pf 125 14%
Rg 125kQ 8 13%
Ry 125kQ 8 25%
Cs 255pf 255 9%

"Minimum detectable value-decrease faults

In the experiment of detecting parametric faults, capacitors in
the filter circuit are programmed to incorrect values to imitate
capacitor parametric faults. A parametric fault is measured by
the variation (in terms of percentage) of the component value.
Also, a parametric fault can cause a capacitor value to either
increase or decrease. If a fault causes the realized capacitor
value to increase, it is referred to as value-increase parametric
fault. Similarly, a fault resulting in a decreased capacitor value is
called value-decrease parametric fault. For each capacitor in the
filter circuit, experiments are conducted to find the minimum de-
tectable value-increase fault as well as the minimum detectable
value-decrease fault. The larger one of the two minimum de-
tectable faults is defined as the minimum detectable parametric
fault (MDPF) of the given component. Table II summarizes the
recorded MDPFs for all the capacitors in the filter circuit. The
first and second columns of the table list capacitor names and
their normal values, which are represented in terms of FPAA
capacitance units. Columns 3, 4, and 5 give the corresponding
MDPFs with sinusoidal, square, and triangular input signals.
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Fig. 12. Online testing low-pass biquad filter.

In addition to the biquad filter, we also successfully tested
other types of circuits. Table III lists our experimental results on
testing the leapfrog filter circuit, which is shown in Fig. 4. In the
experiment, the filter is configured to have a passband of 10 kHz.
The filter input during our testing operation was an FM signal,
whose carry signal is a sinusoidal signal with magnitude 1.5 V.
The modulation signal has a triangular waveform. The carrier
frequency is 7 kHz and the maximum frequency deviation due
to the modulation is 6 kHz. These parameters are selected to
generate a very irregular waveform.

Experimental results show that the proposed testing method
can easily detect catastrophic faults. Also, it detects capacitor
parametric faults, which mainly range from 13%-30%. For
some parametric faults that are difficult to test, the corre-
sponding MDPFs can reach the neighborhood of 60%. Note
that the use of Comparator 1 in the testing circuit is a significant
cause for the large MDPFs. To combat the intrinsic error caused
by the negative resistor, the gain of the comparator has to be
relatively small. This makes the comparator less sensitive to
mismatches between the subcircuit under test and its replica-
tion. If Comparator 3 is used in the testing circuit, the intrinsic
error caused by the negative resistor can be eliminated. Poten-
tially, this will improve the MDPFs. Although example circuits
presented here are relatively small, the proposed testing method
should work with large circuits since we always partition CUTs
into subcircuits that occupy single CABs. The size of CUTs
should not affect the validity of the testing method.

VII. CONCLUDING REMARKS

In this paper, we propose a methodology to perform online
self-testing for FPAA circuits. To effectively implement the pro-
posed testing approach, we describe a simple FPAA partition

method and present techniques to address circuit stability prob-
lems. In addition, error sources in the proposed testing circuits
are studied and solutions to improve the accuracy of testing re-
sults are presented. The feasibility of the proposed methodology
is demonstrated in hardware experiments. This paper mainly
focuses on linear active circuits. In the future, we will extend
this methodology to testing nonlinear FPAA circuits. Also, ef-
forts will be directed toward improving the effectiveness of this
methodology.

The proposed testing method is suitable for the design of self-
repairing FPAA circuits. It requires moderate hardware over-
head and is capable of locating faulty CABs on the fly. In the im-
plementation of self-repairing FPAA circuits, identified faulty
CABs can be replaced by spare resources on FPAA chips. The
proposed testing methodology, integrating with advanced FPAA
technologies and sophisticated CAB replacement algorithms,
will make self-repairing analog circuits more accessible for var-
ious applications.

APPENDIX 1

This appendix derives an equation to estimate the intrinsic
error in the proposed testing circuit. To facilitate the analysis, it
is assumed that the circuit technique depicted in Fig. 5 is used
to test a low-pass biquad filter circuit. As shown in Fig. 12, the
filter circuit is implemented on CAB1 and CAB2. CAB3 imple-
ments the replication of the subcircuit realized on CAB1. The
comparator is implemented on CAB4. Using charge conserva-
tion principle and z transformation, the expressions for voltage
signal Vx (z), V3-(z), and Vo (2) can be derived as follows:

1 Gy

Vx()= - =g |

Vo(2)+Vi(2)] N
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W)= g e ®
Vo(z)=A[Cs-27 Vo (2) = Ca-(1—271) - Vx(2)]  (9)
where
_ 1
A::Tif§§i;;7' (10)
Substituting (7) and (8) into (9), we have
Vo(z) =A-Cyr-B-[Vo(z)+ Vi(2)] (11)
where
c 3—30 Z
B = w -1 (12)

If there are no faults in the circuit, it is easy to show that B has
the same expression as the intrinsic error. Thus

Cs -1
R e
1— G -1
C3+Cy
1—2z1
o F—E (13)
C3+Cy

To find the relation between € and input signal frequency fiy,
substitute z~! = ¢=927(fin/Je) into the above equation.

_ o fin
1—e¢e iz Felk
g = 2
> in
- fin _ s Jin
_jm fin e]ﬂ— fak — e I7 Feie
= |e ferk | «
o fin
1— —Ca =Tk
C3+4+Cy
j - 2sin L
— fex ) (14)
C —j27r fin
1= 03-1'404 € e

If fin < fox, we use the following approximations:

. fin ) fin
sin|m7=— | &« (15)
< fclk fclk
—j27 fin
e T & 1. (16)
Hence, (14) can be simplified as
fin fin 04
€=2r + 27 —. a7
S fe Cs

Note that C3 and Cy in (17) are the components denoted as Cr
and C, in the previous discussion.
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