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Abstract

We describe a system for computational monitoring and

steering of an on-going computation or visualization on a

remote host such as workstation or supercomputer. Un-

like the conventional “launch-and-leave” batch computa-

tions, this system enables: (i) continuous monitoring of

variables of an on-going remote computation using visu-

alization tools, and (ii) interactive specification of chosen

computational parameters to steer the computation. The

visualization and control streams are supported over wide-

area networks using transport protocols based on stochastic

approximation methods to provide stable throughput. Using

performance models for transport channels and visualiza-

tion modules, we develop a visualization pipeline configu-

ration solution that minimizes end-to-end delay over wide-

area connections. The user interface utilizes Asynchronous

JavaScript and XML (Ajax) technologies to provide an in-

teractive environment that can be accessed by multiple re-

mote users using web browsers. We present experimental

results on a geographically distributed deployment to illus-

trate the effectiveness of the proposed system.

1 Introduction

The computing power of supercomputers continues to

increase thereby enabling large-scale computations of un-

precedented scale. Such computations indeed have become

an indispensable research tool for a number of scientific ap-

plications in disciplines as diverse as biology, chemistry,

meteorology, and astrophysics [25]. These applications in-

cluding TSI [1] and combustion research [2] often generate

vast amounts of simulation data in the range of terabytes

to petabytes, which must be stored, transferred, visualized,

and analyzed by geographically distributed teams of scien-

tists. In several cases, large-scale computations are sched-

uled in a “batch mode” on supercomputers and their outputs

are examined at the end typically using visualization and

other analysis tools. While being effective in some cases,

this paradigm potentially leads to runaway computations

whose parameters either strayed away from the region of

interest or did not show adequate movement in the direction

of interest. Such instances represent very ineffective utiliza-

tion of the valuable computing and human resources. This

can be avoided if the progress of computation is monitored

on-line, and its parameters are dynamically adjusted to steer

the execution.

In many simulations, dynamic parameter specification

through visual feedback can identify appropriate regions

and can aid the discovery process. In particular, with

such a capability, unsuccessful computations can be saved

by steering the stray simulations on the fly. Achieving

this capability over geographically distributed resources re-

quires an integration of technologies in various fields in-

cluding high performance and distributed computing, high

speed networking, high performance storage systems, and

large-scale visualization. In this paper, we propose Re-

mote Intelligent Computational Steering using Ajax tech-

nology (RICSA) for online visualization and steering that

optimizes the performance of visualization pipelines over

wide-area networks. This system integrates three key tech-

nology components: (a) network-optimized visualization

pipeline using a dynamic programming method, (b) stable

transport channels for visualization and computation con-

trol streams using stochastic approximation methods, and

(c) user interface based on Asychronous JavaScript using

XML (Ajax) to provide convenient and wide user access.

A general remote visualization system consists of a

remote server acting as a data source, a local render-

ing/display terminal acting as a client, zero or more in-

termediate hosts, and a network connecting them all to-

gether. The performance of such systems critically relies

on how efficiently the visualization pipeline is partitioned
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and mapped onto the network nodes. Many commercial or

noncommercial software products for remote visualization

[3, 4, 16] employ a predetermined partition of visualization

pipelines and send fixed-type data streams such as raw data,

geometric primitives, or framebuffer (FB) to remote client

nodes. While such schemes are common, they are not al-

ways optimal for high performance visualizations, particu-

larly over wide-area connections. There have been several

efforts to design architectures that assign visualization mod-

ules across network nodes efficiently. Brodlie et al. [20] ex-

tended existing dataflow visualization systems to Grid envi-

ronments. Stegmaier et al. [28] provided a generic solution

for hardware-accelerated remote visualization that is inde-

pendent of application and architecture. Bethel et al. [18]

designed a new architecture that utilizes high-speed WANs

and network data caches for data staging and transmission.

Luke and Hansen [23] presented a flexible remote visual-

ization framework capable of multiple partition scenarios,

which is tested and evaluated on a local network. Bowman

et al. [19] proposed a framework to predict the process-

ing times of visualization modules using analytic models,

which can be used to obtain a suitable mapping of the visu-

alization pipeline. RAVE [5] is a “resource-aware” system

that can determine if rendering should be done locally or

remotely for satisfactory interactivity. These systems typ-

ically require the use of third-party packages with focus

on a specific aspect of performance improvement while the

proposed RICSA system provides a lightweight implemen-

tation and an effective solution to the remote visualization

problem from a global optimization view.

There have been various research efforts on the system

design and implementation for computational steering sys-

tems. However, existing systems including SCIRun [27],

CUMULVS [6], VIPER [24], and RealityGrid [7] generally

require a high learning curve for all users. Besides, vari-

ous packages such as Globus, SOAP, PVM [8] and AVS [9]

need to be installed at the user sites to realize their full ben-

efits. These factors often place undue burden on users, who

are typical scientists, to spend significant effort in setting

up and learning a new system. Furthermore, some of these

technologies are platform specific and are not widely sup-

ported on diverse user platforms. The proposed RICSA sys-

tem supports a user interface using Ajax web technologies

that offer improved productivity and user experience that

can be accessed by a web browser available on most user

platforms. Partial screen updates and asynchronous com-

munications are two essential features of Ajax that make it

suitable for computational monitoring and steering applica-

tions. Using Ajax, only user interface elements that con-

tain new information are updated with data received from

a server such as next update of a monitored computation.

Such a non-interrupted data-driven model replaces the tra-

ditional “click, wait, and refresh” page-driven model. With

RICSA, any user with an Internet connection can use a web

browser to visualize a computation rendered by a remote

system, and also steer the computation from a platform any-

where on the Internet.

Control channels with stable dynamics are needed to

support computational steering and interactive visualization

operations, which require connections that guarantee suf-

ficient, albeit small, bandwidth and low jitter. Inadequate

bandwidths often result in poor responsiveness and high jit-

ter may destabilize the control. Based on extensive traffic

measurements and analysis, we utilize a new class of trans-

port protocols based on stochastic approximation methods

to achieve stable throughput for control channels.

In this paper, we address both analytical and implemen-

tation aspects of RICSA. We describe the framework and

analytically formulate the problem of minimizing the end-

to-end delay of RICSA by considering both transmission

and computation times. This analytical model enables us to

analyze the algorithmic complexity and optimality of map-

ping the visualization pipeline onto the network. Based on

performance measurements on both visualization modules

and transport channels, we derive the optimal decomposi-

tion and mapping scheme using the dynamic programming

method for end-to-end delay minimization.

The rest of the paper is organized as follows. In Sec-

tion 2, we present the system architecture. In Section 3, we

describe the transport protocol that achieves throughput sta-

bilization for control channels. In Section 4, we construct

an analytical model for visualization pipeline partitioning

and network mapping, and present the optimization method

using dynamic programming. Implementation details and

experimental results are provided in Section 5. We conclude

our work and discuss future research directions in Section 6.

2 System Framework

As shown in Fig. 1, RICSA consists of five virtual com-

ponent nodes, Ajax client, Ajax front end, central manage-

ment (CM), simulation/data source (DS), and computing

service (CS), which are connected together over a network

to form a visualization loop. In general, a simulation/data

source node either contains pre-generated datasets or a sim-

ulator that runs on a single host, a cluster, or a supercom-

puter. The simulation data is continuously produced and

periodically cached on a local storage device, which serves

as a data source.

A computational steering is initiated at a Ajax client

node by sending a request specifying the simulator type,

variable names, visualization method, and viewing parame-

ters etc. to the Ajax front end, which forwards the request

to a designated CM node. The CM node creates a connec-

tion and forwards the request to the simulation node, which

starts the execution of the simulation code upon receiving

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 18,2010 at 11:10:21 EDT from IEEE Xplore.  Restrictions apply. 



WAN

Ajax
Client

Ajax

Client

Q
u
e
ry



Q
u
e
ry

Q
u
e
ry


D

a
ta

/Im
a
g
e


R
e
s
u
lt

D
a
ta

/Im
a
g
e


R
e
su

lt

Data Source

WAN

Computing Service2

Computing Service 1

Comp Param

Results

Viz/Comp Param

DataData

Viz Param/Mapping/Routing

Central Management

Data

Simulator

Data Channel

Comp Steering Channel

Viz Operation Channel

Computation

Ajax
Client

Ajax

front end

D
a
ta

/Im
a
g
e


R
e
s
u
lt

Query


Data
/Im

age

Resu
lt

Figure 1. RICSA architecture and components.

simulation parameters. The CM node determines the best

system configuration to accomplish the visualization tasks

for the newly generated dataset. Specifically, based on the

global knowledge of system resource distributions and sim-

ulation dataset properties, the CM node strategically parti-

tions the visualization pipeline into groups and selects an

appropriate set of CS nodes to execute the visualization

modules. The computation for pipeline partitioning and net-

work mapping results in a visualization routing table (VRT),

which is delivered sequentially over the loop to establish

the network routing path. Ajax front end will then save the

received images as fixed-size files that are to be delivered

to the browser through the object exchange mechanism of

XMLHttpRequest.

A visualization and steering loop comprises two types of

channel segments: (i) control channel from the Ajax front

end node to the simulation/data source node for compu-

tational steering or visualization operations, and (ii) data

channel from the computation node back to the front end

node, as represented by the solid and dotted lines in Fig. 1,

respectively. The front end node uses control channels to

transmit computational steering parameters to the simulator

and visualization operation parameters to the data source.

Note that the control and data channels have very different

transport performance requirements. In general, the trans-

mission of control parameters of several KBytes or MBytes

needs fairly small bandwidth but with smooth transport dy-

namics, while on the data channel, the throughput is usually

of the most concern for large data transfer.

3 Transport Stabilization of Control Channel

We integrate the transport stabilization method described

in [26] into the proposed RICSA system to provide stable

channels for smooth control message transfer. In this trans-

port method, Rao et al. consider a general window-based

transport structure shown in Fig. 2 that utilizes UDP for

application-level transport. This model sends Wc(t) UDP

datagrams periodically with an interval (sleep time) Ts(t).
The source rate rS(t) of a sender is primarily determined

by: rS(t) = Wc(t)
Ts(t)+Tc(t)

, where Tc(t) is the time spent

on continuously sending a full congestion window of UDP

datagrams. The goodput rate, which is the data receiving

rate at the receiver ignoring the duplicates, is denoted by

gR(t) in response to the sending rate rS(t).

The goal of transport stabilization is to adjust rS(t) to

ensure gR(t) = g∗ in some sense, where g∗ is the speci-

fied target goodput level. The rate control is based on the

Robbins-Monro stochastic approximation method [22]. At

time step tn+1, the new sleep or idle time is computed as

follows:

Ts(tn+1) =
1.0

1.0
Ts(tn) −

a/Wc

nα ∗ (g(tn) − g∗)
(1)
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where g(tn) is the goodput measurement at time step tn at

the sender side. Coefficients a and α are carefully chosen

so that the source rate specified by Eq. 1 eventually con-

verges to the target rate. Under the Robbins-Monro condi-

tions on the coefficients, this protocol is analytically shown

to asymptotically stabilize at g∗ under random losses [26].

This method exhibits very robust stabilization performance

over a variety of network connections.

4 Optimal Visualization Pipeline Configura-

tion

This section presents the technical solutions to system

optimization for achieving minimum end-to-end delay in re-

mote interactive operations.

4.1 Visualization pipeline

Large volumes of simulation data generated in scientific

applications need to be appropriately retrieved and mapped

onto a 2D display device to be “visualized” by human op-

erators. This visualization process involves several steps

that form the so-called visualization pipeline or visualiza-

tion network [21]. Fig. 3 shows a high-level general ab-

straction of a visualization and steering pipeline along with

the data and control flow.

In many scientific applications, the raw data usually

takes a multivariate format and is organized in structures

such as CDF, HDF, and NetCDF [10, 11, 12]. The filter-

ing module extracts the information of interest from the

raw data and performs necessary preprocessing to improve

processing efficiency and save communication resources as

well. The transformation module typically uses a surface

fitting technique (such as isosurface extraction) to derive 3D

geometries (such as polygons). The rendering module con-

verts the transformed geometric data to pixel-based images.

During a running simulation, an end user may control

the visualization and steer the computation that occurs in

various processing modules along the pipeline as shown in

Fig. 3. Such control or steering commands are delivered

through the stable channels designed in Section 3.

4.2 Analytical model

We present a mathematical model in Fig. 4 for

the general pipeline shown in Fig. 3. Here, the vi-

sualization pipeline consists of n + 1 sequential

modules, M1, M2, . . . , Mu−1, Mu, . . . , Mv−1, . . . . . . ,
Mw, . . . , Mx−1, Mx, . . . , Mn+1, where M1 is a data

source. Module Mj, j = 2, . . . , n+1, performs a computa-

tional task of complexity cj on data of size mj−1 received

from module Mj−1 and generates data of size mj , which is

then sent over the network link to module Mj+1 for further

processing. An underlying transport network consists of

k + 1 geographically distributed computing nodes denoted

by v1, v2, . . . , vk+1. Node vi has a normalized computing

power pi
1 and is connected to its neighbor node vj , j 6= i

with a network link Li,j of bandwidth bi,j and minimum

link delay di,j . The minimum link delay is mostly con-

tributed by the link propagation and queuing delay, and is

in general much smaller than the bandwidth-constrained

delay of transmitting a large message of size m given by

m/bi,j . The transport network is represented by a graph

G = (V, E), |V | = k + 1, where V denotes the set of

nodes (vertices) and E denotes the set of links (edges). The

transport network may or may not be a complete graph,

depending on whether the node deployment environment is

the Internet or a dedicated network.

We consider a path P of q nodes from a source node

vs to a destination node vd in the transport network, where

q ∈ [2, min(k + 1, n + 1)] and path P consists of nodes

vP [1] = vs, vP [2],. . .,vP [q−1], vP [q] = vd. The visualiza-

tion pipeline is decomposed into q visualization groups de-

noted by g1, g2, . . . , gq, which are mapped one-to-one onto

q nodes of transport path P . The data flow into a group is

1For simplicity, we use a normalized quantity to reflect a node’s overall

computing power without specifying in detail its memory size, processor

speed, and presence of co-processors; such details may result in different

performances for both numeric and visualization computations.
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the one produced by the last module in the upstream group;

for example in Fig. 4, we have m(g1) = mu−1, m(g2) =
mv−1, . . . , m(gq−1) = mx−1. The client residing on the

last node vd sends control messages such as visualization

parameters, filter types, visualization modes, and view pa-

rameters to one or more preceding visualization groups to

support interactive operations. However, since the size of

control messages is typically on the order of bytes or kilo-

bytes, which is considerably smaller than the visualization

data, we assume its transport time to be negligible.

A very important requirement in many applications of

remote visualization is interactivity. The need for higher in-

teractivity is equivalent to minimizing the end-to-end delay

given by:

Ttotal(Path P of q nodes) = Tcomputing + Ttransport

=
∑q

i=1 Tgi
+
∑q−1

i=1 TLP [i],P [i+1]

=
∑q

i=1

(

1
pP [i]

∑

j∈gi,j≥2 (cjmj−1)
)

+
∑q−1

i=1

(

m(gi)
bP [i],P [i+1]

)

.

(2)

Thus, our goal is to minimize the total time incurred on

the forward links from the source node to the destination

node to achieve the fastest response for each simulation

dataset. Note that in Eq. 2, we assume the transport time

between modules within each group on the same computing

node to be negligible. When the number of groups q = 2,

the system is reduced to the simplest client-server setup.

4.3 Bandwidth measurement for trans-
port time estimation

We present a linear regression model to estimate the

bandwidth of a transport path using active traffic measure-

ment based on [29]. Due to complex traffic distribution

over wide-area networks and the non-linear nature of trans-

port protocol dynamics (in particular TCP), the throughput

achieved in actual message transfers is typically different

from both the link and available bandwidths, and typically

contains a random component. We consider the effective

path bandwidth (EPB) as the throughput achieved by a flow

using a given transport module under certain cross traffic

conditions. The notion of effective path bandwidth is spe-
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cific to the transport protocol employed by the transport

daemon. The active measurement technique we apply here

is to estimate the effective path bandwidth and minimum

delay for each virtual link. Note that a virtual link in the

overlay network of transport daemons may correspond to

a multi-hop data path in wide-area networks, which usually

consists of multiple underlying physical links from different

networks.

There are three main types of delays involved in the mes-

sage transmission over computer networks, namely, link

propagation delay dp imposed at the physical layer level,

equipment-associated delay dq mostly incurred by process-

ing and buffering at the hosts and routers, and bandwidth-

constrained delay dBW . The delay dq often experiences a

high level of randomness in the presence of time-varying

cross traffic and host loads. Also, since the transport pro-

tocol reacts to the competing traffic on the links, the delay

dBW may also exhibits randomness particularly over con-

gested wide-area connections. We use Eq. 3 to measure the

end-to-end delay in transmitting a message of size r on a

path P with l physical links:

d(P, r) = dBW (P, r) +

l
∑

i=1

(dp,i(P ) + dq,i(P, r)) (3)

Due to the large size of data transfer in high-performance

visualization applications, only the first term of Eq. 3 is

significant and therefore the delay d(P, r) of transmitting

a message of size r along path P can be approximated by a

linear model: d(P, r) ≈ r/EPB(P ). The active measure-

ment technique generates a set of test messages of various

sizes, sends them to a destination node through a transport

channel such as a TCP flow, and measures the end-to-end

delays, on which we apply a linear regression to estimate

the EPB.

4.4 Visualization module performance es-
timation

The time of performing a visualization task depends on

various factors such as the available system resources, data

size, visualization method, and user-specified parameters.

The dynamic and input-dependent feature of some factors

poses a great challenge on the performance estimation. For

example, the time of extracting isosurfaces from a dataset

is closely related to the number of extracted triangles that

cannot be predicted before the user selects an isovalue. In

addition, the intrinsic feature of a visualization technique

also plays an important role, thus the performance estima-

tion for isosurface extraction could be very different from

the one for streamline generation. In this paper, we de-

sign a different performance estimation method using both

analytical model and statistical measurements for each of

the common visualization techniques. With reasonable pre-

processing overheads, our models provide quick and accu-

rate run-time estimates of processing times. Due to the lim-

ited paper space, here we restrict our discussions to three

popular techniques: isosurface extraction, ray casting, and

streamline.

4.4.1 Isosurface extraction

Traditionally, to speed up the search process, one typically

traverses an octree to identify data blocks containing isosur-

faces. In this case, the extraction is performed at the block

level. To be general, the time to extract isosurfaces from a

dataset is determined by the number of blocks containing

isosurfaces, nblocks, the number of cells in a block, Sblock,

and the average time of extracting isosurfaces from a block,

tblock, which depends on Sblock. We define the performance

model for isosurface extraction as:

textraction(nblocks, Sblock) = nblocks×tblock(Sblock). (4)

In this model, nblocks and Sblock depend directly on the

data partitioning method, which is usually known before-

hand. However, since tblock is also controlled by the iso-

value selected by the user at run time, it is difficult to pro-

vide an exact expression relating tblock to the other param-

eters. We employ a statistical method to predict the iso-

surface extraction time tblock. A set of testing datasets are

sampled from various applications. With different block

sizes, we first run the isosurface extraction algorithm on

these datasets with a large number of possible isovalues,

and for each of 15 cases including the one with no isosur-

face, mark down the frequency of the related cells found in-

side a block as well as the time spent on each case, TCase(i)
where i ∈ [0, 14] . We then average the numbers collected

for each case and use it as the case probability, PCase(i). At

run time, we can estimate the average time spent on a block

using the following equation:

tblock(Sblock) = Sblock ×

14
∑

i=0

(TCase(i) × PCase(i)) , (5)

which is constant for blocks with the same Sblock.

For isosurface extraction, we also need to estimate the

rendering cost that is controlled by the number of extracted

triangles, ntriangles, and the number of triangles the graph-

ics card can render per second. Since ntriangles can be com-

puted from Sblock, PCase(i), and the number of triangles

extracted from a cell with case i, ntriangle(i), the perfor-

mance model for rendering isosurfaces is defined as:

trendering(nblocks, Sblock)

= nblocks × Sblock ×
∑14

i=0 (ntriangle(i) × PCase(i)) .
(6)
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4.4.2 Ray casting

Similar to isosurface extraction, to be general, we assume

ray casting is also performed in the block level. The per-

formance estimation for ray casting is much harder than

the one for isosurface extraction because of unlimited pos-

sibilities of underlying transfer functions. The time spent

on casting rays through a block is controlled by the num-

ber of rays, nrays, the average number of samples per ray,

nsamples, and the computing time spent on each sample,

tsample. Therefore, our performance model for ray casting

is defined as:

traycasting = nblocks × nrays × nsamples × tsample, (7)

where nblocks is the number of nonempty blocks. Because

of the unpredictable transfer function, we simplify our es-

timation by not considering early ray termination inside a

block, aiming to provide the quantitative measurement of

the computing power supported by available computing fa-

cilities. Now nrays and nsamples only depend on the view-

ing vector, thus is constant for a given view if orthographic

projection is used. tsample can be considered as constant

and can be easily computed by running ray casting algo-

rithm on a test dataset for each machine. Such estimation

would be more accurate if each non-empty block is semi-

transparent.

4.4.3 Streamline

Compared with isosurface extraction and ray casting, the

performance estimation for the streamline algorithm is

much simpler. The time needed for generating streamlines

is dominated by the number of seed points, nseeds, and

the number of advection steps for each streamline, nsteps.

Hence, its performance model is defined as

tstreamline(nseeds, nsteps) = nseeds ×nsteps ×Tadvection,
(8)

where Tadvection is the time required to perform one ad-

vection, which is computed by running the streamline algo-

rithm on a test data set and recording the time spent for each

advection. For each computing machine, we can find an av-

erage Tadvection that will be used for run-time performance

estimation.

4.5 Optimizing visualization pipeline us-
ing dynamic programming

Since there are many possible combinations of decompo-

sitions and mappings, for the highest interactivity, it is nec-

essary to search for the optimal combination that produces

minimal end-to-end delay. We now present a dynamic pro-

gramming method to achieve this goal. Let T j(vi) denote

the minimal total delay with the first j messages (namely,
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Figure 5. Construction of 2D matrix in dy-

namic programming.

the first j +1 visualization modules) mapped to a path from

the source node vs to node vi under consideration in G.

Then, we have the following recursion leading to T n(vd)
[30], for j = 2, . . . , n, vi ∈ V :

T j(vi)

= min

(

T j−1(vi) +
cj+1mj

pvi

,

minu∈adj(vi)

(

T j−1(u) +
cj+1mj

pvi

+
mj

bu,vi

)

)

(9)

with the base conditions computed as, for vi ∈ V , vi 6= vs:

T 1(vi) =

{ c2m1

pvi

+ m1

bvs,vi

, ∀evs,vi
∈ E

∞, otherwise,
(10)

as shown on the first column in the 2D matrix in Fig. 5.

In Eq. 9, at each step of the recursion, T j(vi) takes the

minimum of delays of two sub-cases. In the first sub-case,

we do not map the last message mj to any network link;

instead we directly place the last module Mj+1 at node vi

itself. Therefore we only need to add the computing time

of Mj+1 on node vi to T j−1(vi), which is a sub-problem

of node vi of size j − 1. This sub-case is represented by

the direct inheritance link from its left neighbor element in

the 2D matrix. In the second sub-case, the last message

mj is mapped to one of the incident network links from

its neighbor nodes to node vi. The set of neighbor nodes

of node vi is enclosed in the shaded area in Fig. 5. We

calculate the total delay for each mapping of an incident

link of node vi and choose the one with the minimum delay,

which is then compared with the first sub-case. For each

comparison step, the mapping scheme of T j(vi) is obtained

as follows: we either directly inherit the mapping scheme of
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T j−1(vi) by simply adding module Mj+1 to the last group,

or create a separate group for module Mj+1 and append

it to the mapping scheme T j−1(u) of the neighbor nodes

u ∈ adj(vi) of node vi. The computational complexity of

this core algorithm is O(n×|E|), which guarantees that our

system scales well as the network size increases.

It is worth pointing out that some additional constraints

may arise in practical applications. For example, some

nodes are only capable of executing certain visualization

modules. Such constraints can be conveniently handled by

imposing feasibility checks at each step of the dynamic pro-

gramming recursions: the scenario with failed feasibility

check is simply discarded. This algorithm uses data trans-

port and processing times of various subtasks as input pa-

rameters. We developed separate cost models to reliably es-

timate processing times of volume visualization algorithms,

including isosurface extraction and raycasting, as well as

to predict network transport times. These time estimation

methods are not discussed here due to space limit.

5 Implementation and Experimental Results

We implemented a proof-of-concept system for RICSA

in Java, C++, and Fortran on Linux operating system us-

ing Google Web Toolkit (GWT) [17] for the Ajax web de-

velopment at user ends. In this section, we describe the

implementation details and present experimental results in

Internet deployments.

5.1 Graphical user interface

Fig. 6 displays a screenshot of the graphical user in-

terface of RICSA developed using GWT. The Sod shock

tube simulation, a classical hydrodynamics problem, is run-

ning on a Linux cluster of eight nodes for parallel compu-

tation and visualization. Each newly generated simulation

dataset traverses through a linear visualization pipeline over

the wide-area network with minimum end-to-end delay to

achieve fast user interactivity. Marching cubes algorithm is

used to extract isosurfaces from the raw dataset. By inter-

acting with the web components in a browser, a user can

choose from a list of available simulation codes to run an

appropriate computation, specify computation control pa-

rameters, and select visualization operation parameters such

as the variable of interest, one of the eight octree subsets or

entire dataset, visualization technique, and zoom factor and

rotation angle. Direct mouse interactions with the image

will also trigger image rotation actions. While the simu-

lation is running, the user can dynamically steer computa-

tional parameters based on visual feedback. When a new

image arrives at the client side, only the image component

in the browser is updated and the rest of the web compo-

nents remain unchanged. Such a data-driven model from

RICSA_StartupSimulationServer();
RICSA_WaitAcceptConnection();
do RICSA_ReceiveHandleMessage();
while (Message Not SimulationReq)

Begin by reading input deck...;
Check arrays are large enough for desired number of physical zones;
Open history file and write out a description of the run;
Initialize variables for new problem;
Restart from old dump file to save time if necessary;
Increment dump filename;

//The following is the  main computational loop
do
{

sweepx;
sweepy;
sweepz;
RICSA_PushDataToVizNode();
RICSA_ReceiveHandleMessage();
if (Message is NewSimulationParameters)

RICSA_UpdateSimulationParameters();
}while(Cycle Not EndCycle)

Figure 7. Visualization and network API func-
tion calls are inserted into Virginia Hydrody-

namics simulation program.

Ajax technology makes web applications more responsive.

In addition to real-time simulation programs, RICSA can

also support remote visualization for archival datasets with

a different set of user input components.

5.2 Universal steering framework for var-
ious simulation programs

RICSA is designed as a universal framework to support

various simulation programs possibly written in different

programming languages. It requires a minimum amount

of effort to modify the original simulation programs for

integration with RICSA. We achieved this goal by devel-

oping several generic C++ visualization/network API func-

tions and packaging them in a shared library. These API

function calls are inserted at certain points in the simulation

code written in various programming languages to set up

socket communications, transfer datasets, or intercept steer-

ing commands from the client. Such an implementation

structure facilitates modular programming and improves

code portability. The pseudo code in Fig. 7 demonstrates

how six essential API functions from RICSA are called

at the appropriate locations in the computational loops of

Virginia Hydrodynamics (VH1) simulation code written in

Fortran [14].
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Figure 6. A web snapshot of the pressure animation of stellar wind bowshock on a cluster.

5.3 Remote visualization experimental re-
sults

We deployed the RICSA system on six Internet nodes

located at Oak Ridge National Laboratory (ORNL),

Louisiana State University (LSU), University of Tennessee

at Knoxville (UT), North Carolina State University (NC-

State), Ohio State University (OSU), and Georgia Insti-

tute of Technology (GaTech), respectively. Among them,

the nodes at UT and NCState are clusters with high-

performance parallel computing capabilities, while the rest

of the nodes are PC Linux hosts with common hardware

and software configurations. We run the Ajax client and

front end at ORNL, CM node at LSU, two DS nodes at

OSU and GaTech, and two CS nodes at UT and NCState.

The network configuration of the distributed visualization

experiment is shown in Fig. 8.

We wish to visualize at ORNL (client) three pre-

generated experimental datasets, namely, Jet data of

16 MBytes , Rage data of 64 MBytes, and Visible Woman

data of 108 MBytes2, which are duplicated at OSU and

GaTech. Note that the data objects, network connections,

and host computing resources determine whether or not to

use the MPI-based visualization modules installed on the

clusters at either UT or NCState. For streaming applica-

tions, each new dataset is treated as a pre-generated dataset,

which consequently undergoes the same remote visualiza-

tion process. In general, the simulation does not proceed

until the image from the last time step is delivered to the

end user; otherwise, several datasets may have been gen-

2Due to limited available system resources, the visible woman dataset

is downsampled from its original size by 8 times.

CM

LSU

Client

ORNL

DS

GaTech

DS

OSU

CS
Cluster

UT

CS
Cluster

NCState

Figure 8. Network configuration of dis-

tributed visualization experiment.

erated under the previous parameter setting after the steer-

ing request is submitted, hence undermining the purpose of

on-line steering. The entire steering task is essentially com-

posed of a series of data generation processes and subse-

quent remote visualization processes. The time needed to

generate a simulation dataset is mainly determined by the

problem size and capacity of the simulation node.

5.3.1 Performance comparisons among RICSA loops

We wish to demonstrate that the optimal visualization loop

chosen by RICSA outperforms all other alternatives in

terms of end-to-end delay. We first perform a statistical

analysis on transport measurements to estimate network

bandwidths and on visualization measurements to estimate
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processing times. Using these estimates in the dynamic pro-

gramming equations in Eqs 9 and 10, we compute the visu-

alization routing table for each dataset. The optimal visu-

alization pipeline GaTech-UT-ORNL is shown using solid

lines in Fig. 8, wherein GaTech is used as a data storage

node and UT is used as a computing service node. Together

with the control path ORNL-LSU-GaTech that carries the

control messages, this solution forms the closed optimal

loop ORNL-LSU-GaTech-UT-ORNL.

According to the experiment network configuration

shown in Fig. 8, there are three other possible visualization

loops using intermediate MPI-based visualization modules

and two conventional PC-PC (client/server) visualization

loops. For comparison purposes, we partitioned the same

visualization pipeline in a similar way and mapped it onto

each of these loops. Particularly, in the PC-PC experiments,

since neither the GaTech host nor the OSU host is equipped

with a graphics card, we performed isosurface extraction on

these two hosts acting as both a data source and a comput-

ing service node, and isosurface rendering on the ORNL

host acting as both a client and a computing service node.

The average measurements of the end-to-end delay experi-

enced by all these visualization loops using the isosurface

extraction technique with an identical set of parameters are

shown in Fig. 9 for a visual comparison.

The differences in these end-to-end delay measurements

are mainly caused by the disparities in the computing power

of the selected nodes (including the rendering capability of

the client node in the PC-PC cases) and the bandwidths of

the corresponding network links connecting them. The per-

formance comparisons clearly show that the optimal visual-

ization loop ORNL-LSU-GaTech-UT-ORNL computed by

our algorithm provided substantial performance enhance-

ments over other pipeline configurations. We observed that

the optimal loop achieved more than three times speedup

over a default server/client mode when visualizing a dataset

of about 100 MBytes. Such performance improvements are

expected to increase more significantly and rapidly when

the sizes of datasets continue to grow.

It is interesting to point out that the advantage of utilizing

an intermediate MPI module is not very obvious for small

datasets because of the overhead incurred by data distribu-

tions and communications among cluster nodes. As a matter

of fact, for datasets of several or dozens of MBytes, a simple

PC-PC configuration with any type of server/client mode

might be sufficient to deliver reasonable performances for

remote visualization. However, for large-scale scientific

datasets, parallel processing modules have become an in-

dispensable tool supporting the visualization task. Hence, it

also becomes increasingly important to select an appropri-

ate set of processing nodes available in the Internet to map

the visualization pipeline for the optimal performance.

5.3.2 Performance comparisons between RICSA and

ParaView

RICSA is implemented using a message-driven program-

ming model and a state machine-based methodology that

enable self-adaptive pipeline configurations on intermediate

nodes. In addition, we developed a framework to efficiently

compute an optimal configuration using dynamic program-

ming based on reliable underlying cost models. The com-

plexity of the dynamic programming process is in polyno-

mial time, which guarantees high efficiency and scalability

for complex visualization pipelines and large network sizes.

The optimization algorithm that minimizes the end-to-

end delay of a visualization pipeline can be leveraged by

existing remote visualization systems. To show that our

system has a lightweight implementation with relatively

small message-based control overhead, we ran ParaView on

the same optimal network configuration of the visualization

pipeline as determined by the optimization algorithm for the

same visualization job on the identical datasets.

Specifically, our experiments involved running pv-

dataserver on the DS node at GaTech, pvrenderserver (ex-

ecuted by mpirun using the same four processing nodes uti-

lized by RICSA) on the cluster-based CS node at UT, and

pvclient at ORNL. Note that the CM node at LSU was not

involved because ParaView does not yet employ such addi-

tional nodes. The end-to-end delay measurements averaged

over multiple runs using the same configuration for both

ParaView and RICSA are illustrated together in Fig. 10.

We observed that for the same tasks, RICSA achieved

comparable performances with ParaView. The performance

differences may have been caused by higher processing and

communication overhead incurred by visualization and net-

work transfer functions used in ParaView. Instead of using

third-party visualization packages, we developed and im-

plemented our own lightweight visualization modules for

RICSA. It is, however, not our intention to compare the ef-

ficiency of our visualization modules with those of other

existing systems. The main difference of these two sys-

tems is that in ParaView, the mapping from the visualiza-

tion pipeline to the network nodes is manually performed

as an initial setup, while in our system, the initial config-

uration is automatically computed using dynamic program-

ming by the CM node and the mapping scheme is adaptively

re-configured during runtime in response to drastic network

or host condition changes 3.

3In our tests, a new visualization routing table was computed for each

subsequent interactive operation but the system re-configuration was not

triggered due to the stable network and host conditions during the experi-

ment.
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6 Conclusion and Future Work

We proposed a distributed system for visualizing, mon-

itoring and steering simulations over wide-area networks.

We presented a new transport protocol for stable control

channels and also a mathematical model for mapping a vi-

sualization pipeline to networks. We proposed a dynamic

programming-based approach to compute an optimal visu-

alization pipeline configuration that minimizes the end-to-

end delay of a remote visualization and steering system.

Compared with existing systems, RICSA is lightweight

without requiring the installation of any third-party pack-

ages. It is highly accessible since users can access the sys-

tem using a web browser with Web 2.0 technology sup-

ported. However, in order to utilize network resources for

optimal network performance, efficient and accurate perfor-

mance estimation daemons need to be deployed to dynam-

ically monitor and measure network and host conditions.

These daemons must work seamlessly with the main system

to provide accurate performance estimations, which could

impose a great challenge on implementation.

It would be of our future interest to study various formu-

lations of this class of optimization problems from the view-

point of computational criteria and practical implementa-

tions. We plan to integrate RICSA with various large-scale

simulation programs from different disciplines such as bi-

ology, chemistry, and physics. Collaborative visualization

and steering will be supported to enable team work within

a group of geographically distributed users. In addition to

the Internet, we will deploy the system over dedicated net-

works, such as DOE UltraScience Net [15], for experimen-

tal testing especially for large datasets. New transport meth-

ods will be incorporated to overcome the limitations of de-

fault TCP or UDP in terms of throughput, stability, and dy-

namics in our remote visualization and steering system at a

later stage.
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