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Empirical downscaling of wind speed probability distributions
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[1] This paper presents a novel approach to developing empirically downscaled estimates
of near-surface wind speed and energy density and results from application of the
technique to multiple stations in northern Europe. The downscaling takes a probabilistic
approach in that it uses the mean and standard deviation of relative vorticity at 500 hPa and
mean sea level pressure gradients computed using output from the ECHAM4/OPYC3
atmosphere-ocean general circulation model as the predictors and parameters of the wind
speed probability distribution at surface stations as the predictands. We demonstrate that this
approach generates accurate depictions of the wind climate during the conditioning period
and then apply the downscaling technique to examine changes between 1961–1990 and
2071–2100, which are compared to the results of dynamical downscaling. The
empirically downscaled results for 1961–1990 and 2071–2100 show some evidence for
small decreases in mean wind speed, 90th percentile wind speed, and energy density in
2071–2100 relative to 1961–1990. The projected changes are larger than the mean errors in
the training period but smaller than current interannual variability. Rossby Centre regional
climate model (RCM)–derived grid cell mean wind speeds exhibit a high degree of
agreement with the empirically downscaled station wind speeds. However, in contrast to the
empirical downscaling, simulations conducted using the Rossby Centre RCM indicate
evidence for a small increase in the annual wind energy resource over northern Europe
between the end of the 20th century and the end of the 21st century.

Citation: Pryor, S. C., J. T. Schoof, and R. J. Barthelmie (2005), Empirical downscaling of wind speed probability distributions,

J. Geophys. Res., 110, D19109, doi:10.1029/2005JD005899.

1. Introduction

[2] Trends in near-surface wind speeds are acknowledged
as having particular importance for climate change impacts
on society (e.g., the insurance industry [Changnon et al.,
1999], coastal erosion [Viles and Goudie, 2003], forest and
infrastructure damage [Jungo et al., 2002], storm surges
[Bijl, 1997], and air-sea exchange [Latham and Smith,
1990]). They also have relevance for applications such as
wind energy resource estimation [Pryor et al., 2005b] and
construction issues [Ambrose and Vergun, 1997].
[3] Surface wind speeds exhibit variability at much

smaller spatial scales than typify the resolution of coupled
atmosphere-ocean general circulation models (AOGCM)
(O(2� � 2�)) and hence there is a need to develop tools
for downscaling AOGCM projections to generate finer-
scale projections of near-surface wind climatologies. This
downscaling can be undertaken using either (1) physical/

dynamical methods, where a numerical model (e.g., regional
climate model (RCM)) is used to produce finer resolution
fields of the parameter of interest from the large-scale
description of climate produce by the AOGCM (e.g., the
work by Dickinson et al. [1989] and Giorgi et al. [1992] and
the review by Giorgi and Mearns [1999]) or (2) statistical/
empirical methods, where a transfer function is developed
that statistically relates large-scale climate parameters gen-
erated by AOGCM to the near-surface parameter of interest
(see the review by von Storch et al. [2000]). In empirical
downscaling, a transfer function is derived from either
historical relationships between the differing scales (analo-
gous to the Perfect Prog. approach to weather forecasting)
[Huth, 2004] or based on GCM output for the current
climate related to the near-surface observation [Sailor and
Li, 1999] (analogous to the model output statistics (MOS)
approach to forecasting, and which is also referred to as
climatological projection by model statistics (CPMS) by
Karl et al. [1990]).
[4] Downscaling conducted within a dynamical frame-

work is theoretically preferable and can be conducted for
any location regardless of data availability. RCMs do not
require specific training and can respond in physically
consistent ways to external conditions not realized in the
training period. Deriving realistic scenarios from empirical
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tools is reliant on strong and stationary relationships be-
tween predictor(s) and predictand. However, empirical
downscaling may be undertaken without requiring additional
data such as detailed surface morphology maps, and is
computationally more efficient. Likely the relative strengths
and weaknesses of each downscaling method depend on the
variable being downscaled and the specific application. For
example, see Wilby et al. [2000] for a comparison of advan-
tages and disadvantages of dynamical downscaling by aRCM
with empirical downscaling for applications to a specific
hydrological problem. Since few attempts to downscale wind
climates have been undertaken, it is necessary to consider
whether empirical or dynamical downscaling yield the best
results. In this article we describe a technique for empirically
downscaling wind data and compare the downscaled wind
speed parameters and the energy density to dynamically
downscaled wind climates over northern Europe [Pryor et
al., 2005a].

2. Objectives

[5] The analyses described herein are focused on northern
Europe and specifically the Baltic region (see Figure 1) and
were undertaken with three primary objectives: (1) to
develop novel techniques for empirically downscaling wind
speed probability distributions and wind energy density
from AOGCM output, (2) to apply empirical downscaling
tools to transient ECHAM4/OPYC3 AOGCM output to
determine if substantial changes in wind speed and energy

density are projected for 2071–2100 relative to the end of
the 20th century (1961–1990), and (3) to compare the
results from empirically downscaled wind speed and energy
density with those derived from dynamical downscaling for
this region [Pryor et al., 2005a]. A MOS based empirical
downscaling approach inherently accounts for model bias
and is adopted here because of difficulties with conditioning
transfer functions on a common time index when the
AOGCM represents a plausible time course of conditions
that may not be synchronized with the observed time series
of the predictands.
[6] Most previous empirical downscaling has been under-

taken with the objective of obtaining a high-resolution
(in space and time) series of realization of the parameter of
interest. However, because of (1) the difficulty in reproduc-
ing the time structure of geophysical parameters [Huth et al.,
2001] (as Allen and Ingram [2002] state, ‘‘we cannot hope to
predict the exact climate of 2050, still less the weather on a
particular day’’) and (2) knowledge that for many applica-
tions a description of the frequency distribution of wind
speeds is the desired product, we present empirical down-
scaling focused on the parameters of the wind speed prob-
ability distribution rather than generation of a time series. It
is worthy of note that, if the descriptors of the probability
distribution are known, a synthetic data set can always be
generated that conforms to that distribution if a time series
is required. It is hoped this approach will (1) avoid a
focus on mean conditions and underestimation of variance
(due to truncation of the probability distribution) that has

Figure 1. The study domain, coastline, RCAO grid output (pluses), and station locations (circles). The
size of the circle shown at each site indicates the mean wind speed (1982–2002) derived from the
observational record. The scale used to depict the magnitude of the mean wind speed is linear (the dot
diameter spans a factor of 5, while the data range is 2.9–10.2 m s�1). The outer grid shows the domain
from which the ECHAM4/OPYC3 data were extracted for use in the evaluation and the downscaling. The
centroids of the ECHAM4/OPYC3 grids are indicated by the triangles.
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been observed in previous downscaling research [e.g.,
Evans et al., 2004; Buishand and Brandsma, 2001; Lynn
et al., 2004; Schnur, 2002] and (2) generate output that
is accessible to, and more strongly coupled to, the needs
of user communities that may have specific interest in,
for example, changes in the upper percentiles of geo-
physical parameters [Zhang et al., 2004; Christensen and
Christensen, 2003; Cavazos and Rivas, 2004; Klein Tank
et al., 2005].
[7] A probabilistic approach to climate projections has

also been advocated in the RCM community where prob-
ability estimates from model ensembles have been derived
[Palmer and Räisänen, 2002; Stainforth et al., 2005; Giorgi
and Mearns, 2002]. It is important to emphasize that our
approach is not directly analogous to probabilistic projec-
tions determined from multimodel ensembles, since a single
statistical model is used to derive the distribution parame-
ters, though it may be possible to extend this approach to
include output from multiple suites of predictors, or to
‘‘dressing’’ of the projections using historical error statistics
as advocated by Roulston and Smith [2003].

3. Data

3.1. ECHAM4/OPYC3

[8] Output from the ECHAM4/OPYC3 [Roeckner et al.,
1999] coupled AOGCM (spectral resolution T42, �2.8� �
2.8�) was used to provide data for calculating the predictors
used in the empirical downscaling and the boundary con-
ditions for the RCM simulations. The downscaling predic-
tors computed for 47.5�–75�N and 0�–37.5�E are (1) the
mean and standard deviation of relative vorticity calculated
from the 12 GMT simulations of 500 hPa u and v compo-
nents of the wind and (2) the mean sea level pressure
gradient computed from the 12 GMT sea level pressure
fields. We use 1982–2002 to condition the downscaling
algorithms and then apply the resulting transfer functions to
output from ECHAM4/OPYC3 simulation of 1961–1990
and the A2 emission scenario [Intergovernmental Panel on
Climate Change (IPCC), 2000] for a climate change pro-
jection period of 2071–2100.

3.2. NCEP/NCAR Reanalysis (NNR)

[9] To provide independent assessment of ECHAM4/
OPYC3 simulation of the downscaling predictors we use
pressure gradients derived from mean sea level pressure
fields and relative vorticity from the u and v wind compo-
nents at 500 hPa from the NCEP/NCAR reanalysis (NNR)
data set [Kalnay et al., 1996; Kistler et al., 2001]. The
atmospheric model used to generate the NNR fields is
spectral triangular (T62) with transformation to a Gaussian
grid (approx. horizontal resolution of 210 km) for calcula-
tion of nonlinear quantities and physics. The mean sea level
pressure fields and wind components at 500 hPa are
archived at 2.5 � 2.5� resolution.

3.3. Rossby Centre Coupled RCM (RCAO)

[10] The RCM simulations used in this research were
conducted using the Rossby Centre coupled RCM (RCAO)
[Räisänen et al., 2003, 2004]. Boundary conditions for the
simulations were derived from the same simulations with
ECHAM4/OPYC3 that are used in the empirical downscal-

ing. The atmospheric component of the RCAO model was
run in a rotated longitude-latitude grid with 0.44 � 0.44�
resolution (106� 102 grid cells). Here we use the 1200 GMT
output from the RCAO (u and v components of the flow) in
the area shown in Figure 1 for two simulations: (1) 1961–
1990 and (2) the A2 scenario for 2071–2100.Wind speeds at
10-m height were derived from the lowest RCAO layer (at
90-m) based on the prevailing stability as described by Pryor
et al. [2005a]. Evaluation of RCAO simulations of wind
speed and energy density [Pryor et al., 2005a; Räisänen et
al., 2003, 2004] indicate simulated wind fields from RCAO
during the control period (1961–1990) exhibit reasonable
and realistic features as documented in reanalysis data
products with respect to the spatial patterns and absolute
magnitude of the wind speed parameters. However, the
Weibull k parameter from RCAO is 0.1–0.2 higher than in
the NNR data and RCAO simulated wind speeds in the
northwest of the domain are biased low relative to the NNR
data. When the RCAO output were aggregated within each
of the NNR grids and the spatial fields of mean wind speed
were compared to those from the NNR data set it was
determined that the RCAO was biased slightly low leading
to an average mean absolute difference (MAD) in the wind
speeds of 0.49 m s�1, a root mean square difference (RMSD)
of 0.65 m s�1 (relative to a mean wind speed of 4.79 m s�1)
and a correlation coefficient of 0.41 [Pryor et al., 2005a].

3.4. Near-Surface Wind Speeds

[11] Near-surface wind speeds were extracted from hourly
or 3-hourly data from two sources: (1) international surface
weather observations (1982–1997) and (2) integrated
surface hourly observations (1995–2002). Both data
products are available from the National Climatic Data
Center (NCDC) (see http://www.ncdc.noaa.gov/oa/climate/
climateproducts.html). Time series of the 12 GMT obser-
vation of wind speed were extracted from stations with
the study region (51�–71�N and 3�–33�E) for the period
1982–2002. For comparability with the RCM-derived
downscaling, we interpolated the wind speeds frommeasure-
ment height to 10-m using the power law [Hsu, 1988]:

u1

u2
¼ z1

z2

� �1
7

ð1Þ

where u is the wind speed and z is height.
[12] The power law was used to extrapolate the profile

rather than the logarithmic wind profile because it may be
applied without information about the local roughness
length at each station.
[13] Because it is an implicit assumption of our proposed

downscaling technique that the Weibull distribution is a
good descriptor of wind speed probability distributions
[Conradsen et al., 1984; Pavia and O’Brien, 1986; Pryor
et al., 2004; Seguro and Lambert, 2000], prior to inclusion
in the analysis data from each site were evaluated by testing
the degree of fit to a Weibull distribution for data from (1) the
entire data set (all observations from 1982–2002), (2) each
calendar month (e.g., all data from January 1982–2002), and
(3) the winter season (i.e., all data from December–February
1982–2002) when highest energy density is observed in the
study region [Pryor et al., 2005a]. Any site for which the
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probability distribution did not conform to a Weibull distri-
bution was excluded from the downscaling analysis. This
screening procedure excluded 20 stations, nearly all of which
had data stored only as whole integer wind speeds in m s�1,
leaving 46 stations for use in the empirical downscaling.

4. Methods

4.1. Downscaling Predictors

[14] The large-scale predictors selected a priori for the
empirical downscaling are (1) relative vorticity (z) computed
at 500 hPa based on the archived u and v components of
the wind speed fields and (2) sea level pressure gradients
(computed as the maximum between adjacent grid points in
any of 8 directions) derived based on archived mean sea
level pressure fields. Vorticity was selected for inclusion in
the analysis as a metric of the degree of vertical motion at
the synoptic scale and hence likely coupling of the near-
surface atmosphere to higher wind speeds aloft. A height of
500 hPa was selected for calculation of relative vorticity
because the topography within parts of the study domain
(the Scandinavian Mountain Range) approach elevations
of 2.5 km and hence may significantly impact the flow at
700 hPa. The mean sea level pressure gradients were
selected to represent the near-surface regional forcing of
winds.
[15] Although we adopt a MOS based approach to the

downscaling, to quantify how well the predictor variables
and the fields from which they are derived are simulated by
the AOGCM we compared them with NNR data. The ability
of a model to properly simulate any field depends on the
models ability to simulated both the pattern and its magni-
tude. We therefore evaluate our predictor fields using three
quantities: the correlation coefficient (r), the root mean
square difference (RMSD) (both the systematic (Er) and
nonsystematic (Er0) terms), and the standard deviations of
the values comprising the modeled (sm) and observed (so)
fields. These quantities are related according to

Er02 ¼ s2m þ s2o � 2smsor ð2Þ

As shown by Taylor [2001], this relationship allows these
three evaluation statistics to be plotted on a single two-
dimensional diagram, thereby allowing easy comparison of
multiple models, variables, and/or time periods. While
Taylor diagrams have been adopted by both the IPCC
[McAvaney et al., 2001] and AOGCM intercomparison
studies at the global scale [Covey et al., 2003], we use them
here to demonstrate the ability of ECHAM4/OPYC3 to
simulate the predictor variables at the regional scale.

4.2. Downscaling Predictands

[16] In this research we use the two parameter Weibull
probability density function [Troen and Petersen, 1989] to
represent the wind speed probability distribution:

p Uð Þ 	 k

A

U

A

� �k�1

exp � U

A

� �k
" #

for U 
 0;A > 0; k > 0 ð3Þ

where k is a dimensionless shape parameter (related to the
‘‘peakedness’’ of the distribution), A is the scale parameter
(related to the mean of the distribution), U is the time series

of wind speed observations, and p(U) is the probability
density function. The cumulative distribution function,
P(U), is given by

P Uð Þ 	 1� exp � U

A

� �k
" #

ð4Þ

and can be used to compute an ‘‘expected’’ energy density:

E ¼ 1

2
rA3G 1þ 3

k

� �
ð5Þ

where G is the gamma function and r is air density.
[17] The Weibull distribution parameters can be derived

from, or used to derive, other descriptors of the probability
distribution as follows:

U ¼ AG 1þ 1

k

� �
ð6Þ

U50% ¼ A ln 2ð Þ1=k ð7Þ

U90% ¼ A �1: * ln 0:1ð Þð Þ1=k ð8Þ

where U is the mean wind speed, U50% is the median wind
speed, and U90% is the 90th percentile wind speed (p90).
[18] There are a number of approaches to fitting a Weibull

distribution [Pryor et al., 2004]. Here we fit the distribution
parameters using the mean and median values (equations (6)
and (7)) because these properties are relatively robust to the
low resolution (single decimal place at best) at which the
wind speed data were archived.

4.3. Downscaling Methodology

[19] Our downscaling methodology is based on multiple
linear regression, in which the monthly station-specific
Weibull parameters (computed from 21 years of observed
data) are the predictands and the monthly means and standard
deviations of AOGCM-derived relative vorticity (z) and
mean sea level pressure gradients (PG) are the predictors.
This generates a sample of 12 values for each of the param-
eters (one for each month) that are used to derive a regression
equation for each of the Weibull parameters, for example,

Ai ¼ c1 * PGj þ c2 * zj þ c3 * s zj
� �

ð9Þ

Where i is the station, and j is the value of the circulation
parameters for the ECHAM4/OPYC3 grid cell containing

Table 1. Regression Equations Formulated for the Weibull

Parameters for Data From Copenhagen in Denmarka

PG z s(z) r2

Weibull A �277.2b �4.340b 5.118b 1.00
Weibull k �174.0b �1.662c 2.066b 0.97

aHere n = 12.
bCoefficients are significantly different to 0 at the 95% confidence level.
cCoefficients are significantly different to 0 at the 80% confidence level.
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the station. Ai, PGj, zj and s(zj) are vectors of 12 values
(one for each month).
[20] Use of data at the monthly timescale to condition the

downscaling equations allows representation of a range of
realizations of all parameters. Further, inclusion of each of
the predictors increased the variance explanation for either
Weibull A or k parameters. An example of the regression
coefficients derived using this approach is given in Table 1.
As shown, use of these predictors leads to high variance
explanation for both Weibull parameters.
[21] Once the regression equations were determined for

each site they are then applied to the mean and standard
deviation of z and mean PG from the ECHAM4/OPYC3
output for 1982–2002, 1961–1990, and 2071–2100 to
derive the Weibull A and k parameters for each station.
These parameters are then used to compute the mean wind
speed (using equation (6)), 90th percentile wind speed
(equation (8)) and energy density (equation (5)).

5. Results

5.1. Evaluation of the AOGCM Simulation of the
Predictor Variables

[22] To assess the realism of the predictor variable sim-
ulation by ECHAM4/OPYC3, Taylor diagrams (section 4.1)

were constructed using NNR and ECHAM4/OPYC3 data
from 1953–2001. For each data set, the means and standard
deviations of the grid point predictors were computed on the
original model grid. For computation of the quantities
needed for the Taylor diagrams, the NNR means and

Figure 2. Taylor diagrams for (a) mean sea level pressure gradient, (b) mean relative vorticity, and
(c) standard deviation of relative vorticity. The radial axis indicates the correlation between the
observed (NNR) and simulated (ECHAM4/OPYC3) fields. The horizontal and vertical axes represent
the normalized standard deviation (i.e., the standard deviation of values comprising the modeled field
divided by the standard deviation of the values comprising the observed field). The distance between
the origin (circle) and any point is proportional to the root mean squared difference. Each number
indicates a month (e.g., 1 is January, 2 is February, etc.).

Figure 3. The probability distribution of wind speed at the
Copenhagen station derived from direct Weibull fit to the
observations and the downscaling of the Weibull A and k
parameters for 1982–2002, 1961–1990, and 2071–2100.
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Figure 4. Scatter diagrams of (a, d) the energy density (E), (b, e) 90th percentile wind speed (p90), and
(c, f) mean wind speed (Mean) at each of the 46 stations derived directly from the Weibull fit to the data
for 1982–2002 and from downscaling based on the relative vorticity and sea level pressure gradients.
Figures 4a–4c show data from the entire period 1982–2002, while Figures 4d–4f show data for the
winters of 1982–2002.

Table 2. Descriptive Statistics Between Energy Density, 90th Percentile Wind Speed, and Mean Wind Speed Values Computed Directly

From the Observed Data and Using the Downscaling for the Control Period (1982–2002)a

Mean
Correlation
Coefficient r

Mean
Absolute
Difference

Root Mean
Square

Difference

Energy Density, W m�2

1982–2002: downscaled versus calculated from the Weibull fit to the data 318 0.99 30 61
Winter data from 1982–2002: downscaled versus calculated from the Weibull fit to the data 399 1.00 40 76
1961–1990 versus 2071–2100 annual downscaled data 312 0.98 61 97
1961–1990 versus 2071–2100 winter downscaled data 389 0.96 154 245

90th Percentile Wind Speed, m s�1

1982–2002: downscaled versus calculated from the Weibull fit to the data 10.35 0.99 0.37 0.54
Winter data from 1982–2002: downscaled versus calculated from the Weibull fit to the data 10.94 0.99 0.44 0.56
1961–1990 versus 2071–2100 annual downscaled data 10.40 0.98 0.67 0.80
1961–1990 versus 2071–2100 winter downscaled data 11.00 0.95 1.03 1.26

Mean Wind Speed, m s�1

1982–2002: downscaled versus calculated from the Weibull fit to the data 5.88 0.99 0.10 0.11
Winter data from 1982–2002: downscaled versus calculated from the Weibull fit to the data 6.04 1.00 0.15 0.18
1961–1990 versus 2071–2100 annual downscaled data 6.14 0.93 0.80 0.91
1961–1990 versus 2071–2100 winter downscaled data 6.48 0.94 0.99 1.15

aAlso shown are comparisons of values downscaled for 1961–1990 and 2071–2100. The ‘‘Mean’’ column shows the mean value of the parameter
(energy density, 90th percentile, and mean wind speed) during 1982–2002 or 1961–1990 computed from the 46 stations.
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standard deviations were interpolated to the ECHAM4/
OPYC3 grid using inverse distance weighted interpolation.
During each month, the correlation between ECHAM4/
OPYC3- and NNR-derived mean sea level pressure gradient
fields is >0.88 (Figure 2a). The level of variability in this
field is also well simulated by ECHAM4/OPYC3 (as
indicated by a normalized standard deviation close to one
during all months). While there is considerable variability in
the monthly performance of ECHAM4/OPYC3 with respect
to relative vorticity (Figures 2b and 2c), the comparison
between observations and model simulations yields excel-
lent agreement during winter, when wind energy in the
study region is generally at its maximum [Pryor et al.,
2005a]. Examination of the monthly mean fields (not
shown) indicates that during the summer months, both
NNR and ECHAM4/OPYC3 produce a dipole pattern with
positive z in the southern part of the domain and negative z
in the northern Baltic region. However, this pattern is more
pronounced in ECHAM4/OPYC3, resulting in an overesti-
mation of the variability in the mean fields during these
months. During spring, the pattern is shifted northeastward
and the ECHAM4/OPYC3 simulated pattern is less pro-
nounced relative to NNR. The standard deviations of
ECHAM4/OPYC3-derived z exhibit slightly better agree-
ment with the NNR-derived fields (Figure 2c), although the

standard deviations of z exhibit less spatial variability than
the other fields tested.

5.2. Evaluation of the Empirical Downscaling
Approach

[23] Figure 3 shows an example of the wind speed proba-
bility distribution of data from Copenhagen, Denmark de-
rived directly from observations and using the downscaling
technique. As shown the wind speed probability distribution
derived from the Weibull fit to the data is virtually indistin-
guishable from that derived using the downscaled Weibull
parameters for 1982–2002. The probability distribution
downscaled for 1961–1990 is also very similar to the period
used to condition the downscaling algorithms but exhibits a
slightly higher frequency ofwind speeds above about 6m s�1.
The probability distribution derived for 2071–2100 from
downscaling of the Weibull parameters differs due to an
decrease in both the Weibull A and k parameters leading to
a higher frequency of wind speeds below 5 m s�1.
[24] Observed and downscaled energy density, 90th per-

centile wind speed, and mean wind speed for 1982–2002 at
each of the sites are depicted in Figure 4. The upper frames
show the entire period of 1982–2002, while the frames
below show the winter season. Descriptive statistics of the
degree of association between the ‘‘observed’’ energy

Figure 5. Scatter diagrams of (a, d) the energy density (E), (b, e) 90th percentile wind speed (p90), and
(c, f) mean wind speed (Mean) at each of the 46 stations derived from downscaling of data for 1961–
1990 and 2071–2100. Figures 5a–5c show data from the entire period, while Figures 5d–5f show data
for the winters.
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density, 90th percentile wind speed and mean wind speed
and these values derived from the downscaling equations
are presented in Table 2. As shown, the correlation between
the parameters determined directly to those downscaled
from the relative vorticity and the sea level pressure
gradients exceeds 0.98 for each variable over the entire
period (1982–2002) and in the winter season indicating that
the downscaling technique maintains the majority of the
station-to-station variability manifest in the observational
records. Further, the MAD and RMSD are <20% of the
mean energy density during 1982–2002, <6% of the mean
90th percentile wind speed and <4% of the average mean
wind speed. When considering these statistics it is important
to note that although the downscaling transfer functions
were conditioned on the 1982–2002 data, because these
equations were derived using monthly data, the annual and
winter periods of 1982–2002 are to some degree indepen-
dent of the training data.

5.3. Empirically Downscaled Wind Speed Parameters
for 1961–1990 and 2071–2100

[25] Figure 5 shows scatter diagrams of the energy
density, 90th percentile wind speed and mean wind speed
derived from downscaling of data for 1961–1990 and

2071–2100, while Table 2 shows descriptive statistics of
these data. As shown, the differences between 1961–1990
and 2071–2100 averaged over the 46 stations exceed the
uncertainty associated with the downscaling procedure as
measured in comparison of the ‘observed’ and downscaled
data for 1982–2002. The MAD between the energy density
computed directly from the observations from 1982–2002
versus the downscaled value averaged over the 46 stations
is 30Wm�2, while the downscaled energy density for 1961–
1990 and 2071–2100, again averaged over the 46 stations,
differs by over 60 W m�2. The majority of stations exhibit
lower energy density, 90th percentile wind speed and the
mean wind speed in the 2071–2100 projection period
(Figure 6). While nearly all stations exhibit lower mean
wind speeds in 2071–2100 there is evidence, especially
during winter, of increases in the 90th percentile wind
speed and energy density at several sites indicating a
broadening of the probability distribution resulting in an
increase of the upper percentiles. As shown in Table 3,
over half of the stations exhibit a >1% decrease in energy
density, 90th percentile wind speed and mean wind speed
between 1961–1990 and 2071–2100, and over two thirds
of the stations exhibit a >1% decrease in winter mean
wind speed in the later period. Stations that indicate

Figure 6. Normalized change in energy density, 90th percentile wind speed, and mean wind speed
between 1961–1990 and 2071–2100. Changes in (a) energy density, (b) 90th percentile wind speed, and
(c) mean wind speed computed for the entire periods. (d–f) Same normalized changes but for the
wintertime only. The normalized change is calculated as (2071–2100 � 1961–1990)/(1961–1990).

Table 3. Number of Stations That Exhibit Normalized Changes in Energy Density, 90th Percentile Wind Speed, and Mean Wind Speed

Between 1961–1990 and 2071–2100 in each of the Classes Shown in Figure 6

Energy Density 90th Percentile Wind Speed Mean Wind Speed

Classes Entire Year Winter Classes Entire Year Winter Classes Entire Year Winter

�0.66 to �0.15 23 16 �0.33 to �0.15 6 �0.50 to �0.33 2
�0.15 to �0.01 14 8 �0.15 to �0.01 36 16 �0.33 to �0.15 20 26
�0.01 to 0.01 1 0 �0.01 to 0.01 4 2 �0.15 to �0.01 19 12
0.01 to 0.15 4 3 0.01 to 0.15 6 19 �0.01 to 0.01 1 1
0.15 to 0.66 4 19 0.15 to 0.33 2 0.01 to 0.15 6 5
0.66 to 1
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increases in energy density and 90th percentile wind
speed, particularly during winter, are located in the
northwest of the domain and up the Scandic Peninsula
(Figure 6). The sites that exhibit lower energy density,
90th percentile and mean wind speeds are predominantly
located in the center of the domain.
[26] The empirical downscaling approach was also ap-

plied to examine interannual variability of the wind speed
parameters. In this analysis the 360 realizations of pressure
gradient and relative vorticity from each AOGCM year were
used to derive downscaled Weibull A and k parameters at
each station for each year in three time windows (1982–
2002, 1961–1990, and 2071–2100). The downscaling
approach tends to underestimate the interannual variability
of the 90th percentile wind speed (and the other descriptors)
relative to the observations in 1982–2002 (Figure 7), but
the downscaled results for 1982–2002 at each of the
Scandinavian capitals shown fall within the range of obser-
vations from 1982–2002. The downscaling ‘‘predictions’’
are better for the less topographically complex sites (e.g.,
Helsinki) where thermotopographic mesoscale flows are
less likely to influence wind regimes. The downscaled
results for 1961–1990 and 2071–2100 show some weak

evidence of reduced interannual variability of the 90th
percentile wind speed at the end of the C21st, although
further work should be conducted to assess the robustness
of this finding.
[27] As in the comparison with the NNR data (section 2),

the RCAO derived wind speeds from grid cells containing
each of the 46 stations underestimate the mean values
derived from the empirical downscaling in 1961–1990
(and 2071–2100), particularly at sites characterized by high
observed wind speeds (Figure 8a). Although the grid cell
average mean wind speeds from the RCAO simulations for
1961–1990 and 2071–2100 show a high correlation with
empirically downscaled station values (Figure 8a), the
changes in wind speed parameters from the empirical
downscaling (Figure 6) are in contrast to those derived
from RCAO simulations using ECHAM4/OPYC3 derived
boundary conditions for these time periods (Figure 8b). The
RCAO simulations exhibit higher mean wind speeds during
2071–2100 for the A2 emission scenario than during
1961–1990 over the entire domain with the exception of
the southwest corner [Pryor et al., 2005a]. The normalized
change in mean wind speed between 1961–1990 and 2071–
2100 (computed as [mean(2071:2100)�mean(1961:1990)]/

Figure 7. Box plots summarizing annual realizations of the 90th percentile wind speed at four
Scandinavian capital cities, (a) Oslo, (b) Stockholm, (c) Helsinki, and (d) Copenhagen, derived from data
collected during 1982–2002 (Data) and downscaling for three temporal windows, 1982–2002, 1961–
1990, and 2071–2100.
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mean(1961:1990)) from each station derived using empirical
downscaling and those for the closest grid cell as simulated
using theRCAOdiffer inmagnitude and sign (Figure 8c). The
cause for the discrepancy between the projected changes from
the two downscaling methods has yet to be fully resolved,
although there are some commonalities in that the sites that
exhibit the largest decrease in 2071–2100 in the empirical
downscaling are typically located in grid cells that exhibit the
smallest increases in the dynamical downscaling. The few
previous attempts to downscale winds have not focused on
comparative analyses of dynamical versus empirical
approaches, and evaluations of surface parameters as
simulated using RCM have tended to focus on tempera-
ture and precipitation [Mearns et al., 1999]. The sites that
exhibit the largest discrepancies are not characterized by
lower-quality Weibull fits to the wind speed data, or
lower explanatory power of the empirical downscaling
equations. However, several of these sites are located in
regions of relatively complex terrain or land cover het-
erogeneity and hence may exhibit localized effects not
resolved by the RCAO modeling (scales of 10–40 km
have been previously demonstrated to be unable to
capture the full variability of 10 m wind speeds [Räisänen
et al., 2004; de Rooy and Kok, 2004]).

6. Summary

[28] We present a probabilistic approach to empirical
downscaling of near-surface wind speed and energy density.
The technique uses the mean and standard deviation of
relative vorticity at 500 hPa and mean sea level pressure
gradients computed using output from the ECHAM4/OPYC3

AOGCM as the predictors, while the predictands are descrip-
tors of the probability distribution of near-surface wind
speeds.We demonstrate that this approach generates accurate
depictions of the wind climate during the transfer function
conditioning period and then apply the downscaling to
examine changes between 1961–1990 and 2071–2100
which are then compared to the results of dynamical down-
scaling using a RCM with boundary conditions supplied by
the ECHAM4/OPYC3AOGCM. The empirical downscaling
projects small decreases in mean wind speed, 90th percentile
wind speed and energy density in 2071–2100 relative to
1961–1990 (Figure 6). These changes are larger than the
discrepancy between observed and downscaled values in the
conditioning period (1982–2002) (Table 2) but are
smaller magnitude than current interannual variability
(e.g., Figure 7). Conversely, simulations conducted using
the Rossby Centre RCM indicate evidence for a small
increase in the annual wind energy resource over northern
Europe between the end of the 20th century and the end of the
21st century. Further work is required to resolve the differ-
ences in results from the two downscaling approaches.
[29] The empirical downscaling approach we propose

appears to have great potential for wind speed and energy
applications and may also be applicable to other geophys-
ical variables. Additionally, although applied here to long
time windows, it is applicable to any temporal window for
which stable probability distributions can be derived (e.g.,
annual as demonstrated herein). However, there are a
number of caveats that should be applied to the research
presented herein; the most important are as follows.
[30] 1. It is assumed that the wind speed distribution is

well described using the two-parameter Weibull distribu-

Figure 8. (a) Comparison of grid cell average mean wind speed from the RCAO for 1961–1990 and
2071–2100 versus station mean wind speed from the empirical downscaling for each of the 46 stations
and the grid cells containing the station locations. Regression of the grid cell mean wind speed from the
RCAO and the station mean wind speed from the empirical downscaling (ED) for 1961–1990 has a
regression coefficient of 0.73 (i.e., RCAO mean wind speed = 0.78 ED mean wind speed, r2 = 0.98),
while that for 2071–2100 has a coefficient of 0.90 (r2 = 0.96). (b) Scatterplots of the RCAO mean wind
speed at grid cells containing the station for 1961–1990 and 2071–2100. Also shown are the empirically
downscaled station mean wind speeds for these periods. (c) Comparison of grid cell average change in
mean wind speed between 1961–1990 and 2071–2100 projected from the RCAO simulation and ED for
each of the 46 stations. The line shows the regression fit to the data (r = 0.36). Note the axes in this frame
have different scales.
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tion. While this is generally true, it is not uniformly the case
especially in locations that are characterized by mixed
forcing of the flow (e.g., a wind climate with distinct
components from the synoptic scale and local thermotopo-
graphic circulations may exhibit a probability distribution
that is not well-described by the two-parameter Weibull
distribution).
[31] 2. The selection of our downscaling predictors was

based on a priori knowledge, and evaluation of alternative
predictors for northern Europe. It is possible that other
large-scale descriptors may be more appropriate in other
domains.
[32] 3. Projected changes in the wind speed probability

distribution documented herein are sensitive to the selection
of the AOGCM from which the predictors are derived,
hence future work will incorporate analyses of multiple
AOGCM simulations.
[33] 4. As shown, individual locations differ in terms of the

degree of coupling to the regional scale flow, hence compar-
ison of empirically downscaled data with grid cell averaged
data derived using aRCMshould be undertakenwith care and
may explain some of the discrepancy between the RCM-
derived and empirically downscaled wind projections.
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