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Abstract

When comparing assets, differences in sensitivity to economic variables are highly rel-
evant, yet tests for such differences are absent from traditional studies. We therefore
examine a range of tests for parameter differences across regression equations of asset
returns. Simplistic approaches, which ignore conditional heteroskedasticity and/or se-
rial correlation, suffer test distortions in simulations calibrated to asset returns, and
more ‘robust’ methods also distort, for different reasons, but among these are the best
methods. The tests suggest dramatic and time-varying differences between small and
large firm sensitivity to market risk, the default premium and the term structure.

KEY WORDS: asset pricing; autocorrelation; cross-section restrictions; firm size; het-
eroskedasticity; simulation

∗Corresponding author: Department of Economics, Mailcode 4515, Southern Illinois University at Car-
bondale, Carbondale, IL 62901-4515, Tel:(618) 453-5065, Fax: (618) 453-2717, E-mail: gilberts@siu.edu.

†We would like to thank John Cochrane, G. Wiiliam Schwert, Kris Jacobs and Richard C. Green for
helpful suggestions and comments.



A main purpose of asset pricing models is to explain the cross-sectional variation in

returns among stocks and other risky assets. In the tradition of the Sharpe (1964) and

Lintner (1965) capital asset pricing model (CAPM) and its generalizations via the Merton

(1973) and Breeden (1979) intertemporal equilibrium models and the Ross (1976) arbitrage

pricing theory (APT), cross-sectional variation arises due to differing sensitivities to some

economic variables, either some explicit source(s) of risk or some underlying state variable(s).

The hypotheses of equal versus differing sensitivities have so far escaped formal testing in

the literature on traditional asset pricing models, a missed opportunity with the potential

to substantively alter the understanding of financial data.1

The existence of differing sensitivities among assets is a tacit and untested tenant of

traditional empirical methods. In particular, for the highly influential Fama and MacBeth

(1973) method2 of testing the impact of sensitivity differences on mean values, if sensitivity

exists but is the same across assets then the Fama-MacBeth test is unuseful since there are

no sensitivity differences to impact mean values. Clearly there will be sample variation in

estimated sensitivities (betas), but the notion of equality among true sensitivities, of various

asset returns to economic variables, is entirely plausible, particularly for popular collections

of assets such as stocks sorted by firm size. For the interpretation of the existing empirical

literature, it is therefore very important to gauge the extent of sensitivity differences across

assets.

The standard modelling framework for defining and discussing sensitivities is the regres-

sion of excess returns on covariates, e.g. risk factors and/or state variables.3 With sensitivities

defined via the slope parameters in the model, differences in sensitivity are clearly in the

domain of formal, testable hypotheses. In the early research on asset pricing, emphasis was

placed on models with zero intercepts, but the poor performance of such models has lead

to inclusion of non-zero intercepts.4 In this setting, the notion of sensitivity is linked to the

intercept’s value, this being the expected return conditional on zero values for the covariates,

1



and for model interpretation it is important to compare both intercepts (‘fixed effects’) and

slopes across assets.

The present work studies the problem of testing equality of parameters across assets in

regressions of returns on economic variables. A related but distinct problem, which has

attracted great attention, is the test for zero intercepts (Gibbons, Ross and Shanken (1989),

Fama and French (1993, 1996), Cochrane (2001)), and the classical F test is standard for

this problem. The F test is simplistic, as it ignores possible residual heteroskedasticity and

autocorrelation, and it suffers distortions when such effects are present, but more ‘robust’

methods (discussed below) also suffer distortions, for other reasons, and the prevailing view

is that the simplistic approach is best for testing the zero intercepts hypothesis. Such a view

is specific to the hypothesis in question, and it is unknown whether any simplistic or ‘robust’

methods are reliable for testing equality of intercept or slope parameters across equations,

when applied to typical financial data.

We examine the performance of classical F tests, as well as tests which are heteroskedas-

ticity and autocorrelation consistent (HAC). The HAC methods, due to Newey and West

(1987, 1994), Andrews (1991) and Andrews and Monahan (1992), and further studied by

den Haan and Levin (1997), build on earlier work by White (1980) on heteroskedasticity-

robust tests. Previous successes in financial applications of heteroskedasticity-robust test

methods include MacKinlay and Richardson (1991), Ferson and Foerster (1994), Ferson and

Korajczyk (1995) and He, Kan, Ng and Zhang (1996). The presence of autocorrelation in

asset returns is well-documented5, and even in cases where assets returns have little autocor-

relation themselves, when multiplied by covariates the resulting series may be more strongly

autocorrelated, and this particular phenomenon is important for testing restrictions on the

regression parameters.

We simulate the behavior of the various tests for models calibrated to monthly financial

data for the period January 1959 - December 1999. For the F test, we observe noticeable
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distortions due heteroskedasticity and autocorrelation built into the model, while for the

‘robust’ tests distortions arise due to the test rule, which relies on the asymptotic (chi

square) distribution of test statistics, and which generally differs from rules based on the

exact (but unknown) finite-sample distribution. MacKinnon and White (1985) acknowledge

the distortions problem for heteroscedasticity-robust tests, proposing corrective methods,

and Ferson and Foerster (1994) examine the importance of distortions for heteroskedasticity-

robust tests of some financial models. Den Haan and Levin (1996) report on test distortions

for a variety of HAC tests in a single equation context6 and Cochrane (2001, Ch. 15) studies

the zero intercepts hypothesis in the multi-equation context.

Our Monte Carlo results, for tests of equal parameters across equations in the regression

model, suggest that the F test and the ‘robust’ HAC tests can work well when applied to

models with relatively few equations, but both suffer major distortions when applied to larger

models. The HAC tests include score and Wald type tests, with or without a parametric

pre-whitening adjustment for serial correlation. In simulation the HAC score tests distort

less than the F test and HAC Wald tests, and simple pre-whitening is as good or better

than other methods of handling serial correlation. We find that (i) there are test methods

that work well, (ii) the methods that work particulary well are very different in design than

the traditional F test, and (iii) such tests are only appropriate when applied to sufficiently

parsimonious models, models which exclude some interesting cases such as regressions of

monthly post-war returns sorted by size decile (ten equations) and those which include

many covariates.

We use the afore-mentioned methods to test for differences in the economic sensitivity

of small and large firm excess returns. The potential for such differences has long been

recognized7, and as covariates we include standard economic risk factors (market return

and consumption growth) as well as other standard economic variables (default premium,

term structure, money growth, etc.) related to the economy. Some researchers use instead
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covariates consisting of size and book-to-market related portfolios (see Fama and French

(1993) and Chan and Chen (1991)), or other statistical factors (Lehmann and Modest (1988)

and Connor and Korajczyk (1988)), but since statistical and economic covariates appear to

have similar predictive power with respect to stock returns8, we use just the latter.

We find numerous dramatic differences in the economic sensitivity of returns on small and

large firms. Stability over time is a concern in such regressions9, and we find that differing

sensitivities to the market return appeared quite important for small and large firms prior

to 1980, while more recently this effect is more subdued and the effect of differing sensitivity

to the default premium and term structure are more pronounced. The time-varying nature

of such differences is very important for the interpretation of existing literature that reports

on sensitivities of small and large firms.10

I. Model

For a collection of n risky assets, each earning a return during periods t = 1, 2, ..., T , let

rit denote the excess return to the i-th asset. The linear regression model of asset returns

takes the form:

rit = α∗i + β∗i xt + εit, i = 1, ..., n, t = 1, ..., T, (1)

where xt is a K × 1 vector of covariates (risk factors and/or state variables), β∗i is the true

value of the i-th 1 ×K vector of slopes (‘betas’), α∗i is the true value of the i-th intercept,

and the errors εit have conditional expectation E[εit|xt] = 0. In this model, βik is the

expected increase in the excess return rit, given a one unit increase in the covariate xtk,

while αi = E[rit|xt = (0, ..., 0)′], e.g. αi is the expected excess return when each covariate

equals 0. The model is linear in the parameters α and β, but xt itself may be non-linear

in some underlying variables which themselves may be non-contemporaneous with rt, hence
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the model may be both non-linear and dynamic in some underlying variables.11 Estimation

of (1), using time series data, is the first step in the Fama and MacBeth (1973) empirical

method, and the possibilities in the model (1) itself have attracted wide interest.12

In the Sharpe-Lintner CAPM version of the model, x is the excess return on the market

portfolio, and the betas measure sensitivity to market risk. Other candidates for x include

consumption growth, as in the Breeden (1979) consumption-based CAPM, and other vari-

ables, possibly instruments for some latent factors.13 Such models offer an explanation of

differences among average returns for various assets, provided that sensitivities differ among

assets. Informal comparisons of betas across assets are widespread in the industry, facilitated

by point and interval estimates, but formal comparison via hypothesis tests has not received

attention in the literature.

The hypotheses of present interest take the form of linear restrictions on β and/or α.

To concisely express such hypotheses for the purpose of testing, for each equation i we

denote by θ[i] the (K + 1)× 1 vector (αi, βi1, ..., βiK)′, and let θ be the n(K + 1)× 1 vector

(θ′[1], θ
′
[2], ..., θ

′
[n])

′. With 0p the column vector consisting of p entries each equal to 0, and with

A some user-specified p× n(K + 1) matrix, each linear restriction on the model parameters

takes the form:

H0: Aθ∗ = 0p.

As a familiar example, when testing the zero intercepts or zero betas null hypothesis the

restriction is of the form:

C θ∗[i] = 0q, i = 1, ..., n, (2)

for some q×(K+1) matrix C and some number q of restrictions, in which case the appropriate

form of the matrix A in H0 is:
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A = In ⊗ C, (3)

where In is the n×n identity matrix, and ⊗ is the Kronecker product operator. Hypothesis

tests for asset return regressions have typically targeted restrictions of the form (2)-(3).

We are interested in testing for differences in slopes and/or intercepts across equations,

and the relevant restriction is of the form:

D θ∗[i] = D θ∗[j], i, j = 1, ..., n, (4)

for some r × (K + 1) matrix D, some number r of restrictions, and all assets i, j. The

appropriate form of the matrix A in H0 is then:

A = Jn ⊗D, (5)

where Jn is the (n−1)×n matrix with entries Jni1 = 1, Jn,i,i+1 = −1, and Jnij = 0 otherwise.

We are primarily interested in testing restrictions of the form (4)-(5).

II. Tests

In this section we describe methods of hypothesis testing based on HAC Wald and HAC

score tests which we study later as alternatives to the F test.

A. HAC Statistics

To conduct HAC Wald tests we let θ̂ denote the ordinary least squares (OLS) estimator,

and we let V̂θ̂ denote an estimator, further described below, of the variance-covariance matrix

for θ̂. For each given choice of V̂θ̂, the test statistic is:
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W = θ̂′A′ (AV̂θ̂A
′)−1

A θ̂. (6)

The statistic W measures the distance ( in Rp, with norm ||v|| = v′(AV̂θ̂A
′)−1 v) between the

vector A θ̂ and the value 0p hypothesized under H0, hence larger values of W suggest larger

departures of the data from H0.

To conduct HAC score tests, for any parameter values αi and βi define the regression

residuals for the model (1):

eit = rit − αi − βi xt, i = 1, ..., n, t = 1, . . . , T .

The relevant sample moments comprise the n(K + 1)× 1 vector m(θ), given by:

m(θ) =
1

T

T∑

t=1

zt ⊗ et,

where zt is the (K + 1)× 1 vector (1, x′t)
′. Denoting by V̂m(θ) an estimator (specified below)

of the variance-covariance matrix of m(θ), the score test statistic is:

S = min
θ∈H0

m(θ)′ V̂ −1
m m(θ). (7)

The score test measures the distance (in Rn(K+1), with the norm ||v|| = v′V̂ −1
m v) between the

vector m(θ) of sample moments and the value 0n(K+1) hypothesized under H0, hence larger

values of S suggest larger departures from H0.

For econometric testing of linear restrictions H0 on linear regression systems, score tests

are seldom used while F and Wald tests are popular, whereas for nonlinear problems the

score test is common, as in Hansen (1982) and Ferson and Foerster (1994). Yet our simula-

tions (reported later) suggest a useful role for HAC score tests of parameter equality across

equations in linear systems.
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B. Computation

To compute the HAC test statistics we apply formulas (5), (6) and (7), with various

specifications for the covariance matrix estimators V̂θ̂ and V̂m. For the HAC Wald and score

tests, we use a variety of HAC covariance estimators. Among these are the Bartlett kernel

and the data-dependent Newey and West (1994) bandwidth, with and without pre-whitening

(denoted NW and NW-P, respectively), the quadratic spectral kernel with the Andrews

(1991) data-dependent bandwidth (without prewhitening, denoted A), and the Andrews

and Monahan (1992) method (denoted AM) with pre-whitening. Further, we include the

simple pre-whitening method (denoted VARHAC) with parametric, vector autoregressive,

adjustment for serial correlation, studied by den Haan and Levin (1996, 1997). Finally,

for comparison purposes we include the White covariance estimator (WH) which is robust

to heteroskedasticity but not serial correlation. Since the technical details of covariance

estimators are neatly summarized in Campbell, et al. (1997) and Cushing and McGarvey

(1999), we omit them for brevity.

To carry out the minimization (7) required for the score statistic S, we use the GMM

(simultaneous-iteration) routine, which at each iteration stage simultaneously solves for up-

dated parameter and covariance matrix estimates, as in Hansen, Heaton and Yaron (1996).14

C. Decision Rule

In the presence of conditional heteroskedasticity or serial correlation, each of the afore-

mentioned HAC test statistics have unknown distributions in finite samples15 and we take a

standard approach16 which is to base test decisions on the asymptotic chi square distribution

(with p degrees of freedom) of such tests. For the HAC Wald tests, the asymptotic chi square

distribution follows from asymptotic normality of OLS regression estimators and consistency

of HAC covariance estimators17, while for the HAC score tests the asymptotic distribution

can also be shown chi square by invoking suitable assumptions, as we now briefly discuss.
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To further justify the presumed asymptotic properties of the ‘robust’ HAC tests, we

assume that the covariance estimators V̂θ̂ and V̂m, when multiplied by the number of time

periods T , converge as follows:

T V̂θ̂

p→ Ωθ, T V̂m
p→ Ωm, (8)

where
p→ denotes convergence in probability, in which case Ωθ and Ωm are the large-T limits

of T times the variance-covariance matrix for θ̂, and for m(θ∗), respectively. Simplified

versions S∗ and W ∗ of the Wald and score statistics are then:

W ∗ = θ̂′A′
(
A

Ωθ

T
A′

)−1

A θ̂, (9)

and

S∗ = min
θ∈H0

m(θ)′
(

Ωm

T

)−1

m(θ), (10)

in which case we assume that:

W = W ∗ + op(1), S = S∗ + op(1), (11)

where op(1) denotes a term converging to 0 in probability.

Under the null hypothesis and suitable regularity conditions18, the statistics W ∗ and S∗

are distributed asymptotically as chi square variables with p degrees of freedom19, and hence

W and S also have this property when (11) holds. Using these asymptotic distributions, the

decision rule for testing H0 is to reject if the test statistic exceeds the relevant critical value

from the chi square distribution.

Despite asymptotic equivalence of the chi square tests S and W , in finite samples they

can behave very differently. In the classical single-equation regression model, with regression
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parameters and covariance parameters estimated via maximum likelihood, the inequality of

score (Lagrange multiplier) and Wald test statistics (Engle (1984)) is:

S ≤ W, (12)

and in practice it is possible that S is far smaller than W . Hence, by using the same (chi

square) decision rule for both statistics it is possible to reach different conclusions from the

two tests. The problem arises due to test distortions, caused by use of inaccurate chi square

approximations to the true sampling distribution. For ‘robust’ HAC Wald and score tests of

equality between parameters in a regression system, the bound (12) generally fails, and test

distortions are more complex. To describe the magnitude of this problem, in Section 5 we

report the results of simulations for testing differences in sensitivity among stocks.

III. Data

We examine excess returns on stocks of firms ranked by capitalization. To compute these

returns we use CRSP NYSE Cap-Based Portfolio Indices, monthly time series based on

portfolios rebalanced quarterly. Frequently, cross-sectional differences among stock returns

are investigated using decile indices; however, to limit the number of dependent variables (and

the potential for test distortions, reported later), we use one return for portfolios combining

Deciles 1 through 5, and a second return for deciles 6 through 10, where the largest companies

are in Decile 1 portfolio and the smallest in portfolio 10. These returns are produced by

CRSP, and we calculate excess returns using the 30-Day Treasury Bill return, also provided

by CRSP. We denote the excess returns as rLARGE and rSMALL, respectively.

Summary statistics, for monthly excess returns in the period 1959:02 - 1999:12, are in

Table I. The starting period of the data series is determined by availability of the consumption

series (defined below). We further split the sample in two sub-samples, 1959:02-1979:12 and
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1980:01-1999:12, enabling us to examine stability of regression parameters. A comparison

of the sample means for excess returns, for the sample period from 1959 to 1979, reveals

that the excess return on the large-cap portfolio (3.02% annually) is far less then the excess

return on the small-cap portfolio (8.08% annually), but the gap in average excess returns

changes sign in the second sub-sample (9.98% for the large-caps vs. 8.34% for the small-caps,

respectively), consistent with Fama and French (1993) and Horowitz, Loughran and Savin

(2000). In all considered sample periods, the excess return on small caps tends to be more

volatile, in accord with Malkiel and Xu (1997).

As covariates in the model20, we choose ones likely to affect the stochastic discount rate

and/or the expected stream of cash flows. We follow Chen, Roll and Ross (1986) and use

data on the stock market, bond market, the business cycle and inflation, and we augment

the dataset by the growth of monetary base to address the issue of asymmetric reaction of

firms of different capitalization to restrictive monetary policy.21

To describe the stock market we use the CRSP NYSE value-weighted index. Again,

we use returns in excess of the 30-Day Treasury Bill, denoting the results by rV W . The

correlation with the large-cap return is close to one (see Table II), and since the large-cap

firms account for most of the market value, this is not surprising.22

We consider two bond market variables. The effect of unanticipated changes in bond risk

premia is measured by the difference (denoted rDEF ) between interest rates on the low grade

bonds and long-term government securities. The low grade bond interest rate is measured

by the Seasoned Baa Corporate Bond Yield, collected by Moody’s Investors Service and

available at the St. Louis Federal Reserve bank’s website. The long-term government bond

return-to-maturity is from the 5-year Treasury Bonds, also obtained from the St. Louis Fed

website. To describe the term structure we use the difference between the one-period holding

return on the 5-year Treasury Bond, collected by CRSP, and the first lag of the return on a

30-Day Treasury Bill. This term premium (rTERM) proxies for the influence of changes in
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the term structure on equity returns.

As measures of real economic activity, we include the growth rates of industrial produc-

tion (gIP ) and real per capita consumption (gCONS). We obtain industrial production data

(Market Groups, series b50001, seasonally adjusted) from the Federal Reserve Board’s web-

site, and we obtain consumption data (series PCEND, non-durables, series PCES, services,

POP, population, series CPIAUCSL, Consumer Price Index For All Urban Consumers, All

Items 1982-84=100, all series seasonally adjusted), from the St. Louis Fed’s website.

To get a one-period forecast of the inflation rate, we run a regression of the inflation rate,

measured by the above consumer price index, on a constant, its lagged value, the lagged

value of a Treasury Bill rate and a moving average term.23 The unexpected inflation (πUI),

in the style of Chen et al. (1986), is defined as the difference between actual inflation and

forecasted inflation.24 For money growth, we use the growth rate of the seasonally adjusted

monetary base (gMON), obtained from the St. Louis Fed’s website (series AMBSL, seasonally

adjusted).

IV. Simulation

We use computer simulation, based on a calibrated model of asset returns, to assess

test performance. Of interest are rejection rates under the null hypothesis and under the

alternative. If the nominal distribution (F distribution for the F test, chi square distribution

for the HAC tests) is an accurate approximation then the tests should reject under H0 at a

rate near the theoretical test size; otherwise, the tests will exhibit noticeable distortions.

To set up the simulation, we define a first-order vector autoregressive (VAR) process for

covariates xt:

xt = c + Φ xt−1 + ut, (13)
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where c is a K × 1 vector of constants, Φ is an K × K matrix of coefficients, and ut is a

K× 1 vector of random variables which are independent over time and normally distributed

with zero mean and cross-sectional variance-covariance matrix Λ.

To see what range of values might be realistic for the parameters of the xt process, we

estimate (13) for K = 4 by OLS using xt = {rV WNY , rTERM , gCONS, gMON}. Estimates of

elements the matrix Φ range from -0.25 to 0.32, and for our simulation we set Φij = 0.10

for i = j and Φij = 0 for i 6= j. Estimates of the constant term tend to be small relative to

elements of Φ, and we set c = 0.002 in our simulation exercise. The diagonal elements of the

estimated residual covariance matrix Λ̂ are typically of order 0.0001, and the off-diagonal

elements are typically much smaller, hence we let Λ be a diagonal matrix with each diagonal

entry equal to 0.0001.

For the regression errors εit in (1), we posit a dynamic model with serial correlation and

generalized autoregressive conditional heteroskedasticity (GARCH), as follows:

εit = ψ1εi,t−1 + ψ2

√
1 + ψ3 ε2

i,t−1 ηit, i = 1, . . . , n,

with η standard normal noise. Parameter ψ1 specifies the autocorrelation, and parameters ψ2

and ψ3 specify the conditional heteroskedasticity. We choose ψ so that the autocorrelation

of the error term εit, as well as its variance relative to that of x’s, corresponds to what we

observe in historical data series, with r1t and r2t excess returns on portfolios of small and

large firms, respectively. In this case, we set ψ1 = .1, ψ2 = .003 and ψ3 = .2. The cross-

sectional empirical covariance of ηit is sometimes positive and sometimes negative, and we

specify the population covariance between η1t and η2t to be 0.

To get a sense for the behavior of the F test and ‘robust’ HAC tests, we first generate

results for the case n = 2, with K = 2 and, alternately, K = 4, using 500 simulated time

series for rit, i = 1, 2, with 240 and 492 observations, corresponding to 20 and 41 years of
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our historical monthly data, respectively. We conduct a Monte-Carlo experiment based on

a calibrated model, rather than a bootstrap method as in Ferson and Foerster (1994), for

two reasons: First, the calibrated model allows us to identify the source of test success or

failure; second, the regression errors have posited dynamics which would not be replicated

by standard bootstrap sampling.25 We record the number of rejections of the null hypothesis

using the chi square critical values at the 5% level of significance.

Table III reports rejection rates under the null hypothesis of cross-equation equality for

all regression parameters, e.g. the case where the restriction defining matrix D in Section

2 equals the p × p identity matrix. Results are of similar nature when testing equality of

intercepts only, or slopes only (simulation results available on request). We calibrate all β

values to equal to 1, and all α values to equal 0. Our simulations show a serious tendency for

distortion in most but not all tests. Specifically, the F test and the HAC Wald tests over-

reject26, and the two of the score tests (Newey-West and Newey-West with pre-whitening)

under-reject the null hypothesis. On the other hand, three of the score tests (VARHAC,

Andrews and Andrews-Monahan) show minimal distortion, and of these three the VARHAC

test is by far the simplest to compute and interpret. We have examined the score VARHAC

test in numerous other simulations exercises: For n = 2, we gradually increase the number

of covariates K by two up to K = 8, and rejection rates fall toward 0.03 and 0.04 for sample

sizes 240 and 492. Since many studies consider decile indices, we also look at n = 10 and

increase the number of covariates from two to eight, in which case the rejection rates for the

VARHAC score tests are respectively 0.01 and 0.02 for the two sample sizes. For no other test

method do we find less distortion than for the VARHAC score test, and our results suggest

that a researcher attempting to investigate the relationship between various variables and

asset returns is ‘safer’ when the number of assets is smaller since the asymptotic and finite

sample distributions of the test statistic are closer.

To describe performance under the alternative hypothesis, we generate simulated time
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series for excess returns via:

r1t = x1t + x2t + . . . + xKt + ε1t,

r2t = x1t + x2t + . . . + xK
2

,t + (1 + 0.2
K

)( x(K
2

+1),t + x(K
2

+2),t + . . . + xKt) + ε2t.

Table IV reports rejection rates under the alternative hypothesis for K = 2 and K = 4,

with relatively high rejection rates for the F test, and with higher rejection rates for the

HAC Wald test than for the corresponding HAC score test. Among the HAC score tests, the

Andrews, Andrews-Monahan and VARHAC methods reject more frequently than than the

others. These results describe the frequency with which an economist would correctly reject

the null hypothesis, using the nominal (F or chi square) distribution of the relevant statistic.

A related, but different, issue is the frequency of correct rejection for an economist who knows

and uses the exact test distribution. The latter power calculations are not interesting here

because the economist does not know the exact distribution, and it is impossible to concisely

report on this distribution in a way that would be broadly useful for asset return regression.

We have nevertheless done such power calculations, with the same rankings described above,

for the various tests.

Overall, the simulations reveal some serious problems with the F test and with the

‘robust’ HAC Wald tests, in terms of over-rejection under the null hypothesis, whereas three

of the HAC score tests avoided serious distortions and were also best among score tests under

the alternative hypothesis. Among these favored three we recommend the VARHAC score

test, with it’s simple, parametric pre-whitening approach to serial correlation adjustment.

For the range of sample sizes under study, the VARHAC score test performance under null

and alternative hypotheses suggests that for a small number of assets, n = 2, we can have as

many as 8 covariates and still avoid major test distortions. In cases of n = 10 asset returns,

the number of covariates in a restricted econometric model should be kept small, perhaps

no more than 4 or 6. In cases where larger models and a greater number of restrictions are
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desired, larger sample sizes (weekly rather than monthly data, for example) may be necessary

for satisfactory results.

V. Empirical results

Having scrutinized a variety of test methods, we turn now to the problem of testing

for differences in sensitivity among firms of different size. We conduct tests of equality of

parameters, equality of slopes for a specified covariate, equality of intercepts, and intercepts

being equal to zero. The tests are formulated by defining matrices C and D in Section 2 ac-

cordingly. As our simulations warn against the use of overly large models, we take the rather

unconventional empirical approach of modelling just two excess returns, for broad portfolios

of small and large firms, defined earlier. To save space we report only the score-type tests

with parametric VARHAC adjustment for residual serial correlation and heteroskedasticity,

as these tests showed relatively little distortion in simulation, and are generally in agreement

with the other tests for the models we analyze.

We report first on univariate models of excess returns, each with a covariate given by

one of the economic variables defined earlier. Table V gives results for the full monthly

sample (1959-1999) and two sub-samples. The first covariate in Table V is the market excess

return. When testing the joint equality of intercepts and slopes for both assets, at the

5% significance level we reject in the first sub-sample but not in the second sub-sample,

consistent with descriptive evidence in Table I. The test of equality of market betas suggests

significant difference in risk exposure, for large and small firms, in the first but not second

sub-sample, while the test of equal intercepts fails to find a significant difference during

either sub-sample. We also test for whether the intercepts are each 0, with mixed results

(rejection on the second sub-sample but not the first one). The test of zero intercepts for

the market model is essentially a version of the standard F-test commonly applied in testing

the CAPM.27 The performance of the market model could be viewed as evidence against
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the CAPM since only p-values for the period from 1959 to 1979 are larger than standard

significance values. Tests of equal parameters for covariates other than the market reject the

null hypothesis for consumption growth and inflation in the full sample. For consumption,

the null is rejected in the first sub-sample, while for the default premium and inflation, it

is rejected in the second sub-sample, but not the first. Again, the apparent source of this

parameter heterogeneity is in betas, in the full sample and each sub-sample.28 Tests for a zero

intercept tend to reject the null during the second sub-sample, but not the first sub-sample.

We next examine bivariate models, with covariates given by the market return and one

of the remaining five economic variables. Table VI reports results, and as in the univariate

models we see pervasive temporal instability in the sensitivity of excess returns. For each

version of the model, tests reject parameter equality, for small and large firms, in the whole

sample and first sub-sample. The apparent source of parameter heterogeneity is mostly

difference in betas rather than alphas. In the first sub-sample, differences between firms

of different sizes are a result of different market betas. Sensitivity to the second covariate

shows in each case no significant differences in the first sub-sample, but frequently shows

such differences in the second sub-sample (when the second factor is the default premium,

consumption growth, or unexpected inflation) or overall (term premium). Tests for zero

intercepts reject the null occasionally in the whole sample and always in the second sub-

sample, but not in the first sub-sample.29

To investigate whether test results are robust to the number of explanatory variables,

we examine the model in which all seven covariates are included. Table VII reports pa-

rameter estimates and their standard errors.30 To further describe the model we report in

Table VIII residual diagnostic tests. As indicated, there is strong evidence of both residual

heteroskedasticity and autocorrelation, in which case our use of HAC test methods is highly

appropriate.31 Finally, Table IX reports results of tests of cross-section restrictions.

Tables VII and IX reveal a pattern consistent with our results for models of a smaller-
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scale (see Tables V and VI). The market betas change through time, significantly different

in the first period but both close to unity in the second period.32 While the betas on the

market variable become indistinguishable from the statistical point of view, the betas for

all the other variables with the exception of money supply differ for firms of different size,

with the difference being more pronounced in the second period. For instance, the absolute

difference between slopes from the first sub-sample is 2.679 for the default premium and 0.12

for the term premium (see Table VI), respectively. This difference increases substantially

in the second period, to 13.871 for the default premium and 0.348 for the term premium,

respectively.33 Thus, for these two variables we can now reject the null hypothesis of equal

slopes across firms of different size, and we get closer to rejection for the other covariates,

again with the exception of the money supply.34

Overall, our empirical analysis suggests the presence of interesting and often dramatic

differences in the sensitivity of small and large firms to economic variables, in spite of the fact

that time-averaged excess returns on small and large firms’ portfolios have become closer (see

Table I). While the gap in market betas for small and large firms has narrowed, differences

in sensitivities to other economic variables - notably to the default and term premiums -

have grown over time.35

VI. Conclusion

This study brings into the foreground an assumption which is fundamental to asset pricing

theory, but has escaped formal testing in traditional empirical work. The going assumption

is that cross-sectional variation in asset returns is due to cross-sectional differences in the

sensitivity of assets to economic variables. Differences in sensitivity, of great interest the-

oretically, are also critical for the success of standard empirical methods such as the Fama

and MacBeth (1973) procedure.
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A variety of methods can conceivably deliver satisfactory tests for differing sensitivities,

but a modern understanding of asset return data brings special testing challenges. In par-

ticular, evidence of residual heteroskedasticity and serial correlation calls for an attempt of

‘robust’ methods more complex than the classical F test. A simulation study calibrated to

asset returns shows distortions in the F test due to the presence of heteroskedasticity and au-

tocorrelation, and also shows distortions in ’robust’ methods due to failure of the chi square

decision rule. Overall, we recommend the robust score test with a simple pre-whitening

adjustment for serial correlation.

In application to stocks sorted by firm size, using a variety of models we frequently find

significant differences in sensitivity to economic variables. The extent of such differences

varies substantially over time, for each variable studied. The gap in market betas has nar-

rowed, while the differences in sensitivities to other variables, such as the default and the

term structure premiums, the growth rates of consumption and industrial production, and

the unexpected component of inflation, have become more pronounced.
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Notes:

1. On an informal basis, Fama and French (1992, 1993, 1996) and Li and Hu (1998) compare

the sensitivities of small and large firm returns to market risk, dividend yield, the default

premium and the term structure. Perez-Quiros and Timmerman (2000) conduct formal tests

for differing sensitivities in some non-linear dynamic models of asset returns, but do not carry

out such testing in more traditional models.

2. This method, and variations on it, has been used in dozens of papers, for recent appli-

cations see Barber and Lyon (1997), Brennan, Chordia, and Subrahmanyam (1998), Ferson

and Harvey (1999), Horowitz, Loughran, and Savin (2000) and Kim (1997). For a textbook

treatment, see Cochrane (2001, Ch. 12).

3. Estimation of this model, using time series data, is the main focus of Fama and French

(1993, 1996).

4. See, for example, Fama and French (1993, 1996).

5. See, for example, Campbell, Lo and MacKinlay (1997, Ch. 2), and Cochrane (2001, Ch.

20).

6. See also Cushing and McGarvey (1999).

7. See Schwert (1983) for a review of early theories and Fama and French (1992, 1993) for

further discussion.

8. See Ferson and Korajczyk (1995).

9. Discussed in Ghysels (1998), for example.

10. Included here are Fama and French (1992, 1993, 1996) and Li and Hu (1998).

11. See Ferson and Harvey (1999) for a recent example

12. See Fama and French (1993, 1996), Li and Hu (1998) and Cochrane (2001).

13. See Section 4 for a detailed discussion.

14. We use the econometrics software Eviews 3.1 for all computations of score and other

tests.



15. The F statistic also has an unknown distribution in this setting, but we use the F

distribution as proxy when computing critical values.

16. See Ferson and Foerster (1994) and Campbell et al. (1997).

17. See, for example, Cushing and McGarvey (1999).

18. Included here are stationarity, finite moments, mixing, etc., as in White (2000) and

Davidson (1994, 2000), for example.

19. See, for example Harris and Mátyás (1999).

20. See Table I for summary statistics of covariates, and Table II for correlations with

dependent variables.

21. See Gertler and Gilchrist (1994), Li and Hu (1998) and Perez-Quiros and Timmermann

(2000).

22. Fama and French (1996) report a similar correlation.

23. See Fama and Gibbons (1984) for a similar procedure.

24. Chen et al. (1986) also use the change in the expected inflation; since this variable

is highly correlated with the unexpected inflation and implied test results are practically

indistinguishable, we omit them for brevity.

25. Alternatively, one could employ a block-bootstrap method, as in Cochrane (2001, Ch.

15).

26. For similar results see Cushing and McGarvey (1999) and Cochrane (2001, Ch. 15).

27. As pointed out in Gibbons et al. (1989), the test of the CAPM is equivalent to the test

of ex-ante mean-variance efficiency of a particular portfolio and the test statistic (either F ,

S or W ) can then be interpreted as a measure of distance from the mean-variance frontier.

28. These results correspond to findings of Chan, Chen and Hsieh 1985) who compare similar

explanatory variables to portfolios ranked by size for the sample period 1958-1977, roughly

our first sub-sample.

29. The test of zero-intercepts is comparable to the F-test of Gibbons et. al (1989) conducted



in Fama and French (1996), with size-related and book-to-market related portfolios added

to the excess return on the market proxy. Fama and French (1996) results are also mixed,

sometimes rejecting and sometimes accepting the null hypothesis, depending on the type of

used dependent portfolios.

30. Standard errors are computed via the VARHAC method.

31. We found similarly strong evidence of conditional heteroskedasticity and serial correlation

in a majority of the univariate and bivariate models we studied.

32. Chan et al. (1985) and Fama and French (1993) find different market betas for different

size for samples 1958-1977 and 1963-1991, respectively.

33. Fama and French (1993) also report estimates significantly different from zero for both

variables in expected returns regressions. However, their estimates do not seem to differ

across firms of various sizes.

34. Consistent with findings of Li and Hu (1998).

35. Instability of betas questions the common practice of attaching betas to characteristics

such as firm size. Firm betas vary over time: Why should we expect firms grouped by size

to have stable betas? We thank John Cochrane for this observation.
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