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Abstract. Many ecological studies use Two-Term Local
Quadrat Variance Analysis (TTLQV) and its derivatives for
spatial pattern analysis. Currently, rules for determining vari-
ance peak significance are arbitrary. Variance peaks found at
block size 1 and at > 50 % of the transect length are the only
peaks whose use is explicitly prohibited. Although the use of
variance peaks found at block sizes > 10 % of the transect
length have also been warned against, many researchers inter-
pret them regardless. We show in this paper that variance
peaks derived from TTLQV are subject to additional ‘rules of
thumb’. Through the use of randomization and permutation
analyses on real and simulated data of species abundance in
contiguous plots along a single transect, we show that variance
peaks found at block sizes 1, 2 and 3 occur frequently by
chance and thus likely do not indicate biologically meaningful
patterns. The use of multiple replicate transects decreases the
probability of Type II error.

Keywords: Permutation analysis; Spatial pattern; Variance peak.

Introduction

Two-Term Local Quadrat Variance (TTLQV: Hill
1973) is one of several quadrat-based methods available
to examine spatial pattern in plant and animal communi-
ties. In some cases, TTLQV has been shown to detect
both the scale and the intensity of spatial pattern (Usher
1975; Ludwig & Goodall 1978). Unlike earlier meth-
ods, TTLQV is not restricted to detecting pattern on a
scale of 2n blocks (Hill 1973; Ludwig & Reynolds
1988). However, TTLQV has some limitations. Pielou
(1977) and Galiano et al. (e.g. 1987) showed that TTLQV
analysis actually reports the average of the patch and
gap sizes. They showed that transects with homogene-
ous patch size and heterogeneous gap size will result in
variance peaks at differing block sizes. To allow for the
detection of patch size per se, Dale & MacIsaac (1989)
developed a method based on combinatorics that, subse-
quent to quadrat-variance techniques, differentiates patch
and gap sizes. In addition, Errington (1973) suggests
that TTLQV will often result in block sizes that are

smaller than the actual scale of pattern when examining
artificial data in which the scale of pattern is known.
Dale & Blundon (1990) correct for this by stating that
the true scale of pattern (B), is:

B = b + [30b/255] + 1 (1)

where b is the variance peak block size; the brackets
indicate the integer part of the division. Despite these
limitations, TTLQV has been useful in many studies
(e.g. Greig-Smith 1979; Gibson 1988; Dale & Blundon
1990; Edwards 1994).

One problem when utilizing TTLQV is determining
the meaning and significance of peaks in variance-block
size graphs. This paper simply defines peaks as an
increase in variance followed by a decrease in variance.
While the intensity of the variance peak is important to
the final interpretation of the TTLQV statistic, peak
intensity is not considered here because of the problem
with quantitatively determining peak significance. Al-
though several researchers have attempted objective
methods for evaluating the significance of peaks (e.g.
χ2, Greig-Smith et al. 1963; randomization tests, Mead
1974; 95 % confidence intervals, Greig-Smith 1979; mean
square, Carpenter & Chaney 1983) there is no agreed-
upon method. Also, while some researchers have found
that the smallest block size corresponds to some readily
recognized features of the system, it has commonly been
accepted that a variance peak found at the first block size
is the result of sampling in quadrats that are larger than the
‘actual’ scale of pattern. In addition, Ludwig & Reynolds
(1988) suggest that variances should not be analyzed for
blocks > 10 % of the number of quadrats when using a
single transect of data. Although most researchers inter-
pret block sizes up to one half of the transect length (e.g.
Carpenter & Chaney 1983; Ver Hoef et al. 1989; Edwards
1994), Ludwig & Reynolds (1988) suggest that such
computations lack precision. Variance peaks at interme-
diate block sizes (> 1 and < 10 % or half the transect
length) are thought to reveal meaningful interpretations
of the data.
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Table 1. Field and simulated data sets used in this study. Block
size of first variance peak (‘Size peak’) for each of the Markov-
generated data sets were averaged (± SD) over 100 runs.

Variable Ref.* Transect length  Size peak

Field data
% cover - Andropogon gerardii 1 50 15
% cover - Ambrosia psilostachya 1 50 8
% cover - Salvia pitcheri 1 50 10
% cover - Poa pratensis 1 50 5
% cover - Aster ericoides 1 50 5
No. stems - Amorpha canescens 2 100 9
No. stems - Ambrosia psilostachya 2 100 3
No. stems - Salvia pitcheri 2 100 7
No. stems - Gaylussacia baccata 3 50 17
% burnt 3 50 21
% cover - leaf litter 3 50 7
% cover - mosses 3 50 24
Height tallest vegetative shoot 4 500 55
Simulated data
Block size 1; Low Intensity 100 1
Block size 3; Low Intensity 100 3
Block size 10; Low Intensity 100 9
Block size 1; High Intensity 100 1
Block size 3; High Intensity 100 3
Block size 10; High Intensity 100 9
Markov data (σ =  0.2; γ  = 0.2) 250 16.6 (± 10.9)
Markov data (σ = 0.05; γ  = 0.05) 250 39.0 (± 21.7)
Markov data (σ = 0.5; γ  = 0.05) 250 12.0 (± 9.0)
Markov data (σ = 0.05; γ  = 0.5) 250 10.3 (± 6.8)
Markov data (σ = 0.5; γ = 0.5) 250 2.41 (± 2.1)

*1: Collins & Gibson (1990); 2: Campbell (unpubl.); 3: Matlack et al. (1993);
4: Newman (unpubl.).

Permutation analyses
Permutation analyses essentially involve the ran-

dom reshuffling of data points without replacement.
The use of these techniques has recently increased.
Longman et al. (1989) use permutation analysis to de-
termine the significance of components arising in Prin-
cipal Components Analysis (PCA). The primary advan-
tage of this type of analysis is the reliance on a distribu-
tion-free methodology. In addition, data permutations
effectively eliminate the problems associated with small
and/or unbalanced data sets – i.e. difficulty in testing for
normality and loss of power (Potvin & Roff 1993). A
final advantage of permutation analyses, assuming spa-
tial variation as the sum of spatial pattern and spatially
independent error, is the destruction of any auto-
correlation present in the original data set (Ver Hoef et
al. 1993). A disadvantage of this analysis is the rela-
tively long time needed to carry out such calculations.

Our objective is to discuss peak interpretation, espe-
cially the first four block sizes, when using TTLQV. To do
so, we use permutation analyses to demonstrate that vari-
ance peaks at block sizes 1, 2, and 3 are likely (i.e. > 88 %)
to arise by chance, regardless of transect length.

Methods

Two-Term Local Quadrat Variance was applied to
several real and simulated sets of transect data (Table 1).

Field data
Real data consisted of 13 variables from four sepa-

rate field studies. The first two data sets were taken from
tall-grass prairie studies at Konza Prairie Research Natu-
ral Area, Kansas, USA. Data set 1 was a visual estimation
of canopy coverage of five species in 50 contiguous
0.25 m2 quadrats (Collins & Gibson 1990). Data set 2
contained stem density counts for three species in 100
contiguous 0.25-m2 quadrats (Campbell unpubl.). Data
set 3 was taken from a study of ericaceous shrubs in the
pine barrens of New Jersey coastal plains, USA (Matlack
et al. 1993). Stem densities of two shrub species, cover of
mosses, leaf litter, and percentage  of the plot unburned in
a recent fire were measured in 100 contiguous 0.25-m2

quadrats. The final data set was taken from a study of
vegetation heights in a rye grass-white clover pasture in
Wales (Newman unpub.). Height of the tallest vegetative
shoot was recorded in 500 contiguous 5-cm2 quadrats.

Simulated data
Six of the 11 simulated transects consisted of 100

contiguous quadrats. These simulated transects were
created to reflect pattern at block sizes 1, 3, and 10. In
addition, high and low intensity values were generated
for each of the three block sizes (e.g. block size 3, low
intensity: 1 1 1 0 0 0 1 1 1 0 0 0; block size 3, high
intensity: 10 10 10 1 1 1 10 10 10 1 1 1). In addition,
Markov chains, 250 quadrats in length, were used to
create simulated transects based on five different prob-
abilities of transition from patch to gap and gap to patch
(Table 2). Each of the sets were run 100 × to capture
variability in first peak block size results. Markov chains
were employed in this study because knowledge of the
expected patch and gap lengths can be maintained while a
degree of stochastisity is still present within the transect.
All Markovian chains used were based on a matrix of one
step transition probabilities:

gap patch

P =
gap

patch

1 − δ δ
γ 1 − γ









 (1)

where σ is the probability of a transition from a gap to a
patch, and γ is the probability of a transition from a
patch to a gap. Expected gap and patch lengths were
calculated with the equation:

E(gap) = 1 / σ; E(patch) = 1 / γ. (2)

These expected values would be for averages from
several samples. In some cases, TTLQV accurately
recovered the true scale of the patches and gaps derived
from this Markov analysis (e.g. Markov data set #2).
However, it also found the average of patch and gap
values, as Pielou (1977) and Galiano et al. (1987) pre-
dicted (e.g. Markov data sets #3 and #4).
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Permutation analysis
For the permutation analysis, we generated null model

data sets from the field and simulated data to determine
if spatial pattern in the data differed from patterns under
a random assemblage hypothesis (Carpenter & Chaney
1983; Edwards 1994). Each permutation was analyzed
with the TTLQV technique and the block size of subse-
quent first peaks was recorded. 10 000 data permuta-
tions, the minimum suggested by Manly (1991), were
then generated for each transect. For data sets with more
than one transect, permutation of individual values was
made over the entire data set. The simple formula (1 –
cumulative frequency) of first peak block sizes, pro-
vides an empirical α-level for each block size. While
this is not a true test of significance, it serves as a
parsimonious determinant of whether peaks at various
block sizes are justifiably interpretable as natural scale
phenomena rather than stochastic occurrences. Similar
Monte-Carlo procedures have been used to generate
error statistics for other pattern analysis techniques (Car-
penter & Chaney 1983; Ludwig & Reynolds 1988).

To ensure that the results were not merely an artifact
of randomization and/or programming methodology, a
second number generating method was used for the
permutation analysis on all transects. This method de-
termined cumulative frequency for all values along the
transect. Random numbers between one and one hun-
dred were then generated and matched to the cumulative
frequency of the value within the data set. The value
with the cumulative frequency corresponding to the
random number was subsequently placed into the new
data set. This was done at each point along the length of
each transect. All permutations of the transect data were
generated using a PASCAL program which incorpo-
rated calculation of the TTLQV statistic from an earlier
program written originally by A. J. Morton (Imperial
College, London) and revised by T. L. Dix (University
of West Florida).

Results

The sampling distribution behaved in a remarkably
similar manner for all permutated transect variables.

Fig. 1a shows the distribution of the ‘first peaks’ up to
block size 10 for all transects. Block size 1 contains ca.
50 % of the ‘first peaks’, block size 2 contains approxi-
mately one fourth, block size 3 contains approximately
one eighth, block size 4 contains approximately one
sixteenth, and so on. This clearly shows that ‘first peaks’
recovered from permutated transect data are not rare
events at block sizes 1 (≅ 50 %), 2 (≅ 25 %), or 3
(≅ 12 %). Variance peaks at block size 4, however,
occur relatively infrequently (≅ 5 - 6 %), therefore ‘first
peaks’ occurring at this and greater block sizes are likely
due to natural scale phenomenon rather than stochastic
features in the data.

These findings are echoed in the second number
generating methodology (Fig. 1b). The agreement be-
tween methods suggests that the phenomena is more than
just an artifact of the programming language and/or the
random number generation. Based on the similarity of the
permutation results for all real and simulated variables
and all transect lengths, results appear to be robust.

Discussion

The acceptance of spurious results is a constant
threat in any study using extensive statistical calculation
(see Franklin et al. 1995 for a discussion of this problem
in the application of Principle Components Analysis).
To aid researchers in the evaluation of their particular
methodology, general guidelines are invaluable tools.
Currently, TTLQV analysis has only been guided by
two rules (1) do not interpret a peak at the first block
size, and (2) only interpret block sizes that are less than
one tenth (or one half) of the total transect length. In this
paper, we suggest that TTLQV is subject to additional
guidelines. In particular, block sizes 1 (α = 0.5), 2
(α = 0.25), and 3 (α = 0.11) are not significant below
their respective α-levels. In other words, block size 2 can
only be considered if the examiner has a priori accepted
an α-level of 0.25 or higher. Again, block size 3 can only

Table 2. Transition probabilities and estimated patch and gap
sizes for data sets generated by Markovian modeling.

Data set σ γ prop g prop p E(g) E(p)

1 0.2 0.2 0.5 0.5 5 5
2 0.05 0.05 0.5 0.5 20 20
3 0.5 0.05 0.091 0.909 5 20
4 0.05 0.5 0.909 0.091 20 5
5 0.5 0.5 0.5 0.5 2 2

Fig. 1. Average percentage of ‘first peaks’ at each block size
over all transects. Results include the first (a) and second (b)
number generating methodologies.
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be considered if the examiner has a priori accepted an α-
level of 0.11 or higher. It is not until block size 4 (α = 0.05)
that the probability of accepting randomness as pattern
begins to conform to the standard α-level of 0.05.

As one may expect, however, there are exceptions to
this ‘rule’. In particular, block sizes 2 and 3 could be
interpreted if analysis of several transects of similar data
resulted in identical information. For example, the prob-
ability that a local maximum in variance occurs at block
size 2 on each of three independent transects reduces the
possibility of a Type II error. If the random probability
of a variance peak occurring at block size 2 is 0.25, then
the probability of that happening on three independent
transects is 0.25× 0.25× 0.25 = 0.016 (1.6 %) – all
transects must result in exactly the same variance peak
for this multiplicity of probabilities to hold true. This
caveat supports the supposition that multiple transects
result in more reliable data interpretation. However,
multiplicity of transects does not aid in the interpreta-
tion of block size 1, as actual patch may still be smaller
than the quadrat size for such transects.

If one holds to the strict 10 % interpretation rule of
Ludwig & Reynolds (1988), only the four block sizes in
a transect of 40 quadrats should be interpreted. How-
ever, our results suggest that peaks in the first three
block sizes recovered from such a transect cannot be
interpreted. In this case, the only interpretable peak, if it
were to occur in field data analysis, would be found at
block size 4. Thus, the use of single, short transects with
< 40 quadrats is problematic and should be discouraged.
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