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RESEARCH ARTICLE

Per-Oral Immunization with Antigen-
Conjugated Nanoparticles followed by Sub-
Cutaneous Boosting Immunization Induces
Long-Lasting Mucosal and Systemic Antibody
Responses in Mice
Savannah E. Howe, Vjollca H. Konjufca*

Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America

* vjollca@micro.siu.edu

Abstract
Food or water-borne enteric pathogens invade their hosts via intestinal mucosal surfaces,

thus developing effective oral vaccines would greatly reduce the burden of infectious dis-

eases. The nature of the antigen, as well as the mode of its internalization in the intestinal

mucosa affects the ensuing immune response. We show that model protein antigen ovalbu-

min (Ova) given per-orally (p.o.) induces oral tolerance (OT), characterized by systemic

IgG1—dominated antibody response, which cannot be boosted by sub-cutaneous (s.c.) im-

munization with Ova in complete Freund’s adjuvant (CFA). Intestinal IgA generated in re-

sponse to Ova feeding diminished over time and was abrogated by s.c. immunization with

Ova+CFA. Humoral response to Ova was altered by administering Ova conjugated to 20

nm nanoparticles (NP-Ova). P.o. administration of NP-Ova induced systemic IgG1/IgG2c,

and primed the intestinal mucosa for secretion of IgA. These responses were boosted by

secondary s.c. immunization with Ova+CFA or p.o. immunization with NP-Ova. However,

only in s.c.-boosted mice serum and mucosal antibody titers remained elevated for 6

months after priming. In contrast, s.c. priming with NP-Ova induced IgG1-dominated serum

antibodies, but did not prime the intestinal mucosa for secretion of IgA, even after secondary

p.o. immunization with NP-Ova. These results indicate that Ova conjugated to NPs reaches

the internal milieu in an immunogenic form and that mucosal immunization with NP-Ova is

necessary for induction of a polarized Th1/Th2 immune response, as well as intestinal IgA

response. In addition, mucosal priming with NP-Ova, followed by s.c. boosting induces su-

perior systemic and mucosal memory responses. These findings are important for the de-

velopment of efficacious mucosal vaccines.
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Introduction
The majority of viral, bacterial, and parasitic infections occur at mucosal surfaces, thus devel-
oping effective mucosal vaccines would greatly decrease the burden of infectious diseases. This
task has however been challenging, mainly due to the poor stability, uptake, and immunogenic-
ity of mucosally-administered antigens. As a result, very few mucosal vaccines are currently li-
censed for use in humans [1]. Oral vaccines are especially convenient for mass-immunizations,
since they are preferred over parenteral injections and eliminate the use of needles and syringes
[2]. To be effective, oral vaccines must be efficiently internalized at mucosal surfaces and in-
duce antigen-specific effector, as well as memory B and T cell responses. Especially important
for protection against pathogens and their toxins are mucosal antibodies, which can neutralize
mucosal antigens and limit their access to the internal milieu [3]. Secretory IgA, a predominant
antibody in intestinal secretions, can bind to and neutralize microorganisms and toxins, pre-
venting them from making contact with and crossing the epithelial cell barrier [4,5]. Specifical-
ly, intestinal IgA was shown to neutralize cholera toxin [6,7], reduce motility of Salmonella [8],
as well as decrease the ability of Shigella to invade the intestinal epithelium [9]. In addition,
oral transfer of specific IgA antibodies was shown to protect mice against bacterial infections
such as S. typhimurium [10,11], V. cholera [12], S. flexneri [13], and H. felis [14]. In addition to
aiding in the “trapping” of antigens in the intestinal mucus, IgA is also important for expelling
antigens from the internal milieu into the intestinal lumen via transcytosis, as well as transport-
ing lumen antigens into underlying lymphoid tissues for the initiation of immune responses
[15,16,17,18]. Although parenteral vaccination induces systemic antibodies and protection
against some mucosal pathogens such as HPV, polio and influenza viruses [19,20], mucosal
vaccination induces systemic, and most importantly, local mucosal antibodies that can offer
protection against mucosal pathogens such as HIV, rotavirus, norovirus, V. cholera, andMyco-
bacterium spp. [21,22,23,24,25]. Therefore, the efficacy of an oral vaccine will in great part de-
pend on the vaccine’s ability to induce long-lasting production of antibodies at mucosal
surfaces. In addition, to increase the efficacy of vaccine formulations, various prime-boost im-
munization strategies have been used [26]. Prime-boost immunization regimen influences lo-
calization and the strength of the immune response induced, thus vaccine efficacy [27]. The
immunogenicity of many vaccine formulations depend on their co-administration with adju-
vants. However, there are safety concerns associated with the use of most effective adjuvants.
Similarly, live attenuated vaccine strains that have been developed for mucosal immunization
raise concerns that attenuated strains might revert to virulence, trigger, exacerbate autoim-
mune diseases, or cause disease in immunocompromised individuals [28].

To overcome some of these challenges, nano-scale particles (such as liposomes, ISCOMs,
virus-like particles, etc.) have become increasingly popular as vehicles for the delivery of anti-
gens and drugs [29]. NPs of various sizes have been engineered of biodegradable materials and
can be impregnated with or conjugated to multiple antigens, and thus potentially be safe while
inducing immunity to multiple pathogens. NPs larger than 200 nm have been mainly used for
antigen delivery due to their ability to carry larger amount of antigen cargo [30,31,32]. Howev-
er, smaller NPs can penetrate the mucus barrier and are internalized at mucosal surfaces more
efficiently than larger NPs [33,34,35]. We showed that intestinal epithelial cells efficiently inter-
nalize p.o. administered 20 and 40 nm NPs, which are then transported to the draining mesen-
teric lymph nodes (MLNs) [36]. Here we demonstrate that NP-conjugated antigen
administered p.o. reaches the internal milieu in an immunogenic form and induces systemic
and mucosal antibodies. In addition, we show that mucosal priming with NP-Ova is necessary
for a mixed systemic Th1/Th2 immune response. Moreover, mucosal priming with NP-Ova,
followed by s.c. boosting immunization was necessary for induction of long-lasting serum
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IgG1 and IgG2c, as well as intestinal IgA. These findings have implications for the development
of mucosal vaccines and prime-boost immunization strategies. In addition, this work will aid
in the understanding of fundamental mechanisms that govern immune responses to orally
acquired antigens.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was ap-
proved by the Southern Illinois University Institutional Animal Care and Use Committee (Pro-
tocol Number: 13–057). Animals were housed in centralized AAALAC-accredited research
animal facilities, staffed with trained husbandry, technical, and veterinary personnel.

Animals, reagents, and antibodies
For these studies six to eight week-old male and female C57BL/6 mice (Jackson Laboratories)
were used. Chicken Ova (Sigma) was used as a model protein antigen. Carboxylate-modified
fluorescent polystyrene nanoparticles (20 nm, Invitrogen) were conjugated to Ova and every
batch of conjugated NPs was analyzed by dot-blot as described previously [36]. Biotinylated
rabbit anti-Ova antibodies (Thermo Scientific) in combination with streptavidin-FITC
(eBioscience) were used to detect Ova and NP-Ova on dot blots. Goat anti-mouse IgG1, IgG2c,
and IgA antibodies conjugated to alkaline phosphatase (AP) (Southern Biotechnology) were
used for determination of antibody titers in sera and fecal extracts of immunized mice as de-
scribed previously [37].

Administration of Ova and NP-Ova to the mice
For p.o. immunizations mice were fasted for 4 h, then administered 200 μl PBS (control),
Ova (25 mg/200 μl PBS), NP-Ova (0.25 mg/200 μl PBS), or an equivalent dose of Ova
(0.25 mg/200 μl PBS) via a gastric gavage using a round-tip needle on days 0, 3, 6, and 8. In
total, mice received 0 mg Ova (control), 100 mg, and 1mg Ova (either as NP-Ova or soluble
Ova). For immunizations NPs were diluted 1:10 in PBS, from an original concentration of
2% (wt/wol). At day 28 after p.o. inoculation, mice were s.c. injected with 300 μg Ova in CFA
(Sigma). In other experiments mice were primed either p.o. with NP-Ova as described above
or s.c. with 200 μl of NP-Ova, then boosted p.o. with 200 μl of NP-Ova diluted in PBS at 10%
from an original NP concentration of 2%.

Collection of fecal pellets and blood samples
Before immunizations and every week thereafter, fecal pellets were collected from each mouse
and diluted in PBS containing 0.02% sodium azide (Sigma) to a final concentration of 100 mg
dry matter/ml of PBS. Diluted fecal pellets were homogenized and then centrifuged at 10,000 ×
g for 10 minutes. Supernatant devoid of fecal debris was collected and stored at -20°C until fur-
ther analysis. Blood samples were collected via the tail vein using a 30 g needle, and serum was
stored at -20°C until further analysis.

Determination of Ova-specific antibody titers in sera and fecal extracts
using ELISA assay
Flat-bottomed 96-well plates were coated with 100 μl of 50 μg/ml Ova (Sigma) solution in coat-
ing buffer (0.02 M Na2CO3/0.07 M NaHCO3 in H2O, pH 9.6) and allowed to incubate
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overnight at 4°C. After the unbound antigen was removed, wells were then blocked for 1 h at
37°C with 200 μl of blocking buffer (0.2% porcine gelatin (Sigma) in PBS). Although bovine
serum albumin (BSA) is often used for ELISA assays, to avoid experimental errors stemming
from cross-reactions between BSA and Ova-specific antibodies, as well as between Ova and
anti-BSA antibodies [38], porcine gelatin was used. After blocking, plates were washed three
times with PBS containing 0.05% Tween-20 (Sigma) and 0.02% sodium azide (Sigma) using an
automated plate washer (BioTek, ELx50). After washing, 200 μl of sample (serum or fecal ex-
tract, diluted in blocking buffer) were added to the first column of wells and then diluted into
successive wells of blocking buffer and allowed to incubate overnight at 4°C. After overnight in-
cubations, plates were washed three times, and then to each well 100 μl of AP-conjugated goat
anti-mouse IgG1, IgG2c, or IgA, diluted 1:2000 in blocking buffer were added and allowed to
incubate for 2 h at room temperature. Plates were then washed three times, and AP activity
was assayed by adding 100 μl of 1 mg/ml AP substrate (Sigma) then incubating for 20 minutes
at room temperature, protected from light. The reaction was stopped with 25 μl of 3 M NaOH
and the absorbance was read at 405 nm using a plate reader (BioTek, Epoch). Antibody titers
are expressed as log10 value of the highest reciprocal dilution that yielded an OD value twice
that of a negative control.

Statistical analysis
Each experiment was repeated twice. Data were analyzed using ANOVA procedures of SAS
software. Group means were separated using Student’s t-test or Tukey’s multiple comparison
procedure and were considered significantly different at P<0.05. Data are expressed as the
mean ± standard deviation of the mean.

Results

P.O. administration of NP-Ova induces serum IgG1/IgG2c and intestinal
IgA, while Ova feeding induces serum IgG1-dominated antibodies and
short-lived intestinal IgA
We examined whether administering Ova conjugated to NPs p.o. would induce antigen-
specific immunity, rather than OT. OT generated to dietary antigens is characterized by reduc-
tions in T-cell functions, suppression of serum IgE, Th1-dependent IgG2a (IgG2c in C57BL/6
mice), as well as mucosal IgA responses [39,40,41]. Thus as a control the immunization proto-
col with a high dose of Ova shown to induce OT [42] was used in order to examine whether
Ova delivery via NPs abrogates OT. In addition, a group of mice were fed a low dose of soluble
Ova (similar to the dose given via NPs) in order to exclude the possibility that immune re-
sponses observed in NP-Ova immunized mice are due to the antigen dose. Another feature of
OT is the suppression of a systemic, as well as intestinal immune response to the subsequent
antigen exposure. Therefore, at day 28 after the last p.o. administration of soluble Ova, NP-
Ova or PBS (control), mice were injected s.c. with Ova+CFA. Mice that were fed Ova exhibited
significantly higher serum IgG1 titers at day 7, 14, and 28 compared to control mice and mice
that were given NP-Ova p.o. (Fig. 1A). As expected, no Ova-specific serum IgG1 was detected
in control mice at day 7, 14, or 28 (Fig. 1A). S.c. injection of Ova+CFA at day 28 induced
serum IgG1 in control mice and significantly boosted the serum IgG1 titers in mice given NP-
Ova (p<0.05), but not the mice fed soluble Ova (p<0.11) (Fig. 1A). In contrast to this, mice
that were given NP-Ova exhibited significantly elevated serum IgG2c titers at day 14 compared
to control and Ova-fed mice (Fig. 1B). S.c. immunization significantly boosted the serum
IgG2c titers of NP-Ova (p<0.01) and Ova-primed (p<0.01) mice, while control mice exhibited
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no serum IgG2c titers before or after s.c. immunization (Fig. 1B). Mice primed with NP-Ova
had significantly higher serum IgG2c titers at day 42 compared to the titers of Ova-fed and
control mice (p<0.01) (Fig. 1B). To examine the changes of Ova-specific intestinal IgA over
time, fecal pellets were collected from individual mice and assayed for the presence of IgA. No
appreciable amount of IgA was detected in fecal extracts of control mice and NP-Ova-primed
mice at day 7, 14, or 28 (Fig. 2). In contrast, mice fed soluble Ova exhibited significantly elevat-
ed fecal IgA titers at day 14 after p.o. administration (p<0.01) (Fig. 2). However, these titers
did not persist and were not different from titers of control or NP-Ova-primed mice by day 28
(Fig. 2). S.c. immunization with Ova+CFA at day 28 significantly boosted the IgA titers only in
fecal extracts of mice immunized p.o. with NP-Ova, but abrogated intestinal IgA in Ova-fed

Fig 1. Antibody responses in sera of mice primed p.o. with soluble Ova, NP-Ova or PBS.Mice were administered PBS (control), soluble Ova, or 20 nm
NP-Ova p.o. at day 0, 3, 6 and 8, then s.c. boosted with 300 μg Ova+CFA at day 28 (arrow). Ova-specific serum IgG1 (A) and IgG2c (B) antibody titers are
expressed as log10 titer values, with the titer being the highest dilution showing an absorbance value twice that of the background. Data collected from 10
mice per group (2 separate experiments) are expressed as the mean ± SD of the mean. Group means were separated using Tukey’s multiple comparison
procedure and were declared significantly different at p<0.05 (*) and p<0.01 (***).

doi:10.1371/journal.pone.0118067.g001

Fig 2. Intestinal IgA responses in mice primed p.o. with soluble Ova, NP-Ova or PBS.Mice were
administered PBS (control), soluble Ova, or 20 nm NP-Ova p.o. at day 0, 3, 6 and 8, then s.c. boosted with
300 μg Ova+CFA at day 28 (arrow). Fecal extracts were assayed for Ova-specific IgA using ELISA assay.
Ova-specific IgA titers are expressed as log10 titer values, with the titer being the highest dilution showing an
absorbance value twice that of the background. Data collected from 10 mice per group (2 separate
experiments) are expressed as the mean ± SD of the mean. Group means were separated using Tukey’s
multiple comparison procedure and were declared significantly different at p<0.05 (*) and p<0.01 (***).

doi:10.1371/journal.pone.0118067.g002
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mice. Control mice primed p.o. with PBS and s.c. immunized with Ova+CFA at day 28 exhib-
ited no IgA in fecal extracts at any time point examined (Fig. 2). Mice that were fed a dose of
soluble Ova that was comparable to the amount of Ova given via NP-Ova exhibited serum
IgG1 and IgG2c that were slightly lower than the titers of mice fed a high dose Ova (not
shown). In mice fed a low dose Ova, IgA was detectable in fecal extracts at day 14 after immu-
nization and was comparable to the IgA titers in extracts of mice fed high dose Ova (25 mg/
dose). In addition, s.c. injection with Ova+CFA did not boost the intestinal IgA of mice fed a
low dose Ova, like seen in mice fed a high dose Ova. Mice that were p.o. primed with NP-Ova
had significantly higher IgA (p<0.01) compared to mice fed a low (not shown) and a high dose
of Ova after s.c. immunization (Fig. 2).

P.o. priming with NP-Ova is necessary for inducing isotype switch,
leading to a polarized IgG1/IgG2c systemic immune response, and
intestinal IgA
We then tested whether p.o. priming with NP-Ova was absolutely needed for a systemic Th1/
Th2 polarization (IgG1/IgG2c) and for induction of intestinal IgA. For this, two groups of mice
were first immunized either p.o. or s.c. with NP-Ova, then p.o. boosted with NP-Ova. At day 7
s.c.-primed mice had significantly higher serum IgG1 titers compared to the p.o.- primed mice,
however both groups had comparable serum IgG1 titers at days 14, and 28 after immunization,
which were slightly increased by a second p.o. immunization only in p.o.-primed mice
(p<0.26) (Fig. 3A). Mice primed p.o. with NP-Ova exhibited substantial serum IgG2c titers by
day 14, which were significantly higher (p<0.01) compared to the titers of s.c.-primed mice at
days 14, 28 and 42 (Fig. 3B). As in the first set of experiments, a significant amount of IgA was
observed in fecal extracts of p.o.-primed mice only after a second p.o. NP-Ova administration
at day 28 (Fig. 4A). At day 42 the p.o. primed and p.o. boosted mice had significantly higher in-
testinal IgA compared to the mice primed s.c. and boosted p.o. with NP-Ova (p<0.05). Unex-
pectedly, at day 7 and 42, mice that were primed s.c. with NP-Ova had measurable IgA in
pooled samples of fecal extracts. Analysis of individual serum and fecal extract samples collect-
ed at day 7 and 42 revealed that only 1 of five mice of the s.c.-primed and p.o.-boosted group,
had some serum IgG2c and intestinal IgA, skewing the overall averages of the group (Figs. 3B
and 4A). Examination of serum IgG1:IgG2c ratios at day 42 revealed that s.c. priming with Ova

Fig 3. Serum antibody titers of mice boosted p.o. with NP-Ova after either p.o. or s.c. priming with NP-Ova.Groups of 5 mice were p.o. or s.c. primed
with NP-Ova, then p.o. boosted with NP-Ova at day 28 (arrow). Ova-specific serum IgG1 (A) and IgG2c (B) titers are expressed as log10 titer values, with the
titer being the highest dilution showing an absorbance value twice that of the background. Data are expressed as the mean ± SD of the mean. Group means
were separated using Student’s t-test and were declared significantly different at p<0.05 (*) and p<0.01 (***).

doi:10.1371/journal.pone.0118067.g003
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+CFA (control group) or NP-Ova led to IgG1-dominated response and IgG1:IgG2c ratios that
were significantly higher compared to the IgG1:IgG2c ratios of mice p.o. primed with NP-Ova
(Fig. 4B). In addition, mice primed p.o. with soluble Ova and boosted s.c. with Ova+CFA had
significantly higher IgG1:IgG2c ratios compared to the mice primed p.o. with NP-Ova
(Fig. 4B). Mice primed p.o. with NP-Ova then boosted either s.c. with Ova+CFA, or p.o. with
NP-Ova (not shown) had lowest IgG1:IgG2c ratios, indicating a strong Th1 polarization. At
day 42 the IgG1:IgG2c ratios between these two groups did not differ significantly (not shown).

Systemic and mucosal antibody titers induced by p.o. NP-Ova
administration, followed by s.c. boost with Ova+CFA remain high for
extended periods of time
Analysis of serum and fecal samples collected at 6 months after priming revealed that the titers
of Ova-specific serum IgG1and IgG2c, as well as intestinal IgA were significantly higher in
mice p.o. primed with NP-Ova and s.c. boosted with Ova+CFA compared to mice that were
p.o. primed and p.o. boosted with NP-Ova (Fig. 5). In addition, mice p.o. primed and boosted
with NP-Ova had significantly higher IgG2c and intestinal IgA compared to s.c. primed, p.o.
boosted mice (Fig. 5). Interestingly, at 6 months after priming, mice that were p.o. primed with
NP-Ova and s.c. boosted with Ova+CFA had significantly elevated serum IgG2c and intestinal
IgA titers compared to day 42 titers (Table 1). In contrast, in mice primed and boosted p.o.
with NP-Ova serum IgG1 titers decreased significantly by 6 months after priming (p<0.01).
There was also a decrease, albeit non-significant, in serum IgG2c titers, while intestinal IgA ti-
ters did not change appreciably (Table 1). In mice s.c. primed and p.o. boosted with NP-Ova,
serum IgG1, IgG2c, and intestinal IgA titers did not differ significantly between day 42 and 180
(Table 1).

Discussion
The nature of the antigen (thus the vaccine formulation) affects its uptake in the intestinal mu-
cosa, transport to the deeper lymphoid tissues, and consequently its immunogenicity. Larger
antigens (bacteria, particles, etc.) are mainly internalized by M cells that are found in the

Fig 4. Induction of intestinal IgA and serum IgG2c antibody response depends on the immunization route that was used for priming. (A) Groups of
5 mice were p.o. or s.c. primed with NP-Ova, then p.o. boosted with NP-Ova at day 28 (arrow). Intestinal IgA titers are expressed as log10 titer values, with the
titer being the highest dilution showing an absorbance value twice that of the background. Group means were separated using Student’s t-test and declared
significantly different at P<0.05 (*). (B) Ratio of OVA-specific IgG1:IgG2c in sera of mice at 42 days after the first immunization. Mice were primed p.o. (with
PBS, Ova, NP-Ova) or s.c. (with NP-Ova), then boosted with Ova+CFA s.c. or NP-Ova p.o. Data are expressed as the mean ± SD of the mean. Group means
were separated using Tukey’s multiple comparison procedure and declared significantly different at P<0.05 (*) or P<0.01 (***).

doi:10.1371/journal.pone.0118067.g004
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epithelium overlying Peyer’s patches (PP) and isolated lymphoid follicles. Bacteria can also be
internalized by CD11c+ [43], CX3CR1+ [44], and CD103+ [45] dendritic cells (DCs) of the lam-
ina propria, which can extend their dendrites between epithelial cells of the small intestine. In
contrast, soluble protein antigens that reach the small intestine undigested can enter the lamina
propria via goblet cell-associated passageways [36,46], and are transferred to CD103+ DCs.
Transport of protein antigens to the MLNs by CD103+ DCs of the lamina propria was shown
to be necessary for induction of OT [42]. Howe et al. showed that 20 and 40 nm NPs were in-
ternalized not only by the epithelial cells overlying PP, but also by epithelial cells overlying the
villi [36]. In addition, within the lamina propria of the villi, NPs were frequently observed co-
localizing with the CD11c+ DCs [36] and tolerogenic CD103+ DCs (unpublished data). We in-
vestigated whether p.o. administration of Ova model antigen conjugated to 20 nm NPs would
induce Ova-specific immune responses, rather than OT that is seen with administration of

Fig 5. Mouse serum IgG1, IgG2c, and fecal IgA antibody titers at 6 months (180 days) after priming
immunization.Groups of 5 mice were: p.o. primed with NP-Ova, then s.c. boosted with Ova+CFA at day 28
(PO-SC); p.o. primed with NP-Ova, then p.o. boosted with NP-Ova (PO-PO); or s.c. primed with NP-Ova,
followed by p.o. boost with NP-Ova (SC-PO). Ova-specific antibody titers are expressed as log10 titer values,
with the titer being the highest dilution showing an absorbance value twice that of the background. Data are
expressed as the mean ± SD of the mean. Group means were separated using Tukey’s multiple comparison
procedure and declared significantly different at P<0.05 (*) or P<0.01 (***).

doi:10.1371/journal.pone.0118067.g005

Table 1. Systemic and mucosal Ova-specific antibody titers at day42 and 180 after priming immunization.

Immunization Strategy Isotype Log10 Ova-specific antibody titersa

Day 42 Day 180 p-value

1° NP-Ova P.O. 2° Ova+CFA S.C. IgG1 5.74 ± 0.6 5.94 ± 0.3 0.3

IgG2c 4.19 ± 0.6 4.94 ± 0.1 0.002

sIgA 2.91 ± 0.5 3.41 ± 0.1 0.04

1° NP-Ova P.O. 2° NP-Ova P.O. IgG1 5.61 ± 0.4 4.71 ± 0.3 0.01

IgG2c 3.32 ± 0.5 3.05 ± 0.1 0.3

sIgA 2.35 ± 0.4 2.43 ± 0.4 0.8

1° NP-Ova S.C. 2° NP-Ova P.O. IgG1 4.95 ± 0.4 4.77 ± 0.4 0.5

IgG2c 0.64 ± 1.4 0.70 ± 1.5 0.9

sIgA 0.44 ± 0.9 0.32 ± 0.7 0.8

aData are expressed as the mean ± SD of the mean. Group means were separated using Student’s t-test.

doi:10.1371/journal.pone.0118067.t001
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soluble Ova. In addition, we examined how the routes of priming and secondary boosting im-
munizations affect ensuing systemic and mucosal antibody responses. We show that p.o. ad-
ministration of soluble Ova induces systemic IgG1-dominated response which is not boosted
by a subsequent s.c. Ova administration. In addition, Ova feeding induced short-lived Ova-
specific intestinal IgA. This response was reminiscent of the intestinal IgA response to an auxo-
trophic E.coli strain, which was rapidly abrogated following an exposure to commensal mi-
crobes [47]. Thus, much like the repertoire of intestinal IgA that appears to reflect the major
microbial species present in the gut at a given time [47], the intestinal IgA repertoire might also
reflect dominant dietary intestinal antigens. Mucosal IgA response to soluble Ova (low and
high dose) also lacks immune memory and classical prime-boost characteristics, as s.c. injec-
tion of Ova+CFA did not boost Ova-specific intestinal IgA. In contrast, Ova conjugated to
20 nm NPs induced a mixed serum IgG1/IgG2c antibody response and primed the intestinal
mucosa for secretion of IgA. Unlike antibody titers induced by soluble Ova, serum IgG1/
IgG2c, as well as intestinal IgA induced by p.o. NP-Ova were substantially boosted by subse-
quent s.c. Ova+CFA or p.o. NP-Ova administration. In agreement with findings of others [48]
we show that NP-Ova administered s.c. are just as efficient as CFA in inducing Ova-specific an-
tibodies. In addition, NPs do not produce local or peripheral inflammatory reactions that are
often observed with CFA or other adjuvants. Another very important observation is that muco-
sal priming with NP-Ova induced a strong Th1/Th2 polarization, while s.c. priming induced
mainly a Th2 type immune response, as shown by analysis of serum IgG1 and IgG2c antibody
titers. The predominance of serum IgG1 and the lack of serum IgG2c and intestinal IgA in
mice s.c. primed with NP-Ova indicates that Ova delivery via NPs per se does not induce iso-
type switching. The antigen administration route that was used for priming immunization in-
fluences the Th1 or Th2 skewing, and strongest Th1 polarization was seen in mice p.o. primed
with NP-Ova. In addition, intestinal IgA was observed only in mice that were primed via mu-
cosal surfaces (p.o.) with either Ova or NP-Ova. IgA isotype switching can occur in PP, MLNs,
and possibly in the lamina propria of the small intestine [49]. All these anatomic locations can
harbor microbial PAMPs originating from commensal microflora [50], thus antigen presenta-
tion in this context may be responsible for isotype switching, resulting in systemic IgG1, IgG2c,
and intestinal IgA. Others have shown that MyD88 signaling is necessary for induction of
IgG2c to thymus-independent antigens (such as Ova), and that the development of a primary
Th1 response and IgG2c requires MyD88 activation of both DCs and B lymphocytes [2]. The
lack of MyD88 was also shown to cause an impairment of IgA production in Peyer’s patches,
indicating that signaling via toll-like receptors plays a key role in IgA-mediated mucosal immu-
nity [51,52]. In two separate experiments, s.c. immunization with Ova+CFA alone did not in-
duce an appreciable amount of serum IgG2c two weeks after immunization. Similarly, mice s.c.
primed with NP-Ova alone had IgG1-dominated humoral response, although in 1 of the 5
mice some IgG2c and intestinal IgA was observed. Small NPs (20 nm-200 nm) and 30 nm
virus-like particles administered intra-dermally were shown to freely drain into the local LNs
[48,53], while large NPs mostly remained within the injection site [53]. Therefore, it is conceiv-
able that a small fraction of NPs s.c. injected on the back of a mouse may have also reached the
MLNs, where isotype switching might have occurred. Induction of IgA responses in the MLNs
after s.c. immunization was previously demonstrated, leading to a suggestion that there is a
functional link between the skin and mucosal tissues [54].

Generation of mucosal immunological memory, the most important consequence of vacci-
nation, was shown to be possible using cholera toxin as an antigen [55]. However, rapidly wan-
ing mucosal immunity, a main limitation of many mucosal vaccines including the oral
poliovirus vaccine [56], indicates that mucosal memory may be short-lived. Mucosal IgA in-
duced after p.o. immunization of mice with antigen-loaded 3 μm particles without adjuvants,
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was decreased by about 40% and 60% by week 7 and 8 after immunization respectively [30]. In
a similar study, salivary IgA antibody titers were reduced by almost 90% by week 13 after im-
munization [31], indicating that secretion of intestinal IgA induced by p.o. immunization with
large particles is short-lived. We show that a single p.o. immunization with NPs alone is not
sufficient to induce high titers of IgA in fecal extracts. However, s.c. immunization of the p.o.
primed mice boosted the intestinal IgA titers, which further increased and were highest at 6
months after p.o. priming. In addition, a p.o.-p.o. immunization with NP-Ova also boosted the
intestinal IgA, which unlike systemic IgG1 and IgG2c did not appreciably decline by 6 months
after priming. This finding is in contrast to the findings of others [30,31] and the discrepancy
in our results might be the difference in the size of NPs used for immunization, as it is well doc-
umented that the uptake of NPs in the intestines is inversely correlated with their size. In addi-
tion, the size of NPs was also shown to play a role in the magnitude and the quality of the
immune response, as smaller NPs were shown to be more efficient than larger NPs in inducing
humoral and cell-mediated immunity, as well as in protecting mice from tumors [48].

Induction of a mixed Th1/Th2 immune response and mucosal immune memory are essen-
tial for the efficacy of a mucosal vaccine. Effective Th1 responses are important for protection
against mucosal pathogens such as L. monocytogenes, Salmonella spp.,M. tuberculosis,H. pylo-
ri, etc. [57,58,59]. Th2 responses support antibody production such as mucosal IgA and sys-
temic IgG, which are essential for protection against Salmonella spp, Shigella spp., Vibrio
cholera and its toxin, rotavirus, norovirus, influenza virus, poliovirus etc. [1,6,7,8,9,10].

Better understanding of how the NP-conjugated antigen is transported to the deeper lym-
phoid tissues, processed, and presented to T lymphocytes will be important for designing NP-
based mucosal vaccines. In addition, it will aid our understanding of how the increasingly prev-
alent dietary NPs might play a role in priming the intestinal mucosa to innocuous dietary anti-
gens. The use of NPs for vaccine development has several advantages over other approaches.
NPs are internalized efficiently by intestinal epithelial cells and do not require adjuvants to be
effective, thus raising no safety concerns. Biodegradable NPs, made of non-toxic materials can
be loaded into digestible capsules in order to protect the antigen cargo from degradation. In ad-
dition, capsules can be impregnated with NPs conjugated to multiple antigens, thus increasing
the immunogenicity of vaccine formulations. More work is needed in order to explore these
possibilities. Although a needle-free p.o. administration of NP-based mucosal vaccines is espe-
cially appealing for mass immunizations, a secondary s.c. boosting immunization appears to be
essential for induction of long-lasting systemic and mucosal antibodies.
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