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L A N G U A G E  I N T E R F A C E  

between 

Logic Programming 
Timothy Koschmann, Xerox A/  Systems 
Mardha Walton EvenS. lllinois lnstitute of Technology 

ajectaiented and 
Iogk progkamming 

each have dvantqges. 
lhis interface bridges 

the two Wles,  
lettingyou take equal 

advan&ge ofboth. 

n recent years, many programmers 
have begun to experiment with alter- 
native programming styles. Object- 

oriented and logic programming have at- 
tracted growing interest among software 
designers, particularly among those work- 
ing on knowledge-based applications. 
Both styles of programming offer real 
advantages over traditional programming 
methods. 

Object-oriented programming is partic- 
ularly useful for problems in which data 
objects can be categorized hierarchically. 
The notions of inheritance and data en- 
capsulation encourage astructured imple- 
mentation style and enhance the main- 
tainability of programs. But object- 
oriented environments lack generalized 
facilities for deductive retrieval and pat- 
tern matching, functions that are basic to 
most knowledge-based applications. 

On the other hand, logic programming 
languages like Prolog have built-in facili- 
ties for deductive retrieval through 
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chronological backtracking and pattern 
matching viaunification. Prolog'sdeclara- 
tive style provides a natural way to repre- 
sent  rule-based knowledge. Unfor- 
tunately, Prolog also has deficiencies: Its 
declarative style is clumsy for tasks that are 
implicitly procedural in nature, such as 
prompting a user for a series of pieces of 
information. Also, because Prolog isa rela- 
tively new language in the US, it does not 
yet have a library of routines for graphics, 
manipulating windows, creating menus, 
or monitoring mouse events. 

The best solution would seem to be one 
where you could use object-oriented and 
logic programming in a common applica- 
tion, using each forwhat it does best. This 
is the philosophy behind the notion of 
multiparadigm programming.' The ques 
tion that must be addressed is how you 
combine object-oriented and logic p r o  
gramming so the best features of each par- 
adigm are preserved. (The box on p. 39 
describes each style.) 
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One strategymight be to implement one 
paradigm in the other, either by imple- 
menting objects in an existing logic en- 
vironment or by implementing a Prolog- 
like search facility in an object-oriented 
environment. Both approaches have been 
tried: 

There are several ways to implement 
objects in a logic programming frame- 
work. For example, Malpas has described 
a technique for implementing classes, in- 
stances, methods, and inheritance in Pro- 

The Xerox Palo Alto Research Center 
has tried the opposite approach of provid- 
ing logical variables and backtracking 
search in an object-based system: The 
Common Log system was designed to p r e  
vide the features of a Prolog-like language 
implemented on top of the Common Lisp 
Object Specification. 

There is a third approach: an interface 
between an existing object-based system 
and a logic-based system. Abbott calls such 
an interface a Boolean bridge.3 There are 
two advantages to creating such a bridge: 
First, you can access all the support tools of 
both environments. Second, there is no 
degradation of performance due to one 
language being implemented top of 
another. 

This article describes an interface that 
was developed between Loops4 and Xerox 
Quintus Prolog. Loops is an extension to 
the Xerox AI Environment to support o b  
ject-oriented programming; Xerox Quin- 
tus Prolog is a version of Prolog that runs 
on Xerox Lisp Machines. 

The interface has three layers. At the 
lowest level, a set of Prolog predicatesgives 
the Prolog programmer access to Loops 
objects. This lowest level is the bridge from 
Prolog to Loops. At the next level, pro- 
gramming tools in the Loops environ- 
ment letobjectmethodsbedefinedin Pro- 
log. At the highest level, the Prolog 
programmer may treat Prolog clauses as 
Loops objects that can be manipulated 
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outside the Prolog database. 
You may use each layer independently. 

For example, in some applications, there 
may be no need for clause objects or Pro- 
log methods - but the ability to manipu- 
late Loops objects from the Prolog en- 
vironment may still be valuable. 

My colleagues and I at Xerox AI Systems 
used the interface to implement Rotamer, 
a fairly complex knowledge-based applica- 
t i ~ n . ~  Rotamer uses a truth-maintenance 
system (implemented with Prolog meth- 
ods) to cache information acquired in the 
course of exploring a large search space. 
Our earlyconcernswere that the overhead 
caused by the calling between Lisp and 
Prolog would lead to major performance 

Our earlyconcerns were 
that the ovechead 

between Lisp and Prolog 
would cause mdor 

perfiormance prublems. 
These fears were 

gloundless. 

problems. These fears proved to be 
groundless. On the Xerox Lisp Machine, 
the cost in machine cycles for a call to a 
Lisp function from Prolog is only slightly 
more expensive than a simple function 
call in Lisp. 

AccessingLoopsfrom 
Prolog 

Figure 1 shows how Prolog is imple- 
mented on the Xerox Lisp Machine. In 
this implementation, Prolog and Lisp 
each have their own set ofmicrocode. The 
microcode sets are stored in two different 
banksofcontrol-store chips. In asense, the 
Lisp Machine becomes a Prolog Machine 
when it is executing Prolog microcode. Be- 

cause both sets of microcode are resident 
at all times, there is no special overticad as- 
sociated with decoding Prolog instruc- 
tions versus Lisp instructions. To the pro- 
grammer, Lisp and Prolog appear to be 
two separate worlds, each with its own 
name spaces and syntactical rules. Access 
to the Lisp world from Prolog is achieved 
through built-in predicates that let you in- 
voke Lisp functions while in Prolog and 
capture the returned results. 

The Xerox Quintus Prolog/I.isp inter- 
face was readily extensible to provide a 
Prolog/Loops interface. The principle of 
data encapsulation that underlies object- 
or i e n te d programming d ra rn a t i ca I1 y 
simplified the task ofwriting an interface 
to the Loops system. In Loops, everything 
is represented as objects. All communi- 
cation to and from Loopsobjects, with the 
exception of some low-level data-access 
routines, occurs through the message 
sending mechanism. 

Therefore, only a little coding i I re- 
quired to provide the Prolog progr? mmer 
the full range of capabilities to maiipulate 
the Loopsobjectsavailable to the Lispprtr 
grammer. A set of predicates is required so 
the Prolog programmer can retrieve the 
contents of an object’s slots, insert new 
values into the slots of a specified object, 
and send messages to an object. This func- 
tionality is provided through three Prolog 
procedures: get_value/3, put_value/3, 
and send_message/4. 

Using the Loops access predicates, the 
Prolog programmer can easily create o b  
jects, manipulate the contents of object 
slots, and execute object methods. For ex- 
ample, you could use the following Prolog 
procedure to perform a slot-value substi- 
tution in a Loops object: 

substitute-slot-value (Object,Slot, 
Old-value,New-value) :- 

get-value (Object,Slot,Old-value) , 
put-valur(Object,Slot,New-value). 

The first goal checks to see if the value 
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Figure 1. Lisp and Prolog methods. 

stored in aslot matches the targetvalue. If 
this goal succeeds, the second goal will al- 
ways succeed and will install the new value 
in the slot as a side effect. 

The Prolog/Loops interface is com- 
pletely adequate for the Prolog program- 
mer who merely wants to write code that 
will reason using the information repre- 
sented (explicitly or implicitly) in the 
Loops object world. However, some p r o  
grammers may want to define methods 
that refer to Prolog procedures. Indeed, 
they may want to define entire methodsin 
Prolog. To satisfy these programmers, the 

interface must allow calls to Prolog proce- 
dures from the Lisp world. 

Prolog procedures as 
methods 

Loops was initially designed to offer the 
features of a Smalltalk-like language to the 
Lisp programmer. It provides facilities to 
define classes and methods and to create 
instances. Loops comes with a generous 
collection of system-defined classes and a 
set of elegant programming tools. These 
tools include ones that display and 
manipulate class hierarchies. You can in- 
voke most common programming opera- 
tions with a mouse. 

In the Loopsenvironment, object meth- 
ods are invoked by sending a message to 
the object. The syntax for sending a mes 
sage is 

(t SObjectNarrie Selectoi- argl arg2 
xpv) 

In this case, $ObjectName is the handle 
for the object to which the message is 
being sent, and Selector is the name of the 
method to be invoked. 

Loops methods are themselves objects. 
Loops methods have two components: a 
method object and a functional defini- 
tion. To work, the Inops/Prolog interface 
needed a way to define methods in Prolog 

% Prolog Method 
% Class: Class 
% Selector: PatternMatch 

'$Class.PatternMatch ' (Self,Arg 1 ,Arg2,. . .,Result) :- 
goal-1, 
goal-2, 

g0dl-K. 

'$Class.PatternMatch' (Self,Argl ,Arg2,. . .,Result) :- 
goal-1, 
goal-2, 

goal-K 

Figure 2. Template for a Prolog method. 
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that would let the methods he invoked via 
the Loops message-sending mechanism. 
Ideally, it should be transparent to the 
sender whether the method is defined in 
Lisp or Prolog. 

Message-sending mechanism. Xerox 
Quintus Prolog provided a way through a 
Lisp function named PROILK to facilitate 
the creation of Prolog queries from Lisp. 
If a Imops programmer wanted to invoke 
the Prolog procedure foo/3, using the 
function call 

(PROLOG 'foohdr (IJST 'argl *VALUE* 
'arg3)) 

would have the same effect as the Prolog 
query 

foobx(arg1 ,X,arg3). 

The interface treats the Prolog proce- 
dure as though it were determinate - it 
will always return only the first answer. 
Variables are passed by substituting the 
global symbol *VALUE* for each variable in 
the argument list. The above call to PRO> 
qui would return a list containing the first 
value towhich thevariable X had been uni- 
fied. 

The PROLOG function provides a bridge 
from the Lisp world to the Pr, r world. 
You could simply embed calls IC, PROLOG 
into Inops, but these would not he true 
Prolog methods because they would not 
be visible to the Loops environment. In 
this simple approach to integrating Prolog 
into Loops methods, object-oriented 
Loops features such as method inheri- 
tance and method combination may not 
work properly. 

The solution to this problem is to inte- 
grate Prolog-defined methods more 
closely into the Loops system. This can he 
done by specializing the class Method in 
Loops to define a new class called Prolog- 
Method. PrologMethods have four com- 
ponents: a method object, a functional 
definition, the text representing the P r o  
log source code, and a set of clauses that 
have been interpreted o r  compiled into 
the Prolog database. 

Sending messages to invoke a Prolog- 
Method object could be done preciselythe 
same way you would send a message to in- 
voke a method defined in Lisp: When a 
message is directed to an object, the SEND 
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function determines which definition of 
that method to use by checking the list of 
superclasses for that object. If the appro- 
priate method definition happens to be 
written in Prolog, the PROLOG function will 
be called instead of- applying a Lisp func- 
tion to the list of arguments. The SEND 

function would return the first element of 
the list returned by PROI.OG. 

Itwouldalso beconvenient ifthewayyou 
define a Prolog method were compatible 
with the way you define a Lisp method. 

Most Loops programmers define new 
methods through a special browser win- 
dow known as the Class Inheritance Lat- 
tice (see Figure 5 for an example). 

The Class Inheritance Lattice is your in- 
terface to an object-oriented application. 
With a mouse, you can select menu o p  
tions like Create Method, Edit Method, 
and Edit Class Description. In the ex- 
tended interface, a menu option for creat- 
ing a Prolog method would be added. 

If you selected this item, you would be 

prompted for a method name. A Prolog 
method template similar to the one in 
Figure 2 would then appear on the screen. 
The system would fi l l  in the Class and 
Selector fields. I t  would conipose the prtr 
cedure name by concatenating the class 
name with the selector name and inserting 
a $ at the beginning of the name. 

Following the convention used in Loops 
methods, the first argument to the Prolog 
procedurewould be apointer to theobject 
to which the message was sent. You would 

qecdented  versus logic programming 
Object-oriented and logic programming both represent radical de- 

partures from how programmers have traditionally designed programs 
and solved problems. Because both styles have the full expressive 
power of a Turing machine, they are equivalent in power. But the two 
styles are not necessarily equivalent in the ease of implementation; that 
usually depends on the application. 

Objectoriented programming. Object-oriented programming 
was first developed as aconvenient approach to implement simulation 
problems and distributed operating systems. The notions of objects, 
classes, and message sending were first introduced in the Simula lan- 
guage. Organizing code and data around the objects they represent 
proved to be a very general and natural way to conceptualize applica- 
tions. 

Objects can possess local storage in the form of slots, and they have 
arepertoireof behaviorscalled methods. Anobject’smethod is invoked 
by sending a message to the object. Most object-oriented languages 
use three types of objects: classes, metaclasses, and instances. 

Aclass represents a template for all members of a set of objects. For 
example, the class Programmer defines aset of objects that represent 
peoplewho write programs. The class Programmer may have asuper- 
class, such as Person or Employee, and it can in turn have subclasses 
such as LispHacker. 

Aclass object contains adescription of the class’s members. For ex- 
ample, the class Programmer defines a set of objects that represent 
people who write programs. It may specify that all Programmer objects 
should have a slot to store the list of programming languages they use. 
The class Programmer may have a superclass, such a Person or Em- 
ployee. It can also have subclasses such as LispHacker. Members of 
a class are called instances of the class. For example, Trn might be an 
instance of the class LispHacker. 

Metaclasses are a special category of class objects whose in- 
stances are always classes. A major convenience of the object- 
oriented paradigm is that objects can inherit default characteristics 
(methodsand slot values) from their superclasses. Theclass Program- 
mer, for example, could inherit variables such as Employer and Em- 
ployee Number from the superclass Employee. 

Logic programming. In logic programming, you program by creat- 
ing a database of axioms. The program is executed by entering a 
theorem and asking the system to find a proof given the set of axioms. 
Prolog, the most popular exampleof this programming style, usesfirst- 
order predicate logic to derive theorems from the set of axioms in a 
database. Prolog databases are constructed of facts and rules. An ex- 
ample of a Prolog fact is 

temperature(jones,lOl ,oral) 

declarative reading of this statement might be “The patient Jones has 
an oral temperature of 101 degrees.” Prolog rules are if-then state- 
ments of the form 

fever(Patient) :- 
temperature( Patient,Temp,oral), 
Temp > 100. 

This rule would read, “If a patient has an oral temperature in excess 
of 100 degrees, that patient has a fever.” With this pair of Prolog 
clauses, you could ask the system to prove a theorem that Jones has 
a fever. Even though there are no facts in the database about Jones or 
fevers, Prolog could derive the theorem using the fever rule and the 
single fact about Jones’s temperature. 

Styles’ strengths. Both styles have their strengths. 
Object-oriented programming is particularly useful for problems 

where data objects can be categorized hierarchically. The notions of 
inheritance and data encapsulation encourage a structured imple- 
mentation style and enhance program maintainability. Indeed, it has 
been said that object-oriented programming is to the 1980swhat struc- 
tured programming was to the 1970s. Object-oriented programming 
has been used extensively in model building, computer-based simula- 
tions, and as a tool for knowledge representation in expert systems. 

Prolog, with as built-in faalities for backtracking and unification, is a 
natural choice for any application requiring deductive retrieval. Logic 
programming has been used in many areas, including computational 
linguistics, database research, and knowledge-based systems. 
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(PrologMethod ((Class PatternMatch) self Slot Pattern) 

(*  Metamethod for finding all instance of Class with Slot values equal to Pattern) 
(* tdk: “2GApr-87 16:36”) 

(CAR (PROLOG (QUOTE $Class.PatternMatch) 
(LIST self Slot Pattern (QUOTE *VALUE*))))) 

Figure 3. Functional definition for a Prolog Method. 

edit the template to specify other argu- 
ments and to add the appropriate clauses. 
The text editor has options to interpret or 
compile the Prolog code in the window. 

Example. As a simple example of a Pro- 
IogMethod’s use, say that you wanted to 
create a method to search through the list 
of instances belonging to a certain class to 
find all instances that hold a given value in 
a specified slot. You can take advantage of 
Prolog’s built-in backtracking and unifica- 
tion mechanisms to conduct this search. 
You will define PatternMatch as a Prolog- 

Method of the metaclass$Class. Using the 
template provided for PrologMethods, 
you can define the functional definition as 
shown in Figure 3. 

Aswith all Loops methods, the first argu- 
ment to the method is always bound to the 
object to which the message was directed. 
In this case, you are adding two arguments 
to hold the name of the instance variable 
and the value you want to match. The 
global variable *VALUE* represents a Van- 
able in your Prolog query. You will use this 
variable to hold the list of objects that 
match the pattern. When using *VALUE*, 

% Prolog Method 
% Class: Class 
% Selector: PatternMatch 

’$Class.PatternMatch’ (Self,Slot,Pattern,MatchList) :- 
send-message (Self,’AMnstances!’, [ I  ,ObjectList) , 
match-objects (ObjectList,Slot,Pattern,MatchList) ._ 

match-objects( [ I  ,-,-, [ I  ) . 
match-objects( [ ObjectlTail] ,Slot,Pattern, [ObjectlRest] ) :- 

get-value (Object,Slot,Pattern) , 
match-objects(Tail,Slot,Pattern,Rest) . 

match-objects(Tail,Slot,Pattern,MatchList) . 
match-objects( [-ITail] ,Slot,Pattern,MatchList) :- 

Figure4. Example PrologMethod. 

Prolog Object 

I 

Figure 5. Class-inheritance browser for PrologObject. 
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the result returned by the function PRO> 
LOG is always a list - in this case, yielding a 
listinalist.Whatyou reallywantthen isthe 
first element (the CAR) of the list returned 

When you exit from the editor window 
after creating the functional definition for 
your PrologMethod, you will be asked to 
create a TEdit window to edit the Prolog 
source code for the method. Like in the 
functional definition, the system provides 
a special template to help you create the 
Prolog source definition for the Prolog- 
Method. The naming convention for P r e  
IogMethods is similar to the Imops con- 
vention for the Prolog predicate that will 
be associatedwith the PrologMethod. The 
name given to the Prolog procedure (the 
functor) is constructed from the name of 
the class forwhich the PrologMethod isde- 
fined and from the name of the selector 
for the method. Figure 4 shows the ex- 
ample’s PrologMethod after editing. 

This simple pattern matcher could be 
modified to use more complex patterns 
such as ranges and match values for multi- 
ple slots. The advantages of using Prolog 
become obvious when you design meth- 
ods to perform more complicated pattern 
matching. 

by PROID(;. 

Rule-based approaches. 0 rg an i zi n g 
Prolog code as methods of objects is very 
similar to how Loops handles rule-based 
programming. Loops supports a rule lan- 
guage that lets youwrite decision code in a 
production-like, non-Lisp syntax. Loops 
rules are embedded in special Method o b  
jects known as RuleSetMethod objects. 
When RuleSetMethod objects are com- 
piled, the rules are simultaneously trans- 
lated into Lisp code and converted into in- 
dividual Rule objects. 

But Loops discourages you from 
manipulating the Rule objects. The o b  
jects representing the rules in RuleSet- 
Methods are not documented. In fact, 
most Loops programmers working with 
RuleSetMethods may not even be aware of 
their existence. They exist for the con- 
venience of the Loops system imple- 
menters, not for application program- 
mers. 

This sharply contrasts to how rule-based 
programming is done in Intellicorp’s KEE 
expert-system shell. In KEE, you create 
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and manipulate rule objects explicitlyh In 
KEE, rules are first-class objects. KEE rule 
frames have predefined slots such as PREM- 
ISE, ACTION, and ASSERTION -and you can 
add new slots ifyou want. 

Prolog clauses as 
objects 

There are many situations where you 
may want to treat Prolog facts and rules as 
objects. Different sea of clauses may repre- 
sent different (perhaps contradictory) 
views of a problem. When clauses are r e p  
resented as objects, i t  is easy to switch views 
by asserting and retracting sets of clause 
objects. Another situation is during the de- 
sign of knowledge-ngineering tools. R e p  
resenting clauses as objects allows greater 
flexibility in the design of sophisticated 
tools for creating and maintaining large 
knowledge bases. 

Representing Prolog clausesas objects is 
straightforward. Figure 5 shows o n e  
scheme that can define Prolog clausesand 
other objects composed of Prolog clauses. 
Figure 5 contains a Loops class-inheri- 
tance browser for the class PrologObject. 
PrologClause is shown as a subclass of P r e  
IogObject. The classes Unitclause, repre- 
senting Prolog facts, and nonUnitClause, 
representing Prolog rules, are specializa- 
tions of PrologClause. PrologClause ob- 
jects would have slots to store things like 
the functor name, number of arguments, 
and list of arguments. 

PrologProcedure objects would be com- 
posite objects containing an ordered list of 
PrologClause objects with the same func- 
tor name and number of arguments. P r e  
logKE3 objects would be composite objects 
containing a list of PrologProcedure o b  
jects. Loops clauses may have more than 
one superclass; auxiliary superclasses that 
provide extraslots or methods to their s u b  
classes are called mixins.’ PrologObject 
serves as a mixin for the class Prolog- 
Method. 

The class PrologObject provides certain 
slots for storing information, such as the 
creation date and the author, that are in- 
herited by all its subclasses. This kind of 
documentation is important when creat- 
ing and maintaining a large knowledge 
base. 

Bobrow et al. presented the idea of or- 
ganizing source code into object-based 

structures known as definition groups.* 
Representing source code as objects can 
significantly simplify management for 
large projects undertaken by programmer 
teams. Using objects to represent Prolog 
program elements would let the software 
librarian for a project team apply these 
ideas to logic programming as well. 

Objects can also store information de- 
scribing the deductive relationships be- 
tween clause objects. This would include 
information about what other clauses may 
have been used to derive this clause, as well 
as what assumptions were made for this 
clause. You can use dependency informa- 

When orbjechiientd 
and lo& pmglamming 

styles are combined, they 
unite synerg5sicallly. 

Loops and Prokog 
complement each other 

very constructively. 

tion of this type to construct truth-mainte- 
nance systems: which are frequently used 
in expert systems to keep track of the as- 
sumptions underlying a conclusion. 

hen object-oriented and logic 
programming styles are com- W bined, they unite synergisti- 

cally: Loops and Prolog complement each 
other very constructively. Loops’s frame- 
like inheritance and dataencapsulation 
facilities, combined with Prolog’s built-in 
facilities for pattern matching and deduc- 
tive retrieval, produce an ideal environ- 
ment for prototyping knowledge-based 
applications. 

Loops also supports a style of program- 
ming known as access-oriented program- 
ming.’ You can attach procedures to 
specified slots; these procedures get in- 
voked whenever the slots are accessed. A 
slot with an attached procedure is called 
an active value. You can use active values to 
implement demons, drive gauges, and im- 
plement data probes, among other things. 
The I,oops/Prolog interface is completely 
compatiblewith the use of activevalues, so 

you can easily combine object-oriented, 
accessoriented, and logic programming. 

The notion of representing inferential 
data both as objects and as Prolog clauses 
offers special advantages to the system de- 
signer: In Prolog, a rule ceases to exist as 
an entity in the database when it is re- 
tracted. However, if the rule is also defined 
as an object, i t  can be asserted and re- 
tractedatwillwithouteverbeingindanger 
ofbeing lost from the system. This feature 
is useful for implemen ting systems that are 
based on propagation of constraints. If 
constraints are represented as Prolog 
clauses, the set of constraints defining a 
problem could be expanded o r  con- 
tracted to reflect the addition or relaxa- 
tion of constraints. 

The ability to combine two or more prtr 
gramming paradigms produces an ex- 
tremely flexible and powerful environ- 
ment for developing applications of all 
kinds. The advantages of such an ap- 
proach are clear for large knowledge- 
based applications: 

For experienced developers, the use of 
high-level languages in a multiparadigm 
environment may be a costeffective alter- 
native to the use of commercial expert-sys 
tem shells, which are often constrained in 
their abilities. 

Seasoned programmers should be able 
to prototype systems - using a combina- 
tion of object-oriented, access-oriented, 
and logic programming - in little more 
time than it would take to prototype the 
application with a shell. 

The major benefit to the knowledge 
engineer is greater flexibility in the choice 
of a knowledge-representation scheme. 
The knowledge engineer would be free to 
design a custom system to satisfy the 
special requirements of each application 
using the appropriate paradigm for 
each. .:. 
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