
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Medical Education

7-1-1988

Bridging the Gap between Object-oriented and
Logic Programming
Timothy Koschmann
Southern Illinois University Carbondale

Martha Walton Evans
Illinois Institute of Technology

Follow this and additional works at: http://opensiuc.lib.siu.edu/meded_pubs
©1988 IEEE.
Published in IEEE Software, Vol. 5, Issue 4 (July 1988) at 10.1109/52.17800
Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Medical Education at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact jnabe@lib.siu.edu.

Recommended Citation
Koschmann, Timothy and Evans, Martha Walton, "Bridging the Gap between Object-oriented and Logic Programming" (1988).
Publications. Paper 8.
http://opensiuc.lib.siu.edu/meded_pubs/8

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmeded_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/meded_pubs?utm_source=opensiuc.lib.siu.edu%2Fmeded_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/meded?utm_source=opensiuc.lib.siu.edu%2Fmeded_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/meded_pubs?utm_source=opensiuc.lib.siu.edu%2Fmeded_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/52.17800
http://opensiuc.lib.siu.edu/meded_pubs/8?utm_source=opensiuc.lib.siu.edu%2Fmeded_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jnabe@lib.siu.edu

. -. ~~ . .--.

36

L A N G U A G E I N T E R F A C E

between

Logic Programming
Timothy Koschmann, Xerox A/ Systems
Mardha Walton EvenS. lllinois lnstitute of Technology

ajectaiented and
Iogk progkamming

each have dvantqges.
lhis interface bridges

the two Wles,
lettingyou take equal

advan&ge ofboth.

n recent years, many programmers
have begun to experiment with alter-
native programming styles. Object-

oriented and logic programming have at-
tracted growing interest among software
designers, particularly among those work-
ing on knowledge-based applications.
Both styles of programming offer real
advantages over traditional programming
methods.

Object-oriented programming is partic-
ularly useful for problems in which data
objects can be categorized hierarchically.
The notions of inheritance and data en-
capsulation encourage astructured imple-
mentation style and enhance the main-
tainability of programs. But object-
oriented environments lack generalized
facilities for deductive retrieval and pat-
tern matching, functions that are basic to
most knowledge-based applications.

On the other hand, logic programming
languages like Prolog have built-in facili-
ties for deductive retrieval through

074Ck7459/88/0700/0036/!$01 .oO 0 1988 IEEE

chronological backtracking and pattern
matching viaunification. Prolog'sdeclara-
tive style provides a natural way to repre-
sent rule-based knowledge. Unfor-
tunately, Prolog also has deficiencies: Its
declarative style is clumsy for tasks that are
implicitly procedural in nature, such as
prompting a user for a series of pieces of
information. Also, because Prolog isa rela-
tively new language in the US, it does not
yet have a library of routines for graphics,
manipulating windows, creating menus,
or monitoring mouse events.

The best solution would seem to be one
where you could use object-oriented and
logic programming in a common applica-
tion, using each forwhat it does best. This
is the philosophy behind the notion of
multiparadigm programming.' The ques
tion that must be addressed is how you
combine object-oriented and logic p r o
gramming so the best features of each par-
adigm are preserved. (The box on p. 39
describes each style.)

IEEE Software

One strategymight be to implement one
paradigm in the other, either by imple-
menting objects in an existing logic en-
vironment or by implementing a Prolog-
like search facility in an object-oriented
environment. Both approaches have been
tried:

There are several ways to implement
objects in a logic programming frame-
work. For example, Malpas has described
a technique for implementing classes, in-
stances, methods, and inheritance in Pro-

The Xerox Palo Alto Research Center
has tried the opposite approach of provid-
ing logical variables and backtracking
search in an object-based system: The
Common Log system was designed to p r e
vide the features of a Prolog-like language
implemented on top of the Common Lisp
Object Specification.

There is a third approach: an interface
between an existing object-based system
and a logic-based system. Abbott calls such
an interface a Boolean bridge.3 There are
two advantages to creating such a bridge:
First, you can access all the support tools of
both environments. Second, there is no
degradation of performance due to one
language being implemented top of
another.

This article describes an interface that
was developed between Loops4 and Xerox
Quintus Prolog. Loops is an extension to
the Xerox AI Environment to support o b
ject-oriented programming; Xerox Quin-
tus Prolog is a version of Prolog that runs
on Xerox Lisp Machines.

The interface has three layers. At the
lowest level, a set of Prolog predicatesgives
the Prolog programmer access to Loops
objects. This lowest level is the bridge from
Prolog to Loops. At the next level, pro-
gramming tools in the Loops environ-
ment letobjectmethodsbedefinedin Pro-
log. At the highest level, the Prolog
programmer may treat Prolog clauses as
Loops objects that can be manipulated

log.?

July 1988

outside the Prolog database.
You may use each layer independently.

For example, in some applications, there
may be no need for clause objects or Pro-
log methods - but the ability to manipu-
late Loops objects from the Prolog en-
vironment may still be valuable.

My colleagues and I at Xerox AI Systems
used the interface to implement Rotamer,
a fairly complex knowledge-based applica-
t i ~ n . ~ Rotamer uses a truth-maintenance
system (implemented with Prolog meth-
ods) to cache information acquired in the
course of exploring a large search space.
Our earlyconcernswere that the overhead
caused by the calling between Lisp and
Prolog would lead to major performance

Our earlyconcerns were
that the ovechead

between Lisp and Prolog
would cause mdor

perfiormance prublems.
These fears were

gloundless.

problems. These fears proved to be
groundless. On the Xerox Lisp Machine,
the cost in machine cycles for a call to a
Lisp function from Prolog is only slightly
more expensive than a simple function
call in Lisp.

AccessingLoopsfrom
Prolog

Figure 1 shows how Prolog is imple-
mented on the Xerox Lisp Machine. In
this implementation, Prolog and Lisp
each have their own set ofmicrocode. The
microcode sets are stored in two different
banksofcontrol-store chips. In asense, the
Lisp Machine becomes a Prolog Machine
when it is executing Prolog microcode. Be-

cause both sets of microcode are resident
at all times, there is no special overticad as-
sociated with decoding Prolog instruc-
tions versus Lisp instructions. To the pro-
grammer, Lisp and Prolog appear to be
two separate worlds, each with its own
name spaces and syntactical rules. Access
to the Lisp world from Prolog is achieved
through built-in predicates that let you in-
voke Lisp functions while in Prolog and
capture the returned results.

The Xerox Quintus Prolog/I.isp inter-
face was readily extensible to provide a
Prolog/Loops interface. The principle of
data encapsulation that underlies object-
or i e n te d programming d ra rn a t i ca I1 y
simplified the task ofwriting an interface
to the Loops system. In Loops, everything
is represented as objects. All communi-
cation to and from Loopsobjects, with the
exception of some low-level data-access
routines, occurs through the message
sending mechanism.

Therefore, only a little coding i I re-
quired to provide the Prolog progr? mmer
the full range of capabilities to maiipulate
the Loopsobjectsavailable to the Lispprtr
grammer. A set of predicates is required so
the Prolog programmer can retrieve the
contents of an object’s slots, insert new
values into the slots of a specified object,
and send messages to an object. This func-
tionality is provided through three Prolog
procedures: get_value/3, put_value/3,
and send_message/4.

Using the Loops access predicates, the
Prolog programmer can easily create o b
jects, manipulate the contents of object
slots, and execute object methods. For ex-
ample, you could use the following Prolog
procedure to perform a slot-value substi-
tution in a Loops object:

substitute-slot-value (Object,Slot,
Old-value,New-value) :-

get-value (Object,Slot,Old-value) ,
put-valur(Object,Slot,New-value).

The first goal checks to see if the value

37

.- - -. - -

Figure 1. Lisp and Prolog methods.

stored in aslot matches the targetvalue. If
this goal succeeds, the second goal will al-
ways succeed and will install the new value
in the slot as a side effect.

The Prolog/Loops interface is com-
pletely adequate for the Prolog program-
mer who merely wants to write code that
will reason using the information repre-
sented (explicitly or implicitly) in the
Loops object world. However, some p r o
grammers may want to define methods
that refer to Prolog procedures. Indeed,
they may want to define entire methodsin
Prolog. To satisfy these programmers, the

interface must allow calls to Prolog proce-
dures from the Lisp world.

Prolog procedures as
methods

Loops was initially designed to offer the
features of a Smalltalk-like language to the
Lisp programmer. It provides facilities to
define classes and methods and to create
instances. Loops comes with a generous
collection of system-defined classes and a
set of elegant programming tools. These
tools include ones that display and
manipulate class hierarchies. You can in-
voke most common programming opera-
tions with a mouse.

In the Loopsenvironment, object meth-
ods are invoked by sending a message to
the object. The syntax for sending a mes
sage is

(t SObjectNarrie Selectoi- argl arg2
xpv)

In this case, $ObjectName is the handle
for the object to which the message is
being sent, and Selector is the name of the
method to be invoked.

Loops methods are themselves objects.
Loops methods have two components: a
method object and a functional defini-
tion. To work, the Inops/Prolog interface
needed a way to define methods in Prolog

% Prolog Method
% Class: Class
% Selector: PatternMatch

'$Class.PatternMatch ' (Self,Arg 1 ,Arg2,. . .,Result) :-
goal-1,
goal-2,

g0dl-K.

'$Class.PatternMatch' (Self,Argl ,Arg2,. . .,Result) :-
goal-1,
goal-2,

goal-K

Figure 2. Template for a Prolog method.

38

that would let the methods he invoked via
the Loops message-sending mechanism.
Ideally, it should be transparent to the
sender whether the method is defined in
Lisp or Prolog.

Message-sending mechanism. Xerox
Quintus Prolog provided a way through a
Lisp function named PROILK to facilitate
the creation of Prolog queries from Lisp.
If a Imops programmer wanted to invoke
the Prolog procedure foo/3, using the
function call

(PROLOG 'foohdr (IJST 'argl *VALUE*
'arg3))

would have the same effect as the Prolog
query

foobx(arg1 ,X,arg3).

The interface treats the Prolog proce-
dure as though it were determinate - it
will always return only the first answer.
Variables are passed by substituting the
global symbol *VALUE* for each variable in
the argument list. The above call to PRO>
qui would return a list containing the first
value towhich thevariable X had been uni-
fied.

The PROLOG function provides a bridge
from the Lisp world to the Pr, r world.
You could simply embed calls IC, PROLOG
into Inops, but these would not he true
Prolog methods because they would not
be visible to the Loops environment. In
this simple approach to integrating Prolog
into Loops methods, object-oriented
Loops features such as method inheri-
tance and method combination may not
work properly.

The solution to this problem is to inte-
grate Prolog-defined methods more
closely into the Loops system. This can he
done by specializing the class Method in
Loops to define a new class called Prolog-
Method. PrologMethods have four com-
ponents: a method object, a functional
definition, the text representing the P r o
log source code, and a set of clauses that
have been interpreted o r compiled into
the Prolog database.

Sending messages to invoke a Prolog-
Method object could be done preciselythe
same way you would send a message to in-
voke a method defined in Lisp: When a
message is directed to an object, the SEND

IEEE Software

function determines which definition of
that method to use by checking the list of
superclasses for that object. If the appro-
priate method definition happens to be
written in Prolog, the PROLOG function will
be called instead of- applying a Lisp func-
tion to the list of arguments. The SEND

function would return the first element of
the list returned by PROI.OG.

Itwouldalso beconvenient ifthewayyou
define a Prolog method were compatible
with the way you define a Lisp method.

Most Loops programmers define new
methods through a special browser win-
dow known as the Class Inheritance Lat-
tice (see Figure 5 for an example).

The Class Inheritance Lattice is your in-
terface to an object-oriented application.
With a mouse, you can select menu o p
tions like Create Method, Edit Method,
and Edit Class Description. In the ex-
tended interface, a menu option for creat-
ing a Prolog method would be added.

If you selected this item, you would be

prompted for a method name. A Prolog
method template similar to the one in
Figure 2 would then appear on the screen.
The system would fi l l in the Class and
Selector fields. I t would conipose the prtr
cedure name by concatenating the class
name with the selector name and inserting
a $ at the beginning of the name.

Following the convention used in Loops
methods, the first argument to the Prolog
procedurewould be apointer to theobject
to which the message was sent. You would

qecdented versus logic programming
Object-oriented and logic programming both represent radical de-

partures from how programmers have traditionally designed programs
and solved problems. Because both styles have the full expressive
power of a Turing machine, they are equivalent in power. But the two
styles are not necessarily equivalent in the ease of implementation; that
usually depends on the application.

Objectoriented programming. Object-oriented programming
was first developed as aconvenient approach to implement simulation
problems and distributed operating systems. The notions of objects,
classes, and message sending were first introduced in the Simula lan-
guage. Organizing code and data around the objects they represent
proved to be a very general and natural way to conceptualize applica-
tions.

Objects can possess local storage in the form of slots, and they have
arepertoireof behaviorscalled methods. Anobject’smethod is invoked
by sending a message to the object. Most object-oriented languages
use three types of objects: classes, metaclasses, and instances.

Aclass represents a template for all members of a set of objects. For
example, the class Programmer defines aset of objects that represent
peoplewho write programs. The class Programmer may have asuper-
class, such as Person or Employee, and it can in turn have subclasses
such as LispHacker.

Aclass object contains adescription of the class’s members. For ex-
ample, the class Programmer defines a set of objects that represent
people who write programs. It may specify that all Programmer objects
should have a slot to store the list of programming languages they use.
The class Programmer may have a superclass, such a Person or Em-
ployee. It can also have subclasses such as LispHacker. Members of
a class are called instances of the class. For example, Trn might be an
instance of the class LispHacker.

Metaclasses are a special category of class objects whose in-
stances are always classes. A major convenience of the object-
oriented paradigm is that objects can inherit default characteristics
(methodsand slot values) from their superclasses. Theclass Program-
mer, for example, could inherit variables such as Employer and Em-
ployee Number from the superclass Employee.

Logic programming. In logic programming, you program by creat-
ing a database of axioms. The program is executed by entering a
theorem and asking the system to find a proof given the set of axioms.
Prolog, the most popular exampleof this programming style, usesfirst-
order predicate logic to derive theorems from the set of axioms in a
database. Prolog databases are constructed of facts and rules. An ex-
ample of a Prolog fact is

temperature(jones,lOl ,oral)

declarative reading of this statement might be “The patient Jones has
an oral temperature of 101 degrees.” Prolog rules are if-then state-
ments of the form

fever(Patient) :-
temperature(Patient,Temp,oral),
Temp > 100.

This rule would read, “If a patient has an oral temperature in excess
of 100 degrees, that patient has a fever.” With this pair of Prolog
clauses, you could ask the system to prove a theorem that Jones has
a fever. Even though there are no facts in the database about Jones or
fevers, Prolog could derive the theorem using the fever rule and the
single fact about Jones’s temperature.

Styles’ strengths. Both styles have their strengths.
Object-oriented programming is particularly useful for problems

where data objects can be categorized hierarchically. The notions of
inheritance and data encapsulation encourage a structured imple-
mentation style and enhance program maintainability. Indeed, it has
been said that object-oriented programming is to the 1980swhat struc-
tured programming was to the 1970s. Object-oriented programming
has been used extensively in model building, computer-based simula-
tions, and as a tool for knowledge representation in expert systems.

Prolog, with as built-in faalities for backtracking and unification, is a
natural choice for any application requiring deductive retrieval. Logic
programming has been used in many areas, including computational
linguistics, database research, and knowledge-based systems.

July 1988 39

(PrologMethod ((Class PatternMatch) self Slot Pattern)

(* Metamethod for finding all instance of Class with Slot values equal to Pattern)
(* tdk: “2GApr-87 16:36”)

(CAR (PROLOG (QUOTE $Class.PatternMatch)
(LIST self Slot Pattern (QUOTE *VALUE*)))))

Figure 3. Functional definition for a Prolog Method.

edit the template to specify other argu-
ments and to add the appropriate clauses.
The text editor has options to interpret or
compile the Prolog code in the window.

Example. As a simple example of a Pro-
IogMethod’s use, say that you wanted to
create a method to search through the list
of instances belonging to a certain class to
find all instances that hold a given value in
a specified slot. You can take advantage of
Prolog’s built-in backtracking and unifica-
tion mechanisms to conduct this search.
You will define PatternMatch as a Prolog-

Method of the metaclass$Class. Using the
template provided for PrologMethods,
you can define the functional definition as
shown in Figure 3.

Aswith all Loops methods, the first argu-
ment to the method is always bound to the
object to which the message was directed.
In this case, you are adding two arguments
to hold the name of the instance variable
and the value you want to match. The
global variable *VALUE* represents a Van-
able in your Prolog query. You will use this
variable to hold the list of objects that
match the pattern. When using *VALUE*,

% Prolog Method
% Class: Class
% Selector: PatternMatch

’$Class.PatternMatch’ (Self,Slot,Pattern,MatchList) :-
send-message (Self,’AMnstances!’, [I ,ObjectList) ,
match-objects (ObjectList,Slot,Pattern,MatchList) ._

match-objects([I ,-,-, [I) .
match-objects([ObjectlTail] ,Slot,Pattern, [ObjectlRest]) :-

get-value (Object,Slot,Pattern) ,
match-objects(Tail,Slot,Pattern,Rest) .

match-objects(Tail,Slot,Pattern,MatchList) .
match-objects([-ITail] ,Slot,Pattern,MatchList) :-

Figure4. Example PrologMethod.

Prolog Object

I

Figure 5. Class-inheritance browser for PrologObject.

40

the result returned by the function PRO>
LOG is always a list - in this case, yielding a
listinalist.Whatyou reallywantthen isthe
first element (the CAR) of the list returned

When you exit from the editor window
after creating the functional definition for
your PrologMethod, you will be asked to
create a TEdit window to edit the Prolog
source code for the method. Like in the
functional definition, the system provides
a special template to help you create the
Prolog source definition for the Prolog-
Method. The naming convention for P r e
IogMethods is similar to the Imops con-
vention for the Prolog predicate that will
be associatedwith the PrologMethod. The
name given to the Prolog procedure (the
functor) is constructed from the name of
the class forwhich the PrologMethod isde-
fined and from the name of the selector
for the method. Figure 4 shows the ex-
ample’s PrologMethod after editing.

This simple pattern matcher could be
modified to use more complex patterns
such as ranges and match values for multi-
ple slots. The advantages of using Prolog
become obvious when you design meth-
ods to perform more complicated pattern
matching.

by PROID(;.

Rule-based approaches. 0 rg an i zi n g
Prolog code as methods of objects is very
similar to how Loops handles rule-based
programming. Loops supports a rule lan-
guage that lets youwrite decision code in a
production-like, non-Lisp syntax. Loops
rules are embedded in special Method o b
jects known as RuleSetMethod objects.
When RuleSetMethod objects are com-
piled, the rules are simultaneously trans-
lated into Lisp code and converted into in-
dividual Rule objects.

But Loops discourages you from
manipulating the Rule objects. The o b
jects representing the rules in RuleSet-
Methods are not documented. In fact,
most Loops programmers working with
RuleSetMethods may not even be aware of
their existence. They exist for the con-
venience of the Loops system imple-
menters, not for application program-
mers.

This sharply contrasts to how rule-based
programming is done in Intellicorp’s KEE
expert-system shell. In KEE, you create

IEEE Software

and manipulate rule objects explicitlyh In
KEE, rules are first-class objects. KEE rule
frames have predefined slots such as PREM-
ISE, ACTION, and ASSERTION -and you can
add new slots ifyou want.

Prolog clauses as
objects

There are many situations where you
may want to treat Prolog facts and rules as
objects. Different sea of clauses may repre-
sent different (perhaps contradictory)
views of a problem. When clauses are r e p
resented as objects, i t is easy to switch views
by asserting and retracting sets of clause
objects. Another situation is during the de-
sign of knowledge-ngineering tools. R e p
resenting clauses as objects allows greater
flexibility in the design of sophisticated
tools for creating and maintaining large
knowledge bases.

Representing Prolog clausesas objects is
straightforward. Figure 5 shows o n e
scheme that can define Prolog clausesand
other objects composed of Prolog clauses.
Figure 5 contains a Loops class-inheri-
tance browser for the class PrologObject.
PrologClause is shown as a subclass of P r e
IogObject. The classes Unitclause, repre-
senting Prolog facts, and nonUnitClause,
representing Prolog rules, are specializa-
tions of PrologClause. PrologClause ob-
jects would have slots to store things like
the functor name, number of arguments,
and list of arguments.

PrologProcedure objects would be com-
posite objects containing an ordered list of
PrologClause objects with the same func-
tor name and number of arguments. P r e
logKE3 objects would be composite objects
containing a list of PrologProcedure o b
jects. Loops clauses may have more than
one superclass; auxiliary superclasses that
provide extraslots or methods to their s u b
classes are called mixins.’ PrologObject
serves as a mixin for the class Prolog-
Method.

The class PrologObject provides certain
slots for storing information, such as the
creation date and the author, that are in-
herited by all its subclasses. This kind of
documentation is important when creat-
ing and maintaining a large knowledge
base.

Bobrow et al. presented the idea of or-
ganizing source code into object-based

structures known as definition groups.*
Representing source code as objects can
significantly simplify management for
large projects undertaken by programmer
teams. Using objects to represent Prolog
program elements would let the software
librarian for a project team apply these
ideas to logic programming as well.

Objects can also store information de-
scribing the deductive relationships be-
tween clause objects. This would include
information about what other clauses may
have been used to derive this clause, as well
as what assumptions were made for this
clause. You can use dependency informa-

When orbjechiientd
and lo& pmglamming

styles are combined, they
unite synerg5sicallly.

Loops and Prokog
complement each other

very constructively.

tion of this type to construct truth-mainte-
nance systems: which are frequently used
in expert systems to keep track of the as-
sumptions underlying a conclusion.

hen object-oriented and logic
programming styles are com- W bined, they unite synergisti-

cally: Loops and Prolog complement each
other very constructively. Loops’s frame-
like inheritance and dataencapsulation
facilities, combined with Prolog’s built-in
facilities for pattern matching and deduc-
tive retrieval, produce an ideal environ-
ment for prototyping knowledge-based
applications.

Loops also supports a style of program-
ming known as access-oriented program-
ming.’ You can attach procedures to
specified slots; these procedures get in-
voked whenever the slots are accessed. A
slot with an attached procedure is called
an active value. You can use active values to
implement demons, drive gauges, and im-
plement data probes, among other things.
The I,oops/Prolog interface is completely
compatiblewith the use of activevalues, so

you can easily combine object-oriented,
accessoriented, and logic programming.

The notion of representing inferential
data both as objects and as Prolog clauses
offers special advantages to the system de-
signer: In Prolog, a rule ceases to exist as
an entity in the database when it is re-
tracted. However, if the rule is also defined
as an object, i t can be asserted and re-
tractedatwillwithouteverbeingindanger
ofbeing lost from the system. This feature
is useful for implemen ting systems that are
based on propagation of constraints. If
constraints are represented as Prolog
clauses, the set of constraints defining a
problem could be expanded o r con-
tracted to reflect the addition or relaxa-
tion of constraints.

The ability to combine two or more prtr
gramming paradigms produces an ex-
tremely flexible and powerful environ-
ment for developing applications of all
kinds. The advantages of such an ap-
proach are clear for large knowledge-
based applications:

For experienced developers, the use of
high-level languages in a multiparadigm
environment may be a costeffective alter-
native to the use of commercial expert-sys
tem shells, which are often constrained in
their abilities.

Seasoned programmers should be able
to prototype systems - using a combina-
tion of object-oriented, access-oriented,
and logic programming - in little more
time than it would take to prototype the
application with a shell.

The major benefit to the knowledge
engineer is greater flexibility in the choice
of a knowledge-representation scheme.
The knowledge engineer would be free to
design a custom system to satisfy the
special requirements of each application
using the appropriate paradigm for
each. .:.

References
1. M. Stefik,D.G. Bobrow,andKM. Kahn, “ln-

tegrating Access-Oriented Programming
into a Multiparadigm Environment,” EEE
software,Jan. 1986,pp. 1@18.

2. J. Malpas, Prolog: A Rehlwnul Ianguage and

July 1988 41

1t.T Applzratzuns, Prentice-Hall, Englewood
Cliffs, NJ., 1987.

3. R. Abbott, “Knowledge Abstraction,”
Cmm.ACM,Aug. 1987,pp.664-671.

4. M. Stefik et al., “Knowledge Programming
in I.oops: Reprint on an Experimental
Course,”AIMagnzine, Fall 1983, pp. 3-13.

5. T.D. Koschmann, Cm/mationnl Analysiy
Citing n Simplt$d Truth-Mninhnnre S y y t m

ImpLementpd with Object--0ri(.nterl and I A ~ C
Programming, PhD dissertation, Computer
Science Dept., Illinois Inst. of Technology,
Chicago, 1987.

6. R Fikes and T. Kehler, “The Role of Frame-
based Representation in Reasoning,”
C m m . ACM, Sept. 1985, pp. 904920.

7. M. Stefik and D. Bohrow, “Object-Oriented
Programming: Themes andvariations,” Al

Magmine, Winter 1986, pp. 40-62.
8. D.G. Bobrow, D.S. Fogelsong, and M.S.

M i 11 er, “De fi n i t io n C, roil ps: Ma k i II g
Sources into First-Class Objects,” li-ans.
ACM ConJ Objrct-Onmted Programming,
ACM, NewYork, 1986.

9. J. de Kleer, “An Assumption-Based TMS,”
i l l l i f i c z n l l n l i r p , Vol. 28, No. 2; pp. 127-
162.

TimothyKoschmannis aseniormemberofthe
engineering staff at Xrrox AI Systems. Before
joining Xerox, he was the chief computer
scientist for the Chicago Medical School. His
research interests include reasoning systems
and the design of object-oriented eriviron-
ments.

Koschmann received a RA i n philosophy
from the Uuiversity o f Missouri at Kansas City,
an MS in psychology from the University of
Wisconsin at Milwaukee. and a PhD in corn-
puter science from the Illinois Institute of
Technology.

Martha Walton Evens is a professor of com-
puter scirnce at the Illinois Institute of Tech-
nolop. Her research interests include compu-
tational linguistics and knowledge-based
systems.

Evens received a BA in mathematics from
Bryn Mawr College, a Fulhright scholarship in
Paris, an MA in mathematics from Kidcliffe
College, and a PhD in coinputer scierice from
Northwestern Ilniveraity. She is a past presi-
dent of the ACM and a director ofAFIPS.

Address questions about this article to
Koschmann at Xerox AI Systems, 3000 Des
Plaines River Dr., Des Plaines, 11. 60018; AR-
PAnet koschmann.dpmw4000@xerox.com.

IEEE Software Reader Service Number 6

mailto:koschmann.dpmw4000@xerox.com

	Southern Illinois University Carbondale
	OpenSIUC
	7-1-1988

	Bridging the Gap between Object-oriented and Logic Programming
	Timothy Koschmann
	Martha Walton Evans
	Recommended Citation

