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Objective

Question:

Does the following anticipating stochastic evolution
equation (see):

dv(t) = −Av(t) dt+ F0

(

v(t)
)

dt

+Bv(t) ◦ dW (t), t > 0,

v(0) = Y











(1)

admit a solution with a random initial condition
Y : Ω → H in a Hilbert space H?

Answer:

YES! (provided Y is sufficiently regular).
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Strategy

Replace Y in see (1) by a deterministic initial
condition x in H and get the corresponding
(equivalent) Itô see:

du(t, x) = −Au(t, x) dt+ F
(

u(t, x
)

dt

+Bu(t, x) dW (t), t > 0

u(0, x) = x ∈ H











(2)
with F a suitably modified non-linear drift.

View the solution of the see (2) as a function
(cocycle) U(t, x, ω) of three variables (t, x, ω) with
Fréchet and Malliavin regularity in x and ω (resp.)
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Strategy-Contd

Consider the Stratonovich version of the Itô see (2):

du(t, x) = −Au(t, x) dt+ F0

(

u(t, x)
)

dt

+Bu(t, x) ◦ dW (t), t > 0

u(0, x) = x ∈ H











(2′)

In the above semilinear see, is it justified to replace
the deterministic initial condition x by an arbitrary
random variable Y (substitution theorem)?
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Strategy-Contd

If YES, then get back the anticipating Stratonovich
see (1) again:

dU(t, Y ) = −AU(t, Y ) dt+ F0

(

U(t, Y )
)

dt

+BU(t, Y ) ◦ dW (t), t > 0

U(0, Y ) = Y











(1)
by taking v(t) := U(t, Y ), t ≥ 0.
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Difficulties

Affirmative answer for the above question is known
for a wide class of finite-dimensional sde’s via
substitution theorems ([Nu.1-2], [M-S.2]).

Known substitution theorems require a level of
regularity of the cocycle U(t, x, ω) in t that is
inconsistent with infinite-dimensionality of the
stochastic dynamics (Cf. Theorem 3.2.6 [Nu.1],
Theorem 5.3.4 [Nu.2]).

Existing substitution theorems work under
restrictive finite-dimensional or compactness
constraints ([G-Nu-M]).
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Difficulties-Contd

Failure of Kolmogorov’s continuity theorem in
infinite dimensions ([Mo.1], [Sk]).

Failure of Sobolev inequalities in infinite
dimensions.
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Approach

Construct Fréchet differentiable stochastic semiflow
for the semilinear Itô see (2) using a chaos-type
expansion technique ([M-Z-Z]).

Use ideas and techniques of the Malliavin calculus:
Assume Malliavin regularity of the initial condition
-rather than imposing finite-dimensional or
compactness restrictions on the values of the initial
random condition.

Develop global spatial estimates on the semiflow, its
Malliavin and Fréchet derivatives.

Use of Malliavin calculus techniques is necessary
because the initial condition and the underlying
stochastic dynamics are infinite-dimensional.
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Motivation

Substitution theorem provides a dynamic
characterization of stable/unstable manifolds for
semilinear see’s near hyperbolic stationary states.

Expect techniques developed in this analysis to yield
similar substitution theorems for semiflows induced by
sfde’s.
Global moment estimates on the cocycle and its
derivatives are interesting in their own right.

Expect results in this talk to lead to regularity in
distribution of the invariant manifolds for semilinear
spde’s and sfde’s.
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The Set-up

(Ω,F , P ) := Wiener space of all continuous paths
ω : R → E, ω(0) = 0, where E is a real separable
Hilbert space.

Wiener shifts θ : R × Ω → Ω: Group of
P -preserving ergodic transformations on (Ω,F , P ):

θ(t, ω)(s) := ω(t+ s) − ω(t), t, s ∈ R, ω ∈ Ω.

H := real (separable) Hilbert space, norm | · |H .

B(H) := Borel σ-algebra of H .

L(H) := Banach space of all bounded linear
operators H → H given the uniform operator norm
‖ · ‖L(H).
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Set-up: Brownian Motion

W := E-valued Brownian motion W : R × Ω → E
with separable covariance Hilbert space K ⊂ E,
Hilbert-Schmidt embedding.

W (t) =
∞

∑

k=1

W k(t)fk, t ∈ R;

{fk : k ≥ 1} := complete orthonormal basis of K;
W k, k ≥ 1, standard independent one-dimensional
Wiener processes ([D-Z.1], Chapter 4). Series
converges absolutely in E but not necessarily in K.

(W, θ) is a helix:
W (t1 + t2, ω) −W (t1, ω) = W (t2, θ(t1, ω))
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Set-up-contd

L2(K,H) := Hilbert space of all Hilbert-Schmidt
operators S : K → H , with norm

‖S‖2 :=

[ ∞
∑

k=1

|S(fk)|
2
H

]1/2

F0 : H → H is C1
b .

F := F0 +
1

2

∞
∑

k=1

B2
k, where Bk ∈ L(H) are given by

Bk(x) := B(x)(fk), x ∈ H , k ≥ 1; and
∞

∑

k=1

‖Bk‖
2

converges.
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Set-up: The Semilinear SEE

Consider the semilinear Itô stochastic evolution equation
(see):

du(t, x) = −Au(t, x) dt+ F
(

u(t, x)
)

dt

+Bu(t, x) dW (t), t > 0

u(0, x) = x ∈ H











(2)

in H .

A : D(A) ⊂ H → H is a closed linear operator on H .

Assume A has a complete orthonormal system of eigen-

vectors {en : n ≥ 1} with corresponding positive eigen-

values {µn, n ≥ 1}; i.e., Aen = µnen, n ≥ 1.
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The Set-up-contd

Suppose −A generates a strongly continuous semigroup
of bounded linear operators Tt : H → H, t ≥ 0.

F : H → H is (Fréchet) C1
b : F has a globally bounded

Fréchet derivative F : H → L(H).

Suppose B : H → L2(K,H) is a bounded linear
operator. The Itô integral in the see (2) is defined in the
following sense ([D-Z.1], Chapter 4):
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Set-up: The Itô Integral

Let ψ : [0, a] × Ω → L2(K,H) be jointly measurable,
(Ft)t≥0-adapted and

∫ a

0

E‖ψ(t)‖2
L2(K,H) dt <∞.

Set
∫ a

0

ψ(t) dW (t) :=
∞

∑

k=1

∫ a

0

ψ(t)(fk) dW
k(t)

where the H-valued Itô integrals on the right hand side
are with respect to the one-dimensional Wiener processes
W k, k ≥ 1.
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The Itô Integral-contd

Series converges in L2(Ω, H) because

∞
∑

k=1

E

∣

∣

∣

∣

∫ a

0

ψ(t)(fk) dW
k(t)

∣

∣

∣

∣

2

=

∫ a

0

E‖ψ(t)‖2
L2(K,H) dt

<∞.
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Standing Hypotheses

Hypothesis (A1):
∞

∑

n=1

µ−1
n ‖B(en)‖

2
L2(K,H) <∞.

Hypothesis (B): B : H → L2(K,H) extends to a

bounded linear operator B ∈ L(H,L(E,H)) ;
∞

∑

k=1

‖Bk‖
2 <∞, where Bk ∈ L(H) is defined by

Bk(x) := B(x)(fk), x ∈ H, k ≥ 1.
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Remarks

Hypothesis (A1) is implied by the following two
requirements:

(a) The operator B : H → L2(K,H) is
Hilbert-Schmidt.
(b) lim inf

n→∞
µn > 0.

Requirement (b) above is satisfied if A = −∆,
where ∆ is the Laplacian on a compact smooth
d-dimensional Riemannian manifold M with
boundary, under Dirichlet boundary conditions.

No restriction on dimM under (A1) for spdes.
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Mild Solutions

A mild solution of the semilinear see (2) is a family of
(B(R+) ⊗F ,B(H))-measurable, (Ft)t≥0-adapted
processes u(·, x, ·) : R+ × Ω → H, x ∈ H, satisfying
the following stochastic integral equation:

u(t, x, ·) = Ttx+

∫ t

0

Tt−sF (u(s, x, ·)) ds

+

∫ t

0

Tt−sBu(s, x, ·) dW (s), t ≥ 0,

(3)
([D-Z.1-2]).
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Stratonovich Form

The Itô see (2) has the equivalent Stratonovich form

du(t, x) = −Au(t, x) dt+ F
(

u(t, x)
)

dt

−
1

2

∞
∑

k=1

B2
ku(t, x) dt +Bu(t, x)◦dW (t)

u(0, x) = x ∈ H























(2′)
where Bk ∈ L(H) are given by Bk(x) := B(x)(fk),
x ∈ H , k ≥ 1.
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The Cocycle

k = non-negative integer. H real Hilbert.

A Ck perfect cocycle (U, θ) on H is a measurable
random field U : R+ ×H × Ω → H such that:

For each ω ∈ Ω, the map U(t, x, ω) is continuous in
(t, x) ∈ R

+ ×H; for fixed (t, ω) ∈ R
+ × Ω,

U(t, x, ω) is Ck in x ∈ H .

U(t1 + t2, ·, ω) = U(t2, ·, θ(t1, ω)) ◦ U(t1, ·, ω)
for all t1, t2 ∈ R

+, all ω ∈ Ω.

U(0, x, ω) = x for all x ∈ H,ω ∈ Ω.
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The Cocycle Property

H H H

Ω
ω θ(t1, ω) θ(t1 + t2, ω)

t = 0 t = t1 t = t1 + t2

U(t1, ·, ω) U(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

•x

•
U(t1, x, ω)

•U(t1 + t2, x, ω)
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Existence of the Cocycle

Theorem 1:

Under Hypotheses (B) and (A1), the Itô see (2) (or its
Stratonovich version (2′)) admits a perfect jointly
measurable C1 cocycle (U, θ) where

U : R+ ×H × Ω → H.

Proof of Theorem 1:

([M-Z-Z], Theorem 1.2.6).
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Stationary Points

An F -measurable random variable Y : Ω → H is said be
a stationary point for the cocycle (U, θ) if

U(t, Y (ω), ω) = Y (θ(t, ω))

for all (t, ω) ∈ R
+ × Ω.

A stationary point of the see (2) corresponds to a
stationary solution to the anticipating Stratonovich see
(1).
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Malliavin Regularity

For any integer p ≥ 2, denote by D
1,p(Ω, H) the Sobolev

space of all F -measurable random variables Y : Ω → H
which are p-integrable together with their Malliavin
derivatives DY ([Nu.1-2]).

We now state the main substitution theorem in this talk.
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Substitution

Theorem 2: (The Substitution Theorem)

Assume Hypotheses (B) and (A1). Let
U : R

+ ×H × Ω → H be the C1 cocycle generated by
the see (2). Let Y ∈ D

1,4(Ω, H) be a random variable.
Then v(t) := U(t, Y ), t ≥ 0, is a mild solution of the
(anticipating) Stratonovich see

dv(t) = −Av(t) dt+ F0

(

v(t)
)

dt

+Bv(t) ◦ dW (t), t > 0,

v(0) = Y.











(1)
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Substitution Theorem-contd

In particular, if Y ∈ D
1,4(Ω, H) is a stationary point of

the see (2) (or (2′)), then U(t, Y ) = Y
(

θ(t)
)

, t ≥ 0, is a
stationary solution of the (anticipating) Stratonovich see
(1):

dY (θ(t)) = −AY (θ(t)) dt+ F0

(

Y (θ(t))
)

dt

+BY (θ(t)) ◦ dW (t), t > 0,

Y (θ(0)) = Y.











(4)
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Substitution Theorem-contd

Furthermore, assume that F0 is C2
b . Then the linearized

cocycle DU(t, Y ) is a mild solution of the linearized
anticipating see

dDU(t, Y ) = −ADU(t, Y ) dt

+DF0

(

U(t, Y )
)

DU(t, Y ) dt

+
{

B ◦DU(t, Y )
}

◦ dW (t), t > 0,

DU(0, Y ) = idL(H).























(5)
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Outline of Proof

Construct a linear cocycle for the linear Itô see (with
F ≡ 0):

Lift linear see to the Hilbert space L2(H).
Use chaos-type expansion in L2(H)

Prove convergence of the expansion in
L2p(Ω, L2(H)) via repeated application of
moment estimates of the Itô integral

Use the linear cocycle to get a pathwise variational
integral equation equivalent to the semilinear see.

Derive moment estimates for the nonlinear cocycle,
its Fréchet and Malliavin derivatives.
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Outline of Proof-Contd

Prove the substitution theorem when Y is replaced
by its finite-dimensional projections Yn: Use
finite-dimensional projections to smooth out the
semigroup Tt in t, and apply finite-dimensional
substitution techniques.

Rewrite each finite-dimensional anticipating
Stratonovich integral in terms of a Skorohod integral
plus a Lebesgue integral correction term.

Let n→ ∞ using dominated convergence and the
moment estimates on the cocycle, its Fréchet and
Malliavin derivatives.
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Linear SEE

Existence of semiflows for mild solutions of linear see:

du(t, x, ·) = −Au(t, x, ·) dt

+Bu(t, x, ·) dW (t), t > 0

u(0, x, ω) = x ∈ H.

A : D(A) ⊂ H → H closed linear operator on a
separable real Hilbert space H .

e.g. A = −∆ on compact smooth Riemannian manifold.
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Mild Solutions: Linear Case

A mild solution of the linear see is a family of jointly
measurable, (Ft)t≥0-adapted processes

u(·, x, ·) : R+ × Ω → H, x ∈ H

such that

u(t, x, ·) = Ttx+

∫ t

0

Tt−sBu(s, x, ·) dW (s), t ≥ 0.

Integral equation holds x-almost surely, x ∈ H .

Is u(t, x, ·) pathwise continuous linear in x?
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Kolmogorov Fails!

Kolmogorov’s continuity theorem fails for random field
I : L2([0, 1],R) → L2(Ω,R)

I(x) :=

∫ 1

0

x(t) dW (t), x ∈ L2([0, 1],R).

No continuous (or even measurable linear!) selection

L2([0, 1],R) × Ω → R

(x, ω) 7→ I(x, ω)

of I ([Mo.1], pp. 144-148).
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Lifting

Lift semigroup Tt, t ≥ 0, to a strongly continuous
semigroup of bounded linear operators
T̃t : L2(K,H) → L2(K,H), t ≥ 0, via composition
T̃t(C) := Tt ◦ C, C ∈ L2(K,H), t ≥ 0.

Lift stochastic integral
∫ t

0

T̃t−s({[B ◦ v(s)](x)}) dW (s), x ∈ H, t ≥ 0,

to L2(H) for adapted square-integrable
v : R

+ × Ω → L2(H). Denote lifting by
∫ t

0

Tt−sBv(s) dW (s) ∈ L2(H).
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Lifting-contd

That is:

[
∫ t

0

Tt−sBv(s) dW (s)

]

(x) =

∫ t

0

T̃t−s({[B ◦ v(s)](x)}) dW (s)

for all t ≥ 0, x-a.s..
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The Linear Flow

Theorem 3:
Assume hypothesis (B) and (A1). Then the mild solution
of the linear see has a Borel (strongly) measurable
(Ft)t≥0-adapted version Φ : R+ × Ω → L(H) with the
following properties:

E sup
0≤t≤a

‖Φ(t, ·)‖2p
L(H) <∞, whenever p ≥ 1.

(Φ, θ) is a perfect L(H)-valued cocycle:

Φ(t+ s, ω) = Φ(t, θ(s, ω)) ◦ Φ(s, ω)

for all s, t ≥ 0 and all ω ∈ Ω;

sup
0≤s≤t≤a

‖Φ(t− s, θ(s, ω))‖L(H) <∞, for all ω ∈ Ω.
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Linear Flow-Contd: “Chaos"!

For each t > 0 and almost all ω ∈ Ω,

Φ(t, ω) ∈ L2(H) has “chaos-type” representation

Φ(t, ·) = Tt +
∞

∑

n=1

∫ t

0

Tt−s1
B

∫ s1

0

Ts1−s2
B · · ·

· · ·

∫ sn−1

0

Tsn−1−sn
BTsn

dW (sn)

· · · dW (s2) dW (s1).

Iterated Itô stochastic integrals are lifted integrals in

L2(H), and series converges absolutely in L2(H).
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Semilinear SEE

Consider the semilinear Itô see:

du(t) = −Au(t)dt+ F (u(t))dt

+Bu(t) dW (t), t > 0,

u(0) = x ∈ H











(2)

Operators A,B satisfy hypothesis (B) and (A1).
F : H → H is (Fréchet) C1

b , with linear growth:

|F (v)| ≤ C(1 + |v|), v ∈ H

for some positive constant C.
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Mild Solution: Semilinear SEE

Recall a mild solution of semilinear Itô see (2) is a family
of jointly measurable, (Ft)t≥0-adapted processes
u(·, x, ·) : R+ × Ω → H , x ∈ H, satisfying:

u(t, x, ·) = Tt(x) +

∫ t

0

Tt−s(F (u(s, x, ·))) ds

+

∫ t

0

Tt−sBu(s, x, ·) dW (s),

for all t ≥ 0, x-a.s. ([D–Z], Chapter 7, p. 182).

Anticipating Semilinear SPDEs – p.40/72



Random Integral Equation

Obtain a Ck perfect cocycle (U, θ) for mild solutions of
the semilinear see, via the random integral equation on
H:

U(t, x, ω) = Φ(t, ω)(x)

+

∫ t

0

Φ(t− s, θ(s, ω))(F (U(s, x, ω))) ds

for each ω ∈ Ω, t ≥ 0, x ∈ H .
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Estimates of the Cocycle

Get new global estimates on the non-linear cocycle
U : R

+ ×H × Ω → H , its spatial Fréchet derivative
DU(t, x, ·) and its Malliavin derivatives DuU(t, x, ·) for
u, t ∈ [0, a] and x ∈ H .

Derivations are based on results in [M.Z.Z], Gronwall’s
lemma and the fact that W has stationary independent
increments.
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Estimates of Cocycle-Contd

Theorem 4:

Assume Hypotheses (B), (A1) and let F be C1
b . Let

U : R
+ ×H × Ω → H be the cocycle generated by the

mild solutions of the see (2). Fix any a ∈ (0,∞). Then:

E sup
0≤t≤a

x∈H

|U(t, x, ·)|2p

(1 + |x|2pH )
<∞, p ≥ 1

E sup
0≤t≤a

x∈H

‖DU(t, x, ·)‖2p <∞, p ≥ 1

DU := Fréchet derivative of U in the spatial variable x.
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More Estimates

Theorem 4′:

In the see (2), assume Hypotheses (B) and (A1).

(i) Let u, t ∈ [0, a]. Define

V (t, ·) := Φ(t, ·) − Tt, t ∈ [0, a].

Then V (t, ·) ∈ D
1,2p(Ω, L2(H)) and

E

[

sup
u≤t≤a

‖DuV (t, ·)‖2p
L2(H)

]

<∞

for all p ≥ 1.
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More Estimates-contd

(ii) Suppose F is C1
b . Then

E

[

sup
0≤t≤a

x∈H

|DU(t, x, ·)|2pH
(1 + |x|2pH )

]

<∞,

for all p ≥ 1. D := Malliavin derivative.

(iii) Let F be C2
b . Then

E

[

sup
0≤u,t≤a

x∈H

‖DuDU(t, x, ·)‖2p

(1 + |x|2pH )

]

<∞

for all p ≥ 1.
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Finite-dimensional Projections

Objective:

To prove the substitution theorem when the random
variable Y ∈ D

1,4(Ω, H) is replaced by its finite-
dimensional projections on H .

{en : n ≥ 1} := complete orthonormal system of
eigenvectors of A.

Hn := L{ei : 1 ≤ i ≤ n}, the n-dimensional linear
subspace of H spanned by {ei : 1 ≤ i ≤ n}, for each
n ≥ 1.
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Projections-contd

Define the projections Pn : H → Hn, n ≥ 1, by

Pn(x) :=
n

∑

k=1

< x, ek, > ek, x ∈ H.

Define Yn : Ω → Hn by

Yn := Pn ◦ Y, n ≥ 1.

Then Yn → Y as n→ ∞ a.s.
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Finite-dimensional Substitution

Theorem 5:

Assume (B) and (A1) and suppose Y ∈ D
1,4(Ω, H). Then

dU(t, Yn) = −AU(t, Yn) dt+ F0

(

U(t, Yn)
)

dt

+BU(t, Yn) ◦ dW (t), t > 0,

U(0, Yn) = Yn.











(6)

for each n ≥ 1.
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Proof of Theorem 5

Proof still requires Malliavin calculus techniques,
largely due to the underlying strongly continuous
semi-group dynamics in {Tt}t≥0.

Use global estimates on U to represent the
Stratonovich integrals in terms of Skorohod
integrals.

Project the semigroup {Tt}t≥0 onto Hm and use
finite-dimensional substitutions.

Then pass to the limit as m→ ∞ using global
estimates on U and dominated convergence.
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Proof of Substitution Theorem 2

Step 1:

Suppose Y ∈ D
1,4(Ω, H), and assume Hypothesis (B)

and (A1).

Sufficient to show

U(t, Y ) = Tt(Y ) +

∫ t

0

Tt−sF0

(

U(s, Y )
)

ds

+

∫ t

0

Tt−sBU(s, Y ) ◦ dW (s).



















(10)
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Proof of Theorem 2-contd

Step 2:

Pass to the limit as n→ ∞ in the finite-dimensional
result:

U(t, Yn) = Tt(Yn) +

∫ t

0

Tt−sF0

(

U(s, Yn)
)

ds

+

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s),

t > 0, n ≥ 1.



























(7)
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Localization

Denote by L
1,2 the class of all processes

v : [0, t] × Ω → H such that v ∈ L2([0, t] × Ω, H),
v(s, ·) ∈ D

1,2(Ω, H) for almost all s ∈ [0, t] and
E[

∫ t

0

∫ t

0 ‖Duv(s, ·)‖
2
H du ds] <∞.

We say that v belongs to L
1,2
loc if there exists a sequence

(Ωm, v
m) ∈ F × L

1,2 with the following properties:

(i) Ωm ↑ Ω as m→ ∞,

(ii) v = vm on Ωm.
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Proof of Theorem 2

Step 3:

The Stratonovich integral
∫ t

0

Tt−sBU(s, Y ) ◦ dW (s)

in (10) is well-defined:

Sufficient to show that the process

v(s) := Tt−sBU(s, Y ), s ≤ t

is in L
1,2
loc: Localize v using a bump function

φm ∈ C2
b (R,R) such that φm(z) = 1 for |z| ≤ m and

φm(z) = 0 for |z| > m+ 1. ([Nu.2], Theorem 5.2.3).

Anticipating Semilinear SPDEs a – p.53/72



Proof of Theorem 2

Step 3:

The Stratonovich integral
∫ t

0

Tt−sBU(s, Y ) ◦ dW (s)

in (10) is well-defined:
Sufficient to show that the process

v(s) := Tt−sBU(s, Y ), s ≤ t

is in L
1,2
loc: Localize v using a bump function

φm ∈ C2
b (R,R) such that φm(z) = 1 for |z| ≤ m and

φm(z) = 0 for |z| > m+ 1. ([Nu.2], Theorem 5.2.3).
Anticipating Semilinear SPDEs – p.53/72



Easy Limits

Step 4:

Pass to the limit a.s. as n→ ∞ in (7). Get easy a.s.
limits:

lim
n→∞

U(t, Yn) = U(t, Y )

lim
n→∞

Tt(Yn) = Tt(Y )

lim
n→∞

∫ t

0

Tt−sF0

(

U(s, Yn)
)

ds

=

∫ t

0

Tt−sF0

(

U(s, Y )
)

ds
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A Not-So-Easy Limit

Step 5:

But following limit is non-trivial:

lim
n→∞

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s)

=

∫ t

0

Tt−sBU(s, Y ) ◦ dW (s)



















(11)

in probability.
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Proof of Theorem 2-contd

Step 6:

To prove (11), use localization:
∫ t

0

Tt−sBU(s,Yn) ◦ dW (s)

=

∫ t

0

Tt−sBU(s, Yn)φm(|Y |H) ◦ dW (s),

on Ωm := {ω : |Y (ω)|H ≤ m};
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Proof of Theorem 2-contd

and
∫ t

0

Tt−sBU(s,Y ) ◦ dW (s)

=

∫ t

0

Tt−sBU(s, Y )φm(|Y |H) ◦ dW (s)

on Ωm for any fixed integer m ≥ 1.
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Proof of Theorem 2-contd

Step 7:

(11) will follow from

lim
n→∞

∫ t

0

Tt−sBU(s, Yn)φm(|Y |H) ◦ dW (s)

=

∫ t

0

Tt−sBU(s, Y )φm(|Y |H) ◦ dW (s)

(12)
in probability for each m ≥ 1.
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Proof of Theorem 2-contd

To prove (12), fix m ≥ 1 and let

gn(s) := Tt−sBU(s, Yn)φm(|Y |H),

g(s) := Tt−sBU(s, Y )φm(|Y |H)

for all s ∈ [0, t]. Then

lim
n→∞

E

[
∫ T

0

‖gn(s) − g(s)‖2
L2(K,H) ds

]

= 0 (13)

lim
n→∞

E

[
∫ T

0

∫ T

0

‖Dugn(s)−Dug(s)‖
2
L2(K,H) du ds

]

= 0.

(14)
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Proof of Theorem 2-contd

Compute:

(D+g)u := lim
s→u+

Dug(s)

(D−g)u := lim
s→u−

Dug(s)

(∇g)u := (D+g)u + (D−g)u

and use path continuity to get

lim
n→∞

(∇gn)u = (∇g)u, a.s.
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Proof of Theorem 2-contd

Step 8:

Proof of substitution theorem will be complete if:
∫ t

0

gn(s) ◦ dW (s) =

∫ t

0

gn(s)dW (s) +
1

2

∫ t

0

(∇gn)s ds,

(15)
for n ≥ 1; and

∫ t

0

g(s)◦dW (s) =

∫ t

0

g(s)dW (s)+
1

2

∫ t

0

(∇g)s ds (16)

a.s.. Skorohod integrals on RHS.
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Proof of Theorem 2-contd

Prove (15) and (16) from first principles, using
approximations by Riemann sums: Lengthy
computation.

Step 9:

Take n→ ∞ in RHS of (15) and get:

lim
n→∞

∫ t

0

Tt−sBU(s, Yn)φm(|Y |H) ◦ dW (s)

=

∫ t

0

Tt−sBU(s, Y )φm(|Y |H) ◦ dW (s)

(12)
in probability for each m ≥ 1.
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HAPPY BIRTHDAY

DAVID!
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OF EXCELLENCE

Graduate Center of Excellence in Mathematics in Africa

http://sfde2.math.siu.edu/ACE/ace3.html

An idea whose time has come!

Please contact salah@sfde.math.siu.edu with suggestions
and/or ideas.

Anticipating Semilinear SPDEs – p.70/72

http://sfde2.math.siu.edu/ACE/ace3.html
http://sfde2.math.siu.edu/ACE/ace3.html


THE END!
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THANK YOU!
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