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Abstract

The present work proposes tests for reduced rank in multivariate regression coefficient
matrices, under rather general conditions. A heuristic approach is to first estimate
the regressions via standard methods, then compare the coefficient matrix rows (or
columns) to assess their redundancy. A formal version of this approach utilizes the
distance between an unrestricted coefficient matrix estimate and an estimate restricted
by reduced rank. Two distance minimization problems emerge, based on equivalent
formulations of the null hypothesis. For each method we derive estimators and tests,
and their asymptotic distributions. We examine test performance in simulation, and
give some numerical examples.
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1. Introduction

A major tool of econometrics is the multivariate linear regression model, with two or

more equations, each specifying a relationship between a variable of interest and some ex-

planatory variables. The coefficients of the regression model are parameters that form a

matrix composed of two or more row vectors, each vector describing a different regression

equation. Inference for multivariate regression models typically centers on the coefficient

matrix and hypotheses that imply restrictions on this matrix.

Most econometric testing of multivariate regressions has focused on the validity of hy-

potheses expressible as linear restrictions on the coefficient matrix; however, economic theory

is often consistent with more complex, non-linear restrictions. Among such restrictions are

those concerning the rank of (some part of) the coefficient matrix β, e.g. the number of lin-

early independent matrix rows or, equivalently, the number of linearly independent columns

in β. With g rows and K columns, the rank of β is no more than the minimum min(g, K),

and the matrix has reduced rank (alternatively short rank, as in Greene 2000, p. 23) if rank

is less than min(g,K).

The problem of testing for reduced rank in regression matrices is relatively new to the

econometrics literature. Reduced-rank regression (RRR) in econometrics appeared as early

as the 1970’s, in structural equation modelling, in the case where the model’s reduced form

consists of incomplete simultaneous equations (for review see Kleinbergen 1999). Here the

reduced-rank restriction is not usually regarded as a hypothesis to be tested per se, but is a

consequence of market equilibrium or some other basic economic assumption. Yet tests for

reduced rank are a valid and potentially important form of specification analysis (also ‘path’

analysis, see Kline 1998) for such models.

The vector autoregression model (VAR) has recently seen many applications of RRR.

Here, the reduced rank restriction is frequently interpreted in terms of common trends (and

co-integration, error correction), common cycles and related features of time series data (see
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Johansen 1988, 1991, Stock and Watson 1988, Vahid and Engle 1993). Building on the

seminal work of Anderson (1951) on RRR likelihood ratio (LR) tests, for Gaussian VAR

models several authors have developed tests of the RRR restriction, including Johansen

(1988,1991), Ahn and Reinsel (1988,1990) and Ahn (1997) (and see Kleinbergen 1999 for

RRR score tests in VAR’s with error heteroskedasticity).

Beyond the VAR model, economic theories such as the consumption-based capital as-

set pricing model (CAPM), the conditional CAPM, and the arbitrage pricing theory (see

Cochrane 2001) have been shown to imply reduced rank in dynamic regressions of asset re-

turns, as studied by Campbell (1987), Ferson and Foerster (1994), Bekker, Dobbelstein and

Wansbeek (1996), and Costa, Gardini and Paruolo (1997). For these cases, Anderson’s LR

test can be applied (as in Bekker et al. 1996 and Costa et al. 1997), but if regression errors

exhibit heteroskedasticity then other techniques are called for, such as heteroskedasticity-

robust score tests (as in Campbell 1987 and Ferson and Foerster 1994).

Many other applications of RRR remain to be explored, and in the context of cross-section

or panel data one can use reduced rank to specify, estimate and test forms of limited het-

erogeneity among groups in the population. This is true whether regressors are numerically

identical across groups (as is assumed in most RRR testing), or not. We give two numerical

examples, one with (cross section) regressions of men’s and women’s income on education

levels, and one with (contemporaneous time series) regressions of large-firm and small-firm

asset returns on economic factors/state variables. In the first example, the (pseudo)panel

data is unbalanced, contains differing regressor values for men and women, and exhibits

residual heteroskedasticity, creating difficulties both in practical implementation and theo-

retical justification of Anderson’s LR test. In the second example, regressor values are the

same across firms, but residual heteroskedasticity and serial correlation arise, once again

calling for alternative tests.

Because the testing of RRR is relatively novel to econometrics, there have only recently
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been attempts to develop general tests, applicable to a wide variety of cases. Gill and

Lewbel (1992) develop a Wald test of the rank of asymptotically normal matrices, and their

approach can be considered very general for testing matrix rank, except in regard to unit root

(and related sorts of) time series regression, where asymptotic normality can fail. Since the

majority of multivariate regression analyzes in econometrics invoke assumptions sufficient

for those of Gill and Lewbel (1992), for succinctness we go with this framework, although

simulation results (discussed later) suggest that the proposed tests (with suitably modified

critical values) are also useful for the co-integration case.

With an increasingly flexible testing framework, there remains a difficulty with RRR

tests in econometrics, namely that the tests are all much more complicated than are popular

tests of linear restrictions on regression models. By far the most popular approach to test-

ing linear restrictions in regression is the F test method, in which one obtains unrestricted

estimates of regression coefficients, and judges the proximity of the estimates to hypothe-

sized parameter values. This approach is both mathematically precise and illustrative of a

particularly appealing decision process for evaluating hypotheses.

As a simple approach to reduced rank testing, the econometrician can obtain unrestricted

parameter estimates and then visually or graphically compare the coefficient matrix rows (or

columns) to assess their redundancy, with ‘comparisons’ guided by supplementary statistics

such as standard errors. To assess redundancy one can select a reference set of matrix

rows and, for each remaining row, find the proximity of that row to (linear combinations of

members within) the reference set. This heuristic method is viable so long as an appropriate

reference set or basis is found, and in that case it is much simpler conceptually than the

Wald test of Gill and Lewbel (1992). As a formal analog to this heuristic method, we

utilize the distance between an unrestricted matrix estimate and an estimate constrained

by reduced rank, in a suitable metric. The resulting test statistic is rather unconventional,

being neither a score, likelihood ratio, or Wald statistic, and is instead an instance of the
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Szroeter (1983) class of ‘generalized Wald’ statistics. This Szroeter-type test can also be

viewed as a Hausman (1978) test, and Gouriéroux, Monfort and Renault (1993) study a

Szroeter-type test in a related but different case where the model setup is that of Anderson

(1951) (except error normality is not assumed), more restrictive in terms of error properties

and regressor design, but less restrictive in terms of normalizations (bases, reference sets)

used.

Two distance minimization problems emerge, based on equivalent formulations of the null

hypothesis. In each case, the RRR restriction is of ‘mixed-form’ (Gouriéroux and Monfort

1989) in the parameters of interest and some auxiliary parameters. In the first case the

mixed-form is ‘explicit’ and therefore obvious, while in the second, equivalent, case it is

‘implicit’. For each method we derive estimators and tests. The tests are asymptotically

chi square under the null hypothesis, and while this result can in principle be derived as an

application of Szroeter’s (1983) general theory (see also Gouriéroux and Monfort 1989), in

our case we are able to take a much simpler expositional approach. We show further that the

proposed RRR estimators are asymptotically normal, and we develop consistent estimators

of their standard errors and variance-covariance matrices.

We use simulation to study the finite-sample performance of the proposed Szroeter-

type RRR tests. We describe the fidelity of the exact test distribution to the inexact but

asymptotically valid chi square approximation, for various sample sizes, the number g of

groups, the number K of regressors, the rank of β, design of x, choices of estimation method

for the unrestricted regression model, and choices of variance-covariance estimator for the

unrestricted regression coefficient estimates. Smaller sample sizes, larger g and larger K

typically lessen fidelity to the chi square distribution, and the simulations identify particular

scenarios where fidelity is good, and where it breaks down.

The remainder of the paper is organized as follows. Section 2 describes the model, Section

3 gives two examples, Section 4 develops tests, and Section 5 studies the tests in simulation.
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Section 6 illustrates the methods using the examples from Section 3, and Section 7 concludes.

2. Model

We consider the multivariate linear regression model:

yij = βi xij + ψi zij + εij, i = 1, ..., g, j = 1, ..., ni, (1)

with g ≥ 2 groups and ni observations in the i-th group, i = 1, ...g. The variables yi1, ..., yini

are the observations for the i-th dependent variable, xij is the observed value for a K × 1

vector, βi is a 1×K vector, zij is the observed value for an L×1 vector, ψi is a 1×L vector,

and εij is a random error for which E[εij|xij, zij] = 0 almost surely, for all i and j.

Let the g×K matrix β be the intended target of reduced rank restrictions, and let ψ be

unrestricted. If the rank of β is min(g, K) then it is said to have full rank, otherwise it has

reduced rank (= q, say). In the case g ≤ K it is helpful to partition β as:

β =

[
βa

βb

]
, (2)

where βa is the sub-matrix of β consisting of the first q rows, and βb is the sub-matrix

consisting of the last g − q rows. Here, reduced rank is more specifically reduced row rank,

e.g. the rows of β are linearly dependent. If, for the true value β∗ of β, the rows are spanned

by first q rows then we have:

β∗b = Aβ∗a, (3)

for some (g − q)× q matrix A. If β∗ has row rank q but the rows of β∗ are not spanned by

it’s first q rows, there is a reassignment of group numbers i = 1, ..., g such that the first q

rows will span the rest, in which case (3) holds. The actual assignment of group numbers
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is then a potentially important issue, particularly if q > 1. In the case g ≥ K of reduced

column rank, the transpose matrix (β∗)′ has reduced row rank, and the proposed tests can

then applied to (β∗)′. Hence, we will assume without loss of generality that g ≤ K.

A second useful way to express the reduced-rank restriction (3) is:

β∗ =

[
Iq

γ

]
λ, (4)

for some full-rank (g − q) × q matrix γ, and some full-rank q ×K matrix λ. In particular,

γ = A and λ = β∗a. Using the terminology of Gouriéroux and Monfort (1989), both (3) and

(4) are mixed form restrictions on β and auxiliary parameters (A, γ, λ), and the form (3) is

in explicit mixed form, while (4) is in implicit mixed form.

The linear model (1), subject to (3) (equivalently (4)), defines a broad class of reduced-

rank regression (RRR) models, in some respects more general than has been previously

considered in the econometrics literature, and somewhat more general than we will ultimately

consider in the present work. We will additionally assume the availability of an estimator

β̂ of β∗ and, with n = (n1, ..., ng), an estimator Ω̂n of the variance-covariance matrix Ωn of

vec∗(β̂), where vec∗(β̂) = vec(β̂′) is the gK×1 vector (β̂1, β̂2, ..., β̂g)
′, with β̂1, ..., β̂g the rows

of β̂. We introduce the vec∗ notation because vec∗(β) is naturally partitioned under (3). We

further impose the following assumption, with θ = vec∗(β) and notation n → ∞ meaning

ni →∞ for i = 1, ..., g:

Assumption 1: Each of the following holds:

(i). β̂ is a full rank matrix, almost surely,

(ii). Ωn and Ω−1
n exist and are finite, for each n,

(iii). Ωn → 0 as n →∞,

(iv). Ω−1/2
n (θ̂ − θ∗) → N(0, IgK) as n →∞,

(v). ΩnΩ̂−1
n → IgK as n →∞.
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For the estimator β̂ we can, for example, use ordinary least squares (OLS, equation by

equation) or seemingly unrelated regressions (SUR), and for the covariance matrix estimator

Ω̂ we have a variety of choices common in economics applications, including the OLS and

SUR covariance estimators, and several non-parametric forms including the White nonpara-

metric heteroskedasticity-consistent covariance estimator (denoted White), the Newey-West

nonparametric heteroskedasticity and autocorrelation consistent (HAC) covariance estima-

tor, based on the Bartlett kernel and the data-dependent Newey and West (1994) band-

width, with and without pre-whitening (denoted NW and NW-P, respectively). Among

HAC methods we will also examine the quadratic spectral kernel with the Andrews (1991)

data-dependent bandwidth (without pre-whitening, denoted A), and the Andrews-Monahan

(1992) method (denoted AM) with pre-whitening.

Assumption 1 includes many cases which lie outside the classical reduced-rank regression

framework (e.g. Anderson 1951 and Gouriéroux et al. 1993) where the data panel is balanced

(e.g. n1 = n2 = · · · = np = n∗ for some n∗), the x values are the same across groups, e.g.

xij = x∗j , i = 1, ..., g, j = 1, ..., n∗, (5)

for some iid (x∗j , j = 1, ..., n∗), independent of regression errors which themselves are iid. We

want to carry out RRR tests, in as simple a way as possible, for cases which include un-

balanced panels, residual heteroskedasticity and autocorrelation, and group-heterogeneous

regressor values. Regarding (5), in this setting the q × 1 vector u∗j ≡ λx∗j is the j-th obser-

vation on a set of q latent factors, with the simplification E[yij|xij, zij] = E[yij|u∗j , zij]. In

more general terms, to interpret a multivariate regression with reduced-rank β it is desirable

that the observations xij are for variables having the same relative meaning for each group

i, yet the numerical values of xij may differ across groups, hence violating (5).
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3. Examples

For a rather novel example of RRR, with an unbalanced (pseudo) panel, regressor values

heterogeneous across groups, and conditional heteroskedasticity, consider:

Example 1 (Income, Gender and Education): Let there be g = 2 groups of U.S. workers,

the first group male, the second female. For a random cross-section of workers, with n1 males

and n2 females, let yij be the income of worker j in the i-th gender group. Historically, men

have tended to earn higher incomes (on average) than women, and this remains true when

averages are computed separately for different education levels, ages, etc. (see for example

Borjas 2000, Figure 7-7). To further describe this gender gap, let xij = (Dnh
ij , Dh

ij, D
b
ij, D

b+
ij ),

where Dn
ij is a dummy variable indicating the worker has no high school diploma or higher

degree, Dh
ij is a dummy variable indicating a high school (but no higher) diploma, Db

ij is a

dummy variable for a bachelor’s degree (with no further education), and Db+
ij is a dummy

variable for workers with some post-bachelor’s education. If L = 0 (and hence z is void)

then β1 and β2 are vectors of mean male and female incomes, by education level. A relevant

class of restrictions is:

β2 = c β1, (6)

for some unobserved scalar c. With gender ‘equality’ signified by c = 1, if instead c < 1 then

there is gender ‘inequality’ favoring males, and this equality is realized in a proportionately

higher mean income for males across all education levels. If β2 < β1 (e.g. β2j < β1j for

j = 1, ..., 4) but (6) fails then the interpretation is income inequality with higher mean

income for males and with disproportionately higher excess income for males (relative to

females) at some education levels, relative to some other education levels. If we modify xij

to contain an intercept term, e.g. xij = (1, Dh
ij, D

b
ij, D

b+
ij ), then the resulting β continues to
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satisfy (6). The regression errors εij could in principle be conditionally homoskedastic, but

we find (in Section 6) instead evidence of conditional heteroskedasticity.

For an example of RRR with residual heteroskedasticity and autocorrelation, consider:

Example 2 (Asset Returns, Firm Size and Factor Pricing): There are n = 2 groups, the first

consisting of firms having small capitalization, the second consisting of large-capitalization

firms. The firms’ values are observed at times j = t = 1, ..., T = n∗, with yij the excess return

for the i-th firm type during the period [j − 1, j]. Historically, small firms have tended

to earn higher excess returns (on average) than have large firms, and to further describe

this gap let xij = x∗j consist of seven macroeconomic variables: A value-weighted market

return, a default premium, a term premium, and growth rates of consumption, industrial

production, consumer prices and money supply. With this specification, we can interpret the

model (1) as a linear factor pricing model (Cochrane 2001, p. 80), which encompasses the

Sharpe-Lintner CAPM (factor = market return), the Consumption-Based CAPM (factor =

consumption growth), plus a variety of other possibilities (similar to Chen, Roll and Ross

1986, as discussed in Section 6). The coefficient restriction (6), with c > 1, defines a class of

relatively simple, single-latent-factor explanations for the higher mean return of small firms,

with proportionately higher sensitivity to each priced (e.g. βij 6= 0 for i = 1, 2) economic

factor. If (6) fails then the situation is more complex: At least two economic factors must be

priced, and small firms must have disproportionately greater excess sensitivity (relative the

large firms) to one economic factor than to some others. While the errors εit could in principle

be serially uncorrelated and conditionally homoskedastic, empirical evidence (discussed in

Section 6) suggests otherwise.
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4. Tests and Estimators

To obtain relatively simple tests for reduced row rank in coefficient matrix β∗, subject to

the normalization (3), it is helpful to regard the problem as one of inquiring whether the last

g− q rows of β are redundant, meaning that each can be obtained as linear combinations of

the first q rows. This mental exercise is particularly simple when q = 1, and the case q = 2

is only somewhat harder, etc. To proceed, a simple approach is to inspect the unconstrained

estimate β̂, which from our earlier assumptions is asymptotically normal, and gauge the

proximity of each of the last g − q rows of β̂ to the span (linear combinations) of the first

q rows. Alternatively, one can compare all rows to proxies obtained from a reduced-rank

estimate, using (4).

To formalize the heuristic test procedure, let MgK be the set of g × K matrices, and

define a distance function on MgK ×MgK :

d(a, b; Q) =
[
(vec∗ a− vec∗ b)′ Q (vec∗ a− vec∗ b)

]1/2
, (7)

for each a and b in MgK , and some symmetric positive definite matrix Q, in which case

d(a, b; Q) is a metric on MgK ×MgK . We will define reduced-rank restricted estimators β̃ by

minimizing d2(β̂, β, Q) over suitable sets of β. For testing reduced rank, we will define test

statistics of the form:

W = d2(β̂, β̃; Q), (8)

which are a subclass of Szroeter’s statistics “W” (Szroeter 1983, equation 4.16). The pro-

posed tests will reject the hypothesis rank (β) = q if and only if W exceeds the relevant

critical value from the chi square distribution, with (g − q)(K − q) degrees of freedom. The

tests will be consistent against alternatives rank(β) > q, but not against alternatives where
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rank < q, hence the implicit null hypothesis includes the latter possibilities. Also, in the

mixed-form rank = q parameterizations (3) and (4), if in reality the rank (β) < q then

some parameters are not identified, and hence W takes on a nonstandard distribution (see

Andrews and Ploberger 1994) in that case.

To proceed, in Section 3.1 and 3.2 we will repeatedly make use of some facts about the

row-stacking vec∗ operator. For any a× b matrix M1 and b× c matrix M2, we have:

vec∗(M1M2) = (M1 ⊗ Ic) vec∗(M2) = (Ia ⊗M ′
2) vec∗(M1). (9)

To obtain (9) we note that, for any matrix C, vec∗(C) = vec(C ′), and we then apply standard

rules for vec(C) when C = M1M2, as in Ruud (2000, p. 925).

4.1. Explicit Mixed-Form

Let Sq the set of g ×K matrices β of the form:

β =

[
β̂a

Aβ̂a

]
, (10)

for some (g − q) × q matrix A. Then, provided that β̂a has rank q (which occurs almost

surely, by Assumption 1), each element of Sq has rank q, and we define an estimator β̃:

β̃ = argminβ∈Sq
d2(β̂, β; Q). (11)

To compute β̃, note first that β̃a = β̂a. Also, for each β satisfying (10) we have:

d2(β̂, β; Q) =
(
vec∗ β̂b − vec∗ (Aβ̂a)

)′
Qbb

(
vec∗ β̂b − vec∗ (Aβ̂a)

)
, (12)

where Qbb is the lower-right (g−q)×(g−q) sub-matrix of Q. Using (9), we have vec∗(Aβ̂a) =

(Ig−q⊗β̂′a) vec∗(A), in which case, for each β satisfying (10), we can then regard d2(β, β̂, Q) as
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a function g(z) of the q(g− q)× 1 vector z = vec∗(A). The problem is then to minimize g(z)

over the set of z ∈ Rq(g−q). Since g(z) is differentiable, the necessary first-order conditions

for a minimum are as follows, with dg(z)/dz = (∂g(z)/∂z1, ..., ∂g(z)/∂zq(g−q)):

0 =
dg(z)

dz
= −2

(
vec∗ β̂b − (Ig−q ⊗ β̂′a)z

)′
Qbb(Ig−q ⊗ β̂′a), (13)

in which case:

z̃ =
[
(Ig−q ⊗ β̂′a)

′Qbb(Ig−q ⊗ β̂′a)
]−1

(Ig−q ⊗ β̂′a)
′ Qbb vec∗(β̂b). (14)

With Ã the estimator of A defined by z̃ = vec∗(Ã), we obtain β̃ by replacing A with Ã in

(10). Moreover, we have:

d2g(z)

dz2
= 2(Ig−q ⊗ β̂′a)

′Qbb(Ig−q ⊗ β̂′a), (15)

and since β̂a is almost surely of full rank (and Qbb is assumed invertible), d2g(z)
dz2 is positive

semi-definite, a sufficient condition for z̃ to be a minimum of g(z), hence β̃ solves (11).

We now turn to the choice of the matrix Qbb. By Assumption 1, β̂ is normal asymptoti-

cally. Applying (9), we have vec∗(Aβ̂a) = (A⊗ IK)vec∗(β̂a), giving the asymptotic (large n)

approximation:

vec∗(β̂b) = B vec∗(β̂a) + ζ, (16)

where B = A⊗ IK , and ζ is distributed N(0, Vζ). Furthermore,

Vζ = E ( vec∗(β̂b)−B vec∗(β̂a) )( vec∗(β̂b)−B vec∗(β̂a) )′, (17)

and hence:

13



Vζ = E vec∗(β̂b)[vec∗(β̂b)]
′ + B E vec∗(β̂a)[vec∗(β̂a)]

′ B′

− E vec∗(β̂b)[ vec∗(β̂a)]
′B′ − B E vec∗(β̂a)[vec∗(β̂b)]

′.

For succinctness, we can then express Vζ as:

Vζ = C ΩnC ′, (18)

with C the ((g − q)K)× gK matrix:

C =
[
−A⊗ IK , I(g−q)K

]
. (19)

If the matrix Vζ was observable, we could set Qbb = V −1
ζ , in which case the minimization

problem (11) would take the form of maximizing a(n) (approximate) normal likelihood for

the density of β̂b, conditional on β̂a. But Vζ is unobserved, and we set Qbb = Ṽ −1
ζ , with Ṽζ

obtained by replacing A with a consistent estimate A† in the definition of Vζ , and replacing Ωn

with Ω̂n. In particular, let A† solve (11) with Qbb equal to the lower-right (g−q)K×(g−q)K

sub-matrix of Ω̂−1
n .

Some important properties of the proposed estimators are as follows (see Appendix 1 for

proofs):

Theorem 1: If Assumption 1 holds and β∗ has rank q then V
−1/2
z̃ (z̃ − z) → N(0, I(g−q)q) in

distribution, where Vz̃ =
(
(Ig−q ⊗ (β∗a)

′)′V −1
ζ (Ig−q ⊗ (β∗a)

′)
)−1

.

Theorem 2: If Assumption 1 holds and β∗ has rank q then V
−1/2
ζ (vec∗(β̂b) − vec∗(β̃b)) →

N(0, I(g−q)K) in distribution.

We then have a test statistic:
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W = (vec∗(β̂b)− vec∗(β̃b))
′Ṽ −1

ζ (vec∗(β̂b)− vec∗(β̃b)), (20)

of the form (8) with:

Q =

[
0 0

0 Ṽ −1
ζ

]
.

Corollary 1: If Assumption 1 holds and β∗ has rank = q then, as n → ∞, the statistic W

defined by (20) converges in distribution to chi square, with (g−q)(K−q) degrees of freedom.

4.2 Implicit Mixed-Form

Let Uq be the set of g×K matrices β of the form (4), for some g× q matrix γ and q×K

matrix λ. We can then define a reduced-rank estimator:

β̈ = argminβ∈Uq
d2(β̂, β,Q). (21)

Under (4) we have β = Dλ, with:

D =

[
Iq

γ

]
.

For such β we can regard d2(β̂, β, Q) as a function h(z) with z = ((vec∗(γ))′, (vec∗(λ))′)′. Ap-

plying (9) we have vec∗(Dλ) = (D⊗IK) vec∗(λ) = (Ig⊗λ′) vec∗(D), necessary first-order con-

ditions for a minimum of h are as follows, with ∂h(z)/∂z = (∂h(z)/∂z1, ..., ∂h(z)/∂zgq+Kq−q2).

0 =
∂h(z)

∂vec∗(γ)
= −2(vec∗(β̂)− (Ig ⊗ λ′) vec∗(D))′ Q (Ig ⊗ λ′)E, (22)

0 =
∂h(z)

∂vec∗(λ)
= −2(vec∗(β̂)− (D ⊗ IK) vec∗(λ))′ Q (D ⊗ IK). (23)

where:
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E =

[
0q2,(g−q)q

I(g−q)q

]
.

Partial solutions for vec∗(γ) and vec∗(D) are then:

vec∗(D) = [((Ig ⊗ λ′)E)′ Q (Ig ⊗ λ′)]−1
((Ig ⊗ λ′)E)′ Qvec∗(β̂), (24)

vec∗(λ) = [(D ⊗ IK)′ Q (D ⊗ IK)]
−1

(D ⊗ IK) Qvec∗(β̂). (25)

Second derivatives of h include:

∂2h(z)

∂ vec∗(γ)∂ vec∗(γ)′
= 2((Ig ⊗ λ′) E)′ Q (Ig ⊗ λ′)E, (26)

∂2h(z)

∂ vec∗(λ)∂ vec∗(λ)′
= 2(D ⊗ IK)′ Q (D ⊗ IK). (27)

We now turn to the choice of the matrix Q. Since, by Assumption 1, β̂ is normal

asymptotically, we have the asymptotic (large n) approximation:

vec∗(β̂) = vec∗(Dλ) + η, (28)

with η distributed N(0, Ωn). If Ωn was observable then the choice Q = Ω−1
n would cause the

problem (21) to be that of maximizing an approximate normal likelihood for β̂. We do not

observe Ωn, and propose instead Q = Ω̂−1
n .

Estimator distributions are as follows:

Theorem 3: If Assumption 1 holds and β∗ has rank q and Q = Ω̂−1
n then each of the following

is true of matrices γ̈ and λ̈ solving (21):
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(i) V −1/2
γ (vec∗(γ̈)− vec∗(γ∗)) is distributed asymptotically as N(0, I(g−q)K),

where Vγ = (( Ig−q ⊗ λ′)′ Ω̂−1
n Ig−q ⊗ λ′ )−1.

(ii) V
−1/2
λ (vec∗(λ̈)− vec∗(λ∗)) is distributed asymptotically as N(0, I(qK),

where Vλ = ((D ⊗ IK)′ Ω̂−1
n (D ⊗ IK))−1.

We can compare, via Theorems 1 and 3, the implicit mixed-form estimator β̈ to the explicit

mixed-form estimator β̃. With γ = A and λ = β∗a, the estimator γ̈ = Ä is more efficient

than γ̃ = Ã, and λ̈ = β̈a is more efficient than λ̃ = β̃a.

Theorem 4: If Assumption 1 holds and β∗ has rank q then Ω̂−1/2
n (vec∗(β̂) − vec∗(β̈)) →

N(0, IgK) in distribution.

We then have a test statistic:

W = (vec∗(β̂)− vec∗(β̈))′Ω̂−1
n (vec∗(β̂)− vec∗(β̈)). (29)

Corollary 2: If Assumption 1 holds and β has reduced rank then, as n → ∞, the statistic

W defined by (29) converges in distribution to chi square, with (g − q)(K − q) degrees of

freedom.

To compute β̈ and the statistic W defined by (29), we use an iterative approach, generat-

ing a sequence (γ̈(k), λ̈(k), k = 1, 2, ..., m), for some number m of iterations. We set λ̈1 = β̂a,

then we compute γ̈1 from (24) by replacing λ with λ̈1 in that formula. We then compute

λ̈2 from (25) by replacing γ with γ̈1 in that formula. We continue the alternating use of

(24) and (25) until iteration stops. In the examples we have study in Sections 5 and 6, we

have found the choice m = 10 to be good in terms of algorithm (near)-convergence. In some

extreme cases the algorithm may converge to a local (but non-global) optimum, and we have

confirmed this in some cases where β̂ is a diagonal matrix. Therefore, it may be helpful to

try several starting points (λ̈1) for the algorithm.
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5. Simulation

We simulate the finite-sample rejection rates of the proposed reduced-rank tests, for a va-

riety of model specifications. We begin in Section 5.1 with a simple VAR model, then in Sec-

tion 5.2 turn to a model where regressors are numerically different across groups/equations.

Section 5.3 reports briefly on the case of co-integration.

5.1 VAR

For the VAR model we have::

xij = x∗j = (1, y1,j−1, ...., yg,j−1, y1,j−2, ..., yg,j−2, ... ..., y1,j−p, ..., yg,j−p)
′, (30)

with p the number of lags, in which case K = 1+g p. For simplicity, we specify the regression

errors as independent and identically distributed normal N(0, ∆) over time, with ∆ being

either the identity matrix Ig or the g× g matrix Υ having 2’s on the diagonal and the value

1 on the off-diagonal. Under the null hypothesis q = 1, we specify βi2 = 0.25 for each i and

βij = 0 for j 6= 2. For example, the DGP in the simplest case (g = 2, q = 1, K = 3) is:

y1j = 0.25y1,j−1 + ε1j,
y2j = 0.25y1,j−1 + ε2j,

(31)

for j = p + 1, ..., n. The unrestricted model to be estimated is then:

y1j = β11 + β12y1,j−1 + β13y2,j−1 + ε1j,
y2j = β21 + β22y1,j−1 + β23y2,j−1 + ε2j,

(32)

for j = p+1, ..., n. Under the null hypothesis q = 2 (and g = 3), we specify β12 = 0.25, β22 =

0.25, β33 = 0.25, with all remaining β elements equal to 0. Under the alternative hypothesis

(q = g), we specify β such that each y series is an AR(1) series with drift term 0 and AR

slope 0.25.
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For each version of the calibrated model, we use a normal random number generator

(in EViews 3.1, build 6/2000) to get a simulated realization of the yj-process, j = p +

1, . . . , n. For each simulation round we compute the proposed reduced-rank tests, and using

the asymptotically valid (chi square) critical values, we determine whether each test rejects

or fails to reject, at the 5 percent significance level. We repeat the simulation 500 times, and

record the empirical frequency of rejection.

We first report on the proposed tests calculated using OLS and SUR multivariate regres-

sion estimators and standard errors. Tables 1 and 2 report the rejection rates for the explicit

and implicit mixed-forms of the test, under the null and alternative hypotheses, for errors

following either the standard normal distribution or the normal distribution with non-zero

cross-covariances, as specified above. We use two sample sizes, 150 and 300, respectively.

For the explicit mixed-form, under the null hypothesis empirical rejection rates sometimes

depart noticeably from the nominal 5% level, at either sample size, but are generally closer

to 5% for the larger sample (and even closer to 5% for samples of size 500, as we have verified

but omit for brevity). For the implicit mixed-form, finite-sample distortions appear more

mild, but also display lower rejection frequency under the alternative hypothesis.

The second batch of our simulation exercise attempts to address two issues. First, how

do the proposed Szroeter-type tests compare to score tests? To investigate, we use score

tests based on the method of moments, via the simultaneous-iteration procedure described

in Hansen, Heaton and Yaron (1996), where parameter and covariance matrix estimates

are updated simultaneously at each iteration stage. The second issue is the finite sample

performance for RRR tests when heteroskedasticity-consistent and HAC methods are used

to calculate the regression estimator variance-covariance matrices. Table 3 reports rejection

rates. For brevity we report only for the sample size n = 150, for the implicit mixed-

form Szroeter test and the score test, computed via the White, NW, NW-P, A an AM

covariance estimators. For the explicit mixed-form Szroeter tests, results are similar to the
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implicit mixed-form, but with somewhat higher rejection rates under the null and alternative

hypotheses. Simulations indicate reasonably good behavior (little distortion) under the null

hypothesis for the simplest (g = 2, K = 3, q = 1) model. As the complexity of the model

increases (g, K, q increase), we observe greater distortions, with the Szroeter test typically

over-rejecting and the score test under-rejecting the null. Distortions are to be expected

for at least two reasons, first because the reduced-rank restriction on beta is non-linear

and hence the asymptotic chi square distribution is not exact, and second because we use

heteroskedasticity-consistent or HAC methods which themselves are known to introduce

distortions into the test distributions. As we can see from Table 3, the choice of the covariance

estimator implies differences in the small sample performance of the tests, though they are

often minor. Besides the aforementioned covariance estimators, we also examined the simple

pre-whitening method studied by den Haan and Levin (1996, 1997), with parametric, VAR

adjustment for autocorrelation. Since the results seem to parallel our results when AM

method is used, we omit them for brevity.

5.2 Explanatory variables with differing values across

In our second simulation setup, we study the behavior of RRR tests in an environment where

the explanatory variables have different numerical values across groups/equations. We set

xij1 = 1 and, for k = 2, . . . , 4, xijk = 1 if the uniform random number generator gives a

value between 0.25(k − 1) and 0.25k and xijk = 0 otherwise. The dependent variables are

constructed under the null hypothesis as follows:

y1j = 1 + 2x1j2 + 3x1j3 + 4x1j4 + ε1j,
y2j = 0.8(1 + 2x2j2 + 3x2j3 + 4x2j4) + ε2j,

(33)

for j = 1, . . . , 150 with ε’s iid standard normal. We repeat the experiment 500 times and

report the empirical size in Panel A of Table 4. Results indicate that the finite-sample size of

the explicit mixed-form Szroeter test is essentially identical to the theoretical size, while that

of the implicit mixed-form test tends to over-reject, and the score test tends to under-reject.
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The full rank alternative hypothesis is given by:

y1j = 1 + 2x1j2 + 3x1j3 + 4x1j4 + ε1j,
y2j = 0.9(1 + 2x2j2) + 0.7(3x2j3 + 4x2j4) + ε2j,

(34)

again for j = 1, . . . , 150 and with ε’s iid standard normal. From Panel A of Table 4, Both

Szroeter tests have higher rejection rates as compared to the score tests, with the explicit

form dominating the implicit form even though the empirical size of the former is lower.

5.3 Co-integration

In our last simulation batch, we investigate the performance of the RRR tests in the co-

integration case. The presence of unit roots and co-integration in the data changes distri-

butional properties (Assumption 1) of estimators and resulting tests. We assume that the

DGP under the null hypothesis is:

y1j = 1 + y1,j−1 + ε1,
y2j = y1j + ε2,

(35)

for j = 1, ..., 150 and ε’s iid standard normal. The unrestricted system to be estimated is:

y1j = β11y1,j−1 + β12y2,j−1 + ψ1 + ε1,
y2j = β21y1,j−1 + β22y2,j−1 + ψ2 + ε2,

(36)

for j = 1, ..., 150. Under the null hypothesis, we have

β =

(
1 0
1 0

)

and it has a rank = 1. In the restricted system, we used the following normalization:

y1j = β11y1,j−1 + β12y2,j−1 + ψ1 + ε1,
y2j = γ(β11y1,j−1 + β12y2,j−1) + ψ2 + ε2,

(37)

for j = 1, ..., 150. For critical values we do not use the chi-square distribution but instead the

distribution for λtrace based on the Johansen method. In our case, we use the λtrace = 3.962,

as reported in Enders (1995, Table B, p. 420) for the 95% quantile for the case with trend

drift. However, the asymptotic chi-square distribution for one degree of freedom is 3.84 and
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its use instead of 3.962 does not alter the distributional pattern in any significant manner.

The results (with c.v. = 3.962) are shown in Panel B of Table 4. Both forms of the Szroeter

test give similar results and over-reject with respect to the score test. For the rejection rates

under the alternative (see Panel B, Table 4) we employ the model:

y1j = 1 + y1,j−1 + ε1,
y2j = 1 + 0.8y1,j−1 + 0.2y2,j−1 + ε2,

(38)

for j = 1, ..., 150 and standard normal ε’s. Rejection rates are consistently higher for the

Szroeter tests than for the score test.

6. Examples, Cont’d

Example 1 - Income, Gender and Education

We use data from Integrated Public Use Micro-data Samples database, available at

http:// www.ipums.umn.edu (see Ruggles, Sobek et al. 1997 for a description of the dataset).

We extracted a random sample from 1990, with variables sex, total income (INCTOT) and

education (EDUC99). INCTOT is an individual’s total pre-tax personal income or loss

from all sources for the previous calendar year. EDUC99 variable has 17 categories, which

we reduce to only four: no diploma, a high school graduate, a college graduate, a post-

bachelor’s degree. Our choice of the education variable reflects evidence of the importance

of the achieved degree over years of schooling (the so called ‘sheepskin effect’, see for instance

Jaeger and Page 1996). We consider persons 16 years old and older and have n1 = 2105

observations for males and n2 = 2289 for females on both income and education. Summary

statistics are reported in Panel A, table 5. The pattern of the gender pay-gap is similar to

the one in Borjas (2000, Figure 7-7). For the sake of simplicity, we limit ourselves to the

use of education dummies as the only explanatory variables. Other potential explanatory

variables would include experience, age, quality of schooling, etc. For other gender-specific

factors, see Becker (1993) and more recently, Blau and Kahn (2000).
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We estimate the multivariate regression model (1) by ordinary least squares, equation by

equation. The White heteroskedasticity test indicates presence of heteroskedasticity in both

equations (the F statistics are 41.65 for males and 63.44 for females, with p-values = 0.000).

The unrestricted coefficient estimates (β̂), with White heteroskedasticity-robust standard

errors are reported in Panel B, Table 5. To examine the reduced-rank hypothesis, we use

only the information in Panel B, and for the coefficient variance-covariance estimate Ω̂ we

let diagonal elements of Ω̂ equal the squared standard errors for the relevant coefficient, and

we let the off-diagonal elements of Ω̂ equal 0 (consistent with our regressor design).

A casual inspection suggests that, in 1990, women’s average income was about half that

of men’s, for each education level. The proposed RRR estimators and tests, reported in

Panel B, agree with this conclusion (and we omit here a report on method-of-moments

estimators and score tests here because the unbalanced sample creates some difficulties for

these methods in standard programs like EViews). The multiplier A, from men’s to women’s

income, is estimated near 0.5 by the explicit and implicit mixed-form methods, and both

forms of the Szroeter test fail to reject the rank = 1 hypothesis for β∗. Only the implicit

mixed-form method provides revised estimates of men’s mean incomes (by education level),

and from the reported standard errors these have somewhat less sampling error than the

initial (OLS) estimates.

Example 2 - Asset Returns, Firm Size and Factor Pricing

For the small-firm and large-firm portfolio asset returns, we use NYSE Cap-Based Port-

folio Indices provided by CRSP. We compute excess returns using the 30-Day Treasury Bill

return, also from CRSP, for the period 1959:02 - 1999:12. We denote the excess returns

by rSMALL and rLARGE. We use the return on the CRSP NYSE value-weighted index, in

excess of the 30-Day Treasury Bill, as a measure of overall stock market performance (de-

noted rV W ). The default premium (rDEF ) is the difference between interest rates on low
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grade bonds (the Seasoned Baa Corporate Bond Yield from the St. Louis FED website, the

original source is Moody’s Investors Service) and long-term government securities (5-year

Treasury Bonds, the St. Louis FED website). The term premium (rTERM) is the difference

between the one-period holding return on the 5-year Treasury Bond (CRSP) and the first lag

of the return on a 30-Day Treasury Bill. For the growth rates of industrial production (gIP )

and real per capita consumption (gCONS), the industrial production data are obtained from

the Federal Reserve Board’s website (Market Groups, series b50001, seasonally adjusted)

and consumption data from the St. Louis Fed’s website (series PCEND, non-durables, series

PCES, services, POP, population, series CPIAUCSL, Consumer Price Index For All Urban

Consumers, All Items 1982-84=100, all series seasonally adjusted). As in Chen, Roll, et al.

(1986), we measure the effects of inflation using the unexpected inflation(πUI), calculated as

the difference between actual inflation rate (measured by the above consumer price index)

and a one-period forecast of the inflation rate. The one-period forecast of the inflation rate

is estimated using coefficients from a regression of the inflation rate, a constant, its lagged

value, the lagged value of a Treasury Bill rate and a moving average term. As a measure

of the money supply, we use the growth rate of the seasonally adjusted monetary base from

the St. Louis Fed’s website(series AMBSL, seasonally adjusted, denoted gMON). Panel A of

Table 6 summarizes the data series.

Panel B of Table 6 reports unrestricted coefficient estimates, and because there is evi-

dence of conditional heteroskedasticity and autocorrelation (see Panel D), we use a suitably

robust form (AM = Andrews-Monahan) of standard errors. Panel B suggests that several

coefficient estimates (‘sensitivities’, for the default premium, term premium, consumption

growth, money growth) differ substantially across firm groupings, with the exception of the

market beta, which is close to 1 for both small and large firms. This is contrary to the

idea that the large-firm coefficient vector β∗b is a scalar multiple of the small-firm coefficient

vector β∗a. While we omit (for brevity) a report of covariances among coefficient estimates,
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these too will be used in our Szroeter-type tests for reduced rank in β∗.

Panel C reports the proposed Szroeter-type RRR tests and estimators, and also reports

on RRR method of moments estimators and score test statistics (again using the AM spec-

ification). Each test rejects the rank = 1 hypothesis, at the 1 percent significance level. An

interpretation is that, among the chosen economic factors, small and large firms are sensitive

to several of these factors, and small-firm sensitivities are disproportionately high for some

factors (default premium), relative to large firms, and disproportionately low for some other

factors (term premium, consumption growth, money growth). This description of the link

between firm size and asset returns is only illustrative (for more on this issue, see Schw-

ert 1983 for discussion of early theories, and Fama and French 1992, 1993 provide recent

empirical treatments), but it further demonstrates the utility of the RRR methods.

7. Discussion

In this paper we consider the problem of estimation and testing for reduced rank in

multivariate linear regression models. We propose estimators and tests which formalize the

intuitive approach of examining redundancy in an unconstrained estimate of the regression

coefficient matrix. We verify the asymptotic normal and chi square distributions of the

proposed statistics, and we conduct simulations to assess the finite-sample properties of the

proposed tests. In simulation we find that rejection rates under the hypotheses of both full

and reduced ranks are similar for both the explicit and implicit mixed-forms of the test, and

both tests produced coherent results, provided that the sample was not too small.

The proposed methods are suited to the case where there is a known basis of regression

coefficient rows (resp. columns) that span all the rows (columns). This is valid in the simplest

case (rank = 1) of reduced rank regression, but otherwise calls for some justification. Of the

two proposed methods, each based on minimum distance estimation of parameters subject to

explicit and implicit mixed-form restrictions, the explicit form is simpler and is particularly
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tied to the specified basis for coefficient rows, whereas the implicit mixed-form can be easily

generalized to allow any basis (by allowing all elements of D and λ in the representation

β = Dλ to freely vary). Hence, a slightly modified version of our implicit mixed-form

approach achieves robustness to choice of basis, and in simulation (omitted for brevity)

is essentially identical to the original implicit approach in the cases studied in Section 5.

However, the modified implicit version is also more complex conceptually.

Future work could further compare the power of the explicit and implicit mixed-form

tests, using local power asymptotics. Since the implicit mixed-form estimators include rel-

atively efficient estimators of all parameters (in β, under reduced rank), compared to the

explicit approach, there may be a local power advantage to the implicit mixed-form tests.

Also interesting would be a derivation of formulas for second-order asymptotic bias and vari-

ance for the proposed estimators, as well as theories modified for the case of unit roots and

co-integration.
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APPENDIX

Proof of Theorem 1: With z∗ the true value of z = vec∗(A) under the condition rank (β∗) =

q, we can express z̃ as a differentiable function φ(vec∗(β̂), hvec(Ṽζ)) of vec∗(β̂) and hvec(Ṽζ).

As n →∞, we can then apply a first-order Taylor series Approximation to obtain:

z̃ − z∗ = G (vec∗(β̂)− vec∗(β∗)) + H (hvec(Ṽζ)− hvec(Vζ)) + o,

where G and H are matrices of partial derivatives of φ with respect to it’s first and second

set of arguments (evaluated at their population values), and where “o” indicates a negligible

(second order) term. Moreover, using the formula (14) we deduce that H = 0, and hence z̃−
z∗ is asymptotically equivalent to G (vec∗(β̂)−vec∗(β∗)). From this, the asymptotic normality

of β̂ implies that z̃ is also asymptotically normal. The proposed variance-covariance formula

Vz̃, given by
(
(I ⊗ (β∗a)

′)′V −1
ζ (I ⊗ (β∗a)

′)
)−1

is valid (for the purpose of Theorem 1) due to

the asymptotic normality of β̂ and the fact that z̃ maximizes the normal likelihood (16)

(conditional on the consistent estimator Ṽζ of Vζ).

Proof of Theorem 2: Follows from the asymptotic normality of β̂ and the fact that z̃ maxi-

mizes the normal likelihood (16) (conditional on the consistent estimator Ṽζ of Vζ).

Proof of Theorem 3: For the vector v̈ = (vec∗(γ̈)′, vec∗(λ̈)′)′ of parameter estimates, we

can proceed analogous to the proof of Theorem 1 to express v̈ as a differentiable function,

say κ(·), of β̂ and Ω̂, and then obtain a first-order Taylor series Approximation which, upon

simplification, yields v̈−v∗ = J(vec∗(β̂)−vec∗(β∗)), with J a matrix of partial derivatives of

κ with respect to the elements of vec∗(β̂). Consequently, since β̂ is asymptotically normal,

so is z̈. The proposed variance-covariance formulas for γ̈ and λ̈ are valid (for the purpose of

Theorem 3) due to the asymptotic normality of β̂ and the fact that v̈ maximizes the normal

likelihood (28) (conditional on the consistent estimator Ω̂n of Ωn).
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Proof of Theorem 4: Follows from the asymptotic normality of β̂ and the fact that v̈

(defined in proof of Theorem 3) maximizes the normal likelihood (28), conditional on the

consistent estimator Ω̂n of Ωn.
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TABLE 1: Rejection Rates, Szroeter Explicit Mixed-Form Test

Panel A: Rejection Under Reduced Rank Hypothesis

errors N(0, I) errors N(0, Υ)

g q K n OLS SUR OLS SUR

2 1 3 150 0.08 0.09 0.01 0.07
300 0.04 0.05 0.01 0.05

1 5 150 0.11 0.12 0.01 0.07
300 0.08 0.08 0.00 0.08

3 1 4 150 0.11 0.12 0.00 0.06
300 0.08 0.08 0.00 0.06

1 7 150 0.16 0.19 0.00 0.09
300 0.09 0.10 0.00 0.08

3 2 4 150 0.06 0.07 0.01 0.04
300 0.07 0.07 0.00 0.06

2 7 150 0.10 0.12 0.01 0.07
300 0.08 0.08 0.00 0.09

Panel B: Rejection Under Full Rank Hypothesis

errors N(0, I) errors N(0, Υ)

g q K n OLS SUR OLS SUR

2 1 3 150 0.63 0.64 0.44 0.65
300 0.94 0.95 0.86 0.96

1 5 150 0.54 0.58 0.27 0.56
300 0.92 0.92 0.70 0.93

3 1 4 150 0.82 0.84 0.50 0.82
300 1.00 1.00 0.95 0.99

1 7 150 0.72 0.76 0.26 0.78
300 0.98 0.99 0.81 0.99

3 2 4 150 0.49 0.51 0.25 0.51
300 0.91 0.92 0.71 0.92

2 7 150 0.38 0.43 0.11 0.43
300 0.82 0.83 0.45 0.84
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TABLE 2: Rejection Rates, Szroeter Implicit Mixed-Form Test

Panel A: Rejection Under Reduced Rank Hypothesis

errors N(0, I) errors N(0, Υ)

g q K n OLS SUR OLS SUR

2 1 3 150 0.04 0.05 0.00 0.04
300 0.05 0.05 0.01 0.04

1 5 150 0.04 0.05 0.00 0.04
300 0.06 0.07 0.00 0.05

3 1 4 150 0.05 0.05 0.00 0.04
300 0.06 0.07 0.00 0.04

1 7 150 0.05 0.07 0.00 0.05
300 0.07 0.08 0.00 0.04

3 2 4 150 0.02 0.02 0.00 0.02
300 0.04 0.05 0.00 0.03

2 7 150 0.02 0.02 0.00 0.02
300 0.04 0.05 0.00 0.04

Panel B: Rejection Under Full Rank Hypothesis

errors N(0, I) errors N(0, Υ)

g q K n OLS SUR OLS SUR

2 1 3 150 0.51 0.51 0.29 0.51
300 0.92 0.92 0.81 0.94

1 5 150 0.36 0.39 0.13 0.36
300 0.82 0.82 0.57 0.87

3 1 4 150 0.70 0.72 0.32 0.68
300 0.98 0.99 0.91 0.99

1 7 150 0.52 0.58 0.12 0.58
300 0.96 0.96 0.63 0.97

3 2 4 150 0.53 0.58 0.05 0.25
300 0.96 0.96 0.63 0.97

2 7 150 0.13 0.15 0.00 0.11
300 0.60 0.63 0.15 0.62
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TABLE 3: Comparison to Score Tests

Panel A: Rejection Under Reduced Rank Hypothesis

Covariance Matrix Estimator

g q K test White NW NW-P A AM

2 1 3 Szroeter, implicit 0.04 0.06 0.06 0.05 0.04
Score 0.05 0.05 0.04 0.05 0.05

1 5 Szroeter, implicit 0.06 0.10 0.10 0.07 0.07
Score 0.06 0.02 0.02 0.05 0.05

3 1 4 Szroeter, implicit 0.05 0.17 0.17 0.12 0.05
Score 0.05 0.01 0.00 0.07 0.08

1 7 Szroeter, implicit 0.10 0.36 0.32 0.11 0.09
Score 0.04 0.01 0.01 0.02 0.03

3 2 4 Szroeter, implicit 0.03 0.03 0.02 0.03 0.03
Score 0.03 0.02 0.02 0.04 0.02

2 7 Szroeter, implicit 0.04 0.07 0.07 0.06 0.04
Score 0.04 0.02 0.00 0.04 0.03

Panel B: Rejection Under Full Rank Hypothesis

Covariance Matrix Estimator

g q K test White NW NW-P A AM

2 1 3 Szroeter, implicit 0.50 0.55 0.54 0.53 0.50
Score 0.61 0.40 0.36 0.48 0.46

1 5 Szroeter, implicit 0.42 0.48 0.47 0.41 0.40
Score 0.47 0.19 0.13 0.30 0.30

3 1 4 Szroeter, implicit 0.69 0.82 0.82 0.75 0.73
Score 0.75 0.22 0.15 0.44 0.54

1 7 Szroeter, implicit 0.66 0.85 0.85 0.73 0.66
Score 0.57 0.04 0.02 0.14 0.28

3 2 4 Szroeter, implicit 0.26 0.31 0.31 0.28 0.26
Score 0.45 0.30 0.27 0.35 0.35

2 7 Szroeter, implicit 0.16 0.27 0.28 0.19 0.16
Score 0.31 0.08 0.05 0.15 0.18
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TABLE 4: Tests of Other Models

Panel A: Regressor Values Differ Across Equations

Covariance Matrix Estimator

test White NW NW-P A AM

Reduced Rank

Szroeter, explicit 0.05 0.06 0.05 0.05 0.05
Szroeter, implicit 0.07 0.08 0.08 0.07 0.06
Score 0.05 0.04 0.04 0.05 0.05

Full Rank

Szroeter, explicit 0.82 0.82 0.82 0.83 0.81
Szroeter, implicit 0.63 0.66 0.66 0.63 0.62
Score 0.60 0.44 0.44 0.58 0.60

Panel B: Co-integration

Covariance Matrix Estimator

test White NW NW-P A AM

Reduced Rank

Szroeter, explicit 0.06 0.08 0.07 0.06 0.05
Szroeter, implicit 0.06 0.08 0.07 0.06 0.06
Score 0.05 0.05 0.05 0.05 0.05

Full Rank

Szroeter, explicit 0.59 0.62 0.62 0.61 0.58
Szroeter, implicit 0.59 0.62 0.62 0.61 0.58
Score 0.56 0.45 0.41 0.52 0.44
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TABLE 5: Income, Gender and Education

Panel A: Personal Income (in $) Distribution, U.S. Men and Women, Year = 1990

statistic men women

mean 24,568.79 11,472.01
std. dev. 27,818.91 13,321.25

1st quartile 7,743.50 2,248.75
median 18,000.00 7,257.00

3rd quartile 32,000.00 16,185.75
% sample ≤ 0 6.9% 15.3%
sample size 2105 2289

Panel B: Estimates of Mean Income, by Category

education

Less Than More Than
High School High School Bachelor’s Bachelor’s

male estimate 12,139.16 23,352.79 41,466.95 61,993.03
s.e. 1,077.64 821.08 1,636.04 3328.23

female estimate 6,292.02 11,341.61 18,001.59 32,471.75
s.e. 535.07 369.76 846.35 2998.27

Panel C: Estimates and Tests of Reduced-Rank in Coefficient Matrix

The hypothesis is H0 : βb = Aβa, where βa and βb are the 4× 1 vectors of mean income (by
education level) for men and women, respectively, and A is a constant.

Form in which Parameters are Estimated

Explicit Implicit
Mixed Form Mixed Form

estimate of A 0.489 0.478
s.e. 0.026 0.012

estimate of βa n.a. ( 12329.90, 23423.00, 40760.02, 63099.14 )
s.e. n.a. ( 776.39, 563.08, 1201.69, 2940.09 )

test of H0 0.179 1.806
p-value 0.98 0.63
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TABLE 6: Asset Returns, Firm Size and Factor Pricing

Panel A: Summary Statistics, sample 1959:02-1999:12, annualized, percentages

rSMALL rLARGE rV W rDEF rTERM gIP gCONS πUI gMON

Mean 8.21 6.41 6.35 1.85 1.40 3.43 2.09 0.00 6.68
Std. Dev. 67.14 50.48 50.73 0.80 18.82 10.54 5.41 2.51 4.86
Skewness -0.18 -0.40 -0.43 0.18 0.23 -0.10 -0.21 0.52 0.16
Kurtosis 7.32 5.22 5.31 2.26 7.06 9.03 4.49 7.61 5.15

Panel B: Unrestricted Estimates

The estimated model is: yit = βix
∗
t + εit, i = 1, 2, time period 1959:02-1999:12 where

y1t = rSMALL, y2t = rLARGE, βi is a (7× 1) vector of coefficients, x∗t = ( rV W , rDEF , rTERM ,
gIP , gCONS, πUI , gMON)′ and εit is the regression error.

β̂11 β̂12 β̂13 β̂14 β̂15 β̂16 β̂17
est. 1.139 2.868 -0.238 -0.148 0.740 -0.627 -0.706
s.e. (0.052) (1.305) (0.091) (0.163) (0.286) (0.629) (0.324)

β̂21 β̂22 β̂23 β̂24 β̂25 β̂26 β̂27
est. 0.994 0.027 0.015 0.008 -0.039 0.023 0.007
s.e. (0.003) (0.101) (0.006) (0.009) (0.019) (0.041) (0.028)

Panel C: Tests of Reduced Rank

Szroeter Szroeter
implicit explicit

mixed form mixed form score

stat 22.26 20.84 17.9
p-value 0.001 0.002 0.006
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TABLE 6, Cont’d

Panel D: Tests for Residual Heteroscedasticity and Correlation

Residuals are calculated using OLS estimates, equation by equation ; Pearson = chi-square
test for correlation; White test = F test with no cross terms; Q = Q statistic for testing 12
lags of autocorrelation; p-values in parentheses.

Residual Property Size Test 59-99

correlation across equations Pearson -0.839
(0.000)

across time small Q 78.047
(0.000)

large Q 42.333
(0.000)

heteroskedasticity small White 6.726
(0.000)

large White 4.482
(0.000)
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