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Optimum Shape  Synthesis of Maximum Gain 
Omnidirectional  Antennas 

FRANCES J .  HARACKIEWICZ, STUDEhT MEMBER, IEEE, AND 
DAVID M. POZAR, MEMBER, IEEE 

Absfmct-Using characteristic mode  shape  synthesis,  some  antenna 
surfaces and their current distributions are found  which produce 
maximum realizable gain for rotationally  symmetric  omnidirectional 
antennas.  The  same  shape  synthesis  method  fails to produce  antennas 
which have maximum endfiie gain. 

I. INTRODUCTION 

The maximum realizable gain of an  arbitrary antenna enclosed by a 
spherical surface  has been discussed by Harrington [ 11, [2], [3] for 
the pencil beam (endfire) case and by Chu [4] for the omnidirectional 
(rotationally symmetric broadside) case. The maximum gain depends 
on N, the order of the highest spherical mode radiated by the antenna, 
and so is unbounded in  general. To maintain a realizable gain (non- 
superdirective), the highest mode  number should be constrained to be 
less than or equal to the electrical size ka of the enclosing spherical 
surface. 

Now, by the equivalence theorem, an infinitude of surfaces (with 
equivalent currents) that circumscribe the spherical surface of size 
ka, produce the same  pattern and maximum gain as  the enclosed 
arbitrary antenna. Some of these  surfaces are more desirable than 
others,  however,  since  some of them radiate with a Poynting vector 
that is always  directed normal to  the antenna surface.  That  is, no 
power  is  directed back into the antenna, or along the antenna surface. 
These surfaces thus minimize loss into  the antenna surface (and 
possibly minimize Q), and are called optimum shapes. The character- 
istic mode shape synthesis method of [5] and [6] is used to find these 
optimum shapes. 

Two cases are considered. For the omnidirectional (broadside) 
case,  transverse  electric (TE)  and transverse magnetic (TM) fields 
can be treated separately and identified with characteristic mode 
fields. Optimum shapes can then be determined, with corresponding 
fields and currents that produce maximum normal gain. For the 
pencil beam (endfire) case,  however,  the maximum gain fields cannot 
be identified with characteristic mode fields. Separating the maxi- 
mum gain fields into characteristic mode fields such as  TE  or  TM 
fields with linear  polarization, or circularly polarized (CP) fields with 
both TE and TM components reduces the maximum gain, and so 
optimum shapes cannot be found for this case. 

II. MAXI" GAIN FOR ROTATIONALLY SIMMETRIC BROADSIDE 
ANTENNAS 

Consider  an  arbitrary antenna located about the origin of the 
coordinate system shown in  Fig. 1 .  If the electric and magnetic vector 
potentials F and A are considered to be f directed only, then all fields 
radiating from an arbitrary antenna can be expressed in terms of F 
and A. If F, and A ,  are expanded in a Fourier-Legendre series of 
outward-traveling waves (with time convention eJw 9 as 

A,=C a,,krh?)(kr)~::(c~s e) cos (m++(Ym,) 
m n  

F r = S  b,,krh~'(kr)P~(cos e) COS (m++Pmn),  (1) 
m n  
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Fig. 1. The  spherical  coordinate  system. 

then the coefficients am,, b,,, a,,, and p,, specify all of the fields 
outside the antenna with Maxwell's equations. The gain is defined by 

Specializing the above  equations to describe a rotationally symmet- 
ric broadside antenna requires that  the point of maximum power 
density be at 0 = d 2 ,  and that the beam maximum does not vary with 
6. Then the coefficients determining the fields become a, = aOn 
cos aOn and b ,  = bon cos Pon [4]. 

Maximizing the gain for the  the rotationally symmetric (m = 0) 
broadside case ( e  = n/2 at point of maximum power density) as a 
function of the coefficients results in [4] 

Pi(0)(2n + 1)j - n  van = b, = n(n + 1) c, 

where c i s  a normalization constant and insures that G ,  a,, and b ,  are 
real. With the a, and  b, from (3), 

odd 

for an antenna radiating modes only as high as n = N (n!! = n(n - 

To synthesize antennas having the gain given by (4), using the 
characteristic mode method, it  is necessary to specialize the fields 
given by (1) to either TE to i (TE) or  TM  to i (TM). 

2) (n - 4) -3.1.) 

For the TE case, (1) becomes 

A,=O 
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where b,, given by (3), yields the maximum gain in (4). From (5 ) ,  
the fields are 

Ee=Er=Hb=O 

N 

E+= 2 b,hIf'(kr)PA(co~ e) 
n = l  

l N  
H -- b,hIf'(kr)(n+ 1) P:- I (COS e) - COS OP:(COS e) 

- jkrq sin 8 
n = l  1 

where the b,, given by (3),  are always real and the choice c = 
j -  normalizes the total radiated power to 1 W. 

Similarly, for the TM  case, (1) becomes 

F,= 0 

where a,, given by (3), yields the maximum gain in (4). From (7), 
the fields are 

Eb=He=Hr=O 

. N  

where the a, given by (3), are always real and the choice c = 
j m  normalizes the total radiated power to 1 W. 

m. OPTIMUM  SHAPE  SYNTHESIS  USING CHARACTERISTIC MODE 
THEORY 

As shown by Garbacz and Pozar [5], [6], outward propagating 
fields satisfying the conjugate point symmetry condition can be 
generated by a characteristic surface S with the real currents Jm,l s 
out of phase with the fields Etanls by a constant a. When 
synthesizing the antennas to radiate the fields given by (6) and (8), a 
was chosen to be 180". This yields an antenna for which the Poynting 
vector is directed outward, normal to the surface at every point on the 
surface. This condition implies that the radiator is optimum in some 
sense. For example, if the finite conductivity of the antenna surface is 
considered,  the outward directed Poynting vector of a characteristic 
field will minimize power loss in the conductor. In addition, the 
resulting antenna has Q = 0 [6] at the one frequency chosen here by 
setting k to some constant value. For all the following antennas, k is 
set equal to 1.0. 

To synthesize the TE antenna radiating the fields given in (6), an 
expression for the fields inside the antenna must be found. Taking the 
standing wave fields inside the antenna to be given by (6) with the 
spherical Hankel functions hr)(kr) replaced by spherical Bessel 

functions j ,(kr), as in [5], insures that Jranls, given by 

JranI~=iiI~~(HoU1-H'")Is, (9) 

is real and that EtanlS will be continuous. 
The  surface S is defined by 

Im {G} =Im {C$E,)=O. (10) 

For each value of 0, r(0) is found from (10) by a root searching 
procedure. There is a denumerably infinite set of curves r(0) for each 
value of N. 

Fig. 2 shows the  first  few  contours generated for the TE, N = 7 
case. Since the fields are rotationally symmetric,  as well as 
symmetric about 0 = 90", the three-dimensional antenna shape is 
found by rotating the curves r(0) about the z-axis. Observe that the 
smallest two contours in Fig. 2 do not represent continuous closed 
shapes, and so are not considered realizable (this effect was also 
noted in [5]). The  surfaces rl and r2 in Fig. 2 are not closed, that is 
they do not exist for all values of 0. Therefore, the defmition of inside 
fields and outside fields required for the characteristic mode shape 
synthesis does not make sense (as there i s  no inside). The remaining 
curves shown in Fig. 2 { r 3 ,  r4, . . } are closed and are valid 
solutions to (10). Any antenna shape built in between the solutions 
{ r,(e)) (i.e., not a solution to (10)) would have a Poynting vector 
with components directed tangential to or into the surface, and 
therefore would be less desirable.  The smallest continuous contour is 
selected from the set { rn(0)}, and is  drawn as a solid line in Fig. 2.  
The smallest closed TE surfaces for N = 1 ,  5, 9, 13, and 15 are 
shown in Fig. 3. The corresponding surface  currents and gains are 
shown in Figs. 4 and 5 ,  respectively. Observe that the shapes become 
more and more elongated as N increases, and the current distributions 
become more uniform. This may suggest that a uniformly fed wire 
antenna is close to an optimum omnidirectional radiator. 

To synthesize the TM antenna radiating the fields given by (8) the 
standing wave fields inside the antenna are once again found by 
replacing the spherical Hankel functions by spherical Bessel func- 
tions. As  above, Jtanls will be real and Emls will be continuous. 
Again, the surface S is defined by 

Tm {&}=Im {(trEr+teEo)?)=O, (1 1) 

where E ,  is  the dot product of E with the unit vector ? tangent to S 
and perpendicular to C$ at the point ( r  , 0) on S .  As in [5], the tangent 
vector was approximated by the vector connecting some other, 
known, nearby point on S to the presently considered ( r ,  e). 
Therefore, tn determine a point on S requires that the tangent, or at 
least one point on S ,  be known already. At 0 = 0" it is assumed that 
to = 1 and tr = 0 (implying that S does not have a cusp at 0 = On), 
then r at 8 = 0" can be found and subsequently 40) by a search 
procedure. For N = 1 ,  5,9 ,  13, and 15 the smallest continuous TM 
antenna surfaces are shown in Fig. 6, and the corresponding surface 
currents and gains are shown in Figs. 7 and 5, respectively. 

In Fig. 8 gain, which is the same for both the TE and TM cases,  is 
shown as a function of N. As N + CQ, G ( N )  approaches  the  gain  of a 
uniform current distribution line source.  See linefin  Fig. 8. Notice 
that the maximum gain obtained by the shapes in Figs. 3 and 6 are 
maximum as a function of N and not maximum as a function of ka. 
Generally, an antenna of size ka can easily radiate the spherical 
modes 1 through N = ka and the higher order modes are rapidly cut 
off. The antennas shown in this communication, however, will 
theoretically radiate exactly N modes, where N < ka. Practically, if 
these antennas were to be built, the currents in Figs. 4 and 7 could not 
be excited independently of  other modes. In this case, modes of order 
greater than N would be radiated and would either subtract from or 
add to the gain. 
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y-axis is kr/N 
Fig. 2. All N = 7 antennas found in a kr = 3.0 radius.  Solid  curve r3(B) is 

the  smallest  continuous  contour. 

y-axis is kr/N 
Fig. 3.  Smallest continuous antenna  surfaces for the TE N = 1, 5, 9, 13, 

and 15 cases. 

JY. WHY NO OpTIMuhl SHApE EXISTS FOR THE ENDFIRE CASE 
Consider again an antenna located about the origin in Fig. 1. A 

general  expression for its  gain given in (2)  can be specialized to the 
endfire  case by letting  the point of maximum power density be at 0 = 
0", the end of the  antenna.  Notice the fields are not necessarily 
rotationally symmetric  for  the  endfire  case, and the  fields which yield 
maximum gain consist of both TE and TM fields. 

Beginning with (1) and (2)  and maximizing the gain for the  endfire 
case (maximum power density at 8 = 0") [l], [2] leads to a, = b,,  
= a,, = a,, = 0 for m # 1 .  For  the rn = 1 coefficients the 
equations analogous to (3) are 

0 

Theta in Degrees 
Fig. 4. J,ls versus 0 for  the TE N = 1,5,9, 13, and 15 antennas in Fig. 3. 

10.0 , 

Theta in Degrees 
Fig. 5. Gains versus 0 for TE or TM N = 1, 5, 9, 13, and 15 antennas 

shown in Figs. 3 and 7. Value at B = 90" is same as G, of (4). 

and 

a ~ n  = P l n  + a123 (12) 

which specify linear  polarization.  The gain is 

G,, =w i- 2N. (1 3) 

See curve a in Fig. 8 for  a plot of this Gma. 
Using the coefficients of (12) yields  H-fields  outside of the antenna 

which when subtracted  from  their  standing wave counterparts  inside 
the antenna do not in general yield a real  surface current, as in the 
previous case. This may be expected,  however,  since  the  conjugate 
point symmetry  property is not satisfied by the far-field  pattern [5 ] .  In 

qaln = bLn=j-"(2n + l)c/(3n(n + 1)) an attempt to  meet this conjugate point symmetry  requirement, TE, 
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y-axis  is kr/N 
Fig. 6. Smallest  continuous  antenna  surfaces  for  the TM N = 1, 5, 9, 13, 

and 15 cases. 

0 
0 
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* 

- 

Theta in Degrees 
Fig. 7. Jmls versus B for the TM N = 1,5,9, 13, and 15 antennas in Fig. 6. 

TM, and circularly polarized (CP) fields were considered individu- 
ally. 

For the TE case with linear polarization, (12) becomes 

W l n = O  

bln=j-"(2n+ l)c/(3n(n + 1)) 

and 

P l n  = 0. (14) 

For the TM case with linear polarization, (12) becomes 

bln = 0 

VUln=j-"(2n+ l)c/(3n(n + 1)) 

60.0 

55.0 

50.0 
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35J 
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4 3 . 0  

25.0 
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10.0 

i h/ 
/ , 
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N or ka 
Fig. 8. Comparison of endfire gains with  maximum  omnidirectional  gain. a: 

G ,  versus N,  endfire.  b: Gm/2 versus N,  double-endfiie. c: Odd double- 
endfire  gain  versus N .  d: Even  double-endfire  gain  versus N .  e: G ,  
versus N,  rotationally  symmetric  broadside. f: Approximate G for a 
uniform line  source  versus ka (dashed line). 

and 

ain = T / 2 .  (15) 

For the CP case with both TE and 'I" components, (12) becomes 

and 

where the plus sign. or minus sign signifies left-hand circularly 
polarized (LHCP) or right-hand circularly polarized P C P )  circular 
polarization. Specializing the equations & above to describe only 
TM, TE, RHCP, or LHCP endfire cases leads -in all cases to 
maximum radiation off  both ends (0 = 0" and 0 ,= 180", double- 
endfire)  and to a gain that is 112 the G, of (13). See curve b in Fig. 
8 for a plot of this gain. In these cases .I1, cannot be made real 
everywhere except for  the N = 1 antenna, which is a sphere. 

Bre.aking the above double-endfire cases into even (i.e., nonzero 
coefficients given by (14),  (15), or (16) for only even values of n) and 
odd (;.e., nonzero coefficients given by (14), (15); or (16) for only 
odd values of n) mode antennas reduces the  gain still further, but at 
least yields antennas that can finally be synthesized with a single 
characteristic surface.  Therefore, to generate the maximum gain 
endlire  fields  requires four characteristic antennas: either 1) odd 
mode TE, 2) even mode TE, 3) odd mode TM, and 4) even mode 
TM; or 1) odd mode RHCP, 2) even mode RNCP, 3) odd mode 
LHCP, and 4) even mode LHCP. Each of these  cases has its own 
characteristic shape, so it does not make sense to think of a 
superposition of these results. The gains for  these odd and even mode 
antennas are plotted as curves c and d in Fig. 8. 
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V. CONCLUSION I. I N T R O D U ~ O N  

Although the antennas synthesized in Section ID were only for N as 
high as 15, the  same method can produce antennas for any N. The 
trend in the antenna surfaces and currents is to have more and smaller 
perturbations from a smooth contour as N gets larger. Each 
rotationally symmetric  broadside antenna in Section III has maximum 
gain for the number of modes it radiates and is optimum in the sense 
that power loss is minimized in  the conductor surface of the antennas. 
It is also optimum in that Q = 0 at the frequency k = 1.0. This is 
more restrictive than just the low Q condition ka = N and may 
explain why here ka is  greater than N. 

It is impossible to find a single endfire antenna shape that has 
maximum gain for the  number of modes it radiates and is optimum in 
that the Poynting vector is directed outward, normal to the surface at 
every point on  the  surface, because such  an antenna requires the 
nonrealizable superposition of four different surfaces. As shown in 
Section IV, one  characteristic  endfire antenna produces only about 
1/4 the maximum endfire gain. 

As a practical matter it would be difficult to build such optimum 
shape antennas, primarily because of the problem in exciting only one 
characteristic mode. A conductor  in the shape of Figs. 3 or 6, for 
example, possesses an infinite set of characteristic modes, only one of 
which gives rise to the  desired maximum gain fields. The problem is 
then to excite this mode, while minimizing the excitation of other 
modes. 
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In the theoretical description of wave propagation in a turbulent 
(random) atmosphere, one usually assumes that the associated 
refractive index fluctuations are isotropic. This is probably a good 
approximation if one is interested in propagation through those 
portions of the  atmosphere that are sufficiently removed from the 
earth’s surface.  However, for propagation near the surface of the 
earth ( - 2-4 m above  the ground) one can expect deviations of  the 
large scale (small spatial frequency) portions of the turbulence field 
from the ideal isotropic situation due  to the interaction of the moving 
atmosphere with the fixed boundry of the  ground.  (However, for the 
small scales (large spatial frequencies) of the turbulence field,  Le., 
scale lengths that are much smaller than their height above the 
ground, isotropy will exist on this “local” level [I]. ) In particular, 
turbulent outer  scale lengths should tend to be elongated in  the 
horizontal direction along the  earth as has been recently observed [2]. 

It is the purpose of this work to present a simplified and 
calculationally expedient model of the anisotropic nature of the 
refractive index field alluded to in the above discussion. This model 
will then be used to show that there will exist measureable differences 
in the horizontal and vertical one-dimensional mutual coherence 
functions (MCF’s) of a plane wave propagating near the earth’s 
surface.  Thus, comparison of perpendicular MCF measurements in 
an experimental situation [3] can lead to the verification of anisotropy 
of the turbulence field of the atmosphere and, within the context of 
this  model, allows the active remote determination of the particular 
parameters characterizing anisotropy. 

LI. ANISOTROPIC ~ U L E N C E  MODEL 

The model chosen to describe  the anistropy of the  turbulence field 
near the earth’s surface employs the usual isotropic Kolmogorov 
spectrum with an elliptical anisotropic background, the semimajor 
axis of which is parallel to the  ground. Such a form of anisotropy was 
considered in [4]. The anisotropic background is taken to decay 
exponentially with increasing spatial frequency. Thus, letting Q be an 
orientation angle measured from the axis parallel to the earth,  from 
which general angular displacements 0 are reckoned, and letting the 
parameters a and a be constants that characterize the anisotropy,  one 
has for  an anisotropic turbulence spectrum 

+(K, e; d ) = @ I ( ~ ) [ l + ~  exp ( - c ~ ~ K ~ )  cos (2e+2d)] (1) 

An Anisotropic Turbulence Model for Wave where 
Propagation Near  the  Surface 

of the  Earth 
is  the  spectrum of isotropic turbulence, K is  the spatial frequency of 

ROBERT M. MANNING, MEMBER, E E E  the refractive index  fluctuation sizes, and C’, is the structure parameter 
of these fluctuations. (This not the most general form that can be 

Abstract-A model of turbulent  anisotropy of refractive  index  fluctua- considered; the coefficient a could also be taken as a function of K 

tiom near  the  surface of the  earth is presented  and  used to calculate  the and/or 6 .  However,  due to a lack of experimental information on this 
mutual  coherence function (Mm) of a  Propagating  Plane Wave. It is aspect of the problem,  the quantity a will be taken as a constant here.) 
found that  there  are  measurable  differences  in  the  transverse  (horizontal The cOllStantS a and a can be determined from known 
and vertical) MCF’s thus making possible  active  remote  sensing of data [ 2 ] .  At a height H above  the earth, the  outer scale of turbulence 
turbulent anisotropy. LOH horizontal to the earth’s surface  is given by 
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