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PHYSICAL REVIEW E, VOLUME 64, 051302

Granular flow down an inclined plane: Bagnold scaling and rheology

Leonardo E. Silbert,1 Deniz Erta§,2 Gary S. Grf:st,l Thomas C. Halsey,2 Dov Lf:Vine,3 and Steven J. Plimptonl
ISandia National Laboratories, Albuquerque, New Mexico 87185
2Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, New Jersey 08801
3Department of Physics, Technion, Haifa 32000, Israel
(Received 28 March 2001; published 25 October 2001)

We have performed a systematic, large-scale simulation study of granular media in two and three dimen-
sions, investigating the rheology of cohesionless granular particles in inclined plane geometries, i.e., chute
flows. We find that over a wide range of parameter space of interaction coefficients and inclination angles, a
steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction
and inelastic collisions. In this regime, the bulk packing fraction (away from the top free surface and the
bottom plate boundary) remains constant as a function of depth z, of the pile. The velocity profile in the
direction of flow v,(z) scales with height of the pile H, according to v ,(z)<H¢, with @=1.52%+0.05. How-
ever, the behavior of the normal stresses indicates that existing simple theories of granular flow do not capture

all of the features evidenced in the simulations.

DOI: 10.1103/PhysRevE.64.051302

I. INTRODUCTION

It is tempting to regard the behavior of granular materials
as being a problem in engineering or applied science, inas-
much as the fundamental laws governing their constituent
particles are well known. Being comprised of macroscopi-
cally large grains, granular materials obey classical mechan-
ics, although the existence of friction and inelastic collisions
complicates matters. However, while it is true that the colli-
sion of two grains is analytically tractable, an aggregate of
such grains is a many-body system, whose macroscopic be-
havior cannot be simply related to the laws controlling indi-
vidual constituents.

For this reason, a continuum treatment is often adopted, in
which the variables are averaged properties whose governing
equations are derivable, in principle, from the known micro-
scopic laws. Among these averaged variables are the density
p and the stresses .5, which obey the Cauchy equations
that enforce momentum conservation (or force balance if
there are no accelerations). However, this set of equations is
insufficient to solve for the stresses, since there are too few
equations: in D dimensions, there are D(D+1)/2 indepen-
dent components of o, (Which is a symmetric tensor), but
only D equations of momentum conservation. Therefore, the
Cauchy equations must be augmented by additional consti-
tutive relations, possibly history dependent, which tell how
the material in question responds to the application of a
force. It is in these constitutive relations that the specifics of
the material in question come into play. In the case of
steady-state flow, which we will consider in this paper, con-

stitutive equations would relate the strain rate 'j/aB, to the
stress.

In 1954, Bagnold [1] proposed that in inertial granular
flow, the shear stress is proportional to the square of the
strain rate:

gyt (1)

His argument, applied to the case of bulk granular flow, is
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predicated on a constant density profile. In practice, the pres-
ence of significant finite-size or wall effects often obscures
Bagnold scaling. In this study, we report on a set of numeri-
cal simulations of bulk granular flow down an inclined plane,
the so-called ‘‘chute flow,”” in two and three dimensions.
The geometry is simple: a layer of bulk granular material is
placed on a flat plane of area A [or line of length L in two
dimensions (2D)] on which grains have been glued, so as to
form a rough base. The thickness of the layer is measured in
terms of the pile height parameter H=Nd>*/A (or Nd/L in
2D), where N and d are the total number of particles and
their diameter, respectively. The plane is inclined at an angle
6 and the flow is observed. The parameters controlling the
flow are the macroscopic variables 6 and H, as well as the
microscopic variables determining the nature of interaction
between two grains, such as grain friction u and coefficient
of restitution e.

In Ref. [2], we provided a summary of our simulations in
two and three dimensions; in this paper we expand on these
results both in depth and breadth for the case of steady-state
flow. The results obtained reveal the rich and surprising na-
ture of the collective behavior of the system. For certain
values of the parameters, we observe Bagnold scaling in
stable steady-state flow, with a constant density profile inde-
pendent of depth. However, we also saw surprising examples
of self-organization, including the flow-induced crystalliza-
tion of a disordered state into one with much lower dissipa-
tion. In this regime (systems flowing on moderately smooth
bottom surfaces) we found re-entrant disordering as well,
and even oscillations between ordered and disordered states.
The effects of bottom surfaces are thoroughly discussed in a
separate work [3]. In this paper, we concentrate on rough
bottom surfaces for which the behavior is simpler.

These simulations also allow us to investigate more subtle
aspects of chute flow, such as hysteresis in the angle of re-
pose and normal stress inequalities not accounted for by any
conventional continuum theory. Additionally, we were able
to look for surface and bulk instabilities to flow at the angle
of repose. In particular, we found that although the Bagnold
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rheology of flow near the angle of repose is a bulk rheology,
the fundamental instability inducing the flow in three dimen-
sions appears to be an instability of the surface layers of the
granular medium.

Because granular materials are so common in nature, ex-
isting on many different length scales, there is a great
amount of experimental data on a wide range of dynamic
situations; shear flow and vibration experiments [4-7], and
studies of geological debris flows [8], to name just a few
[9,10]. There have been several moderately well-
characterized experimental studies of granular flow down an
inclined plane under laboratory conditions [11-16]. Yet for
all the intense activity in this field over the years, the rheol-
ogy of granular systems still remains a largely unsolved
problem.

There has been some work on continuum modeling of
chute flow; for a review of continuum based ideas see Sav-
age [17] and references therein. Other theoretical analyses
(sometimes combined with case-specific simulation verifica-
tion) specifically applied to chute flow geometries, attempt to
calculate density and velocity profiles [18—21], but a general
consensus on the qualitative features of these profiles has yet
to be reached.

The state of the art of computer simulations of chute flow
is much less satisfactory because of the enormous equilibra-
tion times needed to set up steady flow. In three dimensions,
simulations have been performed for rather thin piles, which
provides insight into only a small region of phase space
[16,22,23]. Simulations of two-dimensional flows also report
on small systems, and it is unclear whether these studies are
carried out in the steady-state regime or whether the data
reported are transient [24—27]. The basics behind granular
simulations are available in Ref. [28] for 2D and Ref. [23]
for 3D.

Our simulations attempt a systematic 3D study of chute
flows. Unfortunately, we probe regions of phase space diffi-
cult to access in experiment. In a typical 3D experiment the
flow is induced through a hopper-feeder mechanism, which
controls the flow rate of the system, but not the thickness of
the flowing sample, which is chosen spontaneously by the
system. Thus, much experimental data is for flowing piles
10-15 particles high, whereas most of our simulations focus
on moderate to thick piles, greater than 30 particles. Simula-
tion results for systems smaller than 10—15 particles high do
not show the same scaling as that for thicker systems [11].
Also, 3D experiments are usually carried out in narrow chan-
nels of the order of 10 particles wide or less, where side-wall
effects may have a significant role in the observed behavior.
Our simulations are periodic in the vorticity direction, and
we have yet to study wall effects. We suspect that most
discrepancies that may exist between different experimental
and simulation studies are due to such differences in the
detailed nature of the systems studied.

Because of the complexity of flowing granular systems, it
is useful to first define the region of study. In order to deter-
mine the phase boundaries of fully developed, steady-state
flow, we have performed a series of simulations of inclined
plane gravity driven flows in two and three dimensions in an
attempt to define the region of phase space for which steady-
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FIG. 1. Typical 3D snapshot for chute flow: N=24,000, with
bottom surface dimensions 20X 20 diameters shown by the black
particles fixed to the bottom plate; tilt angle =24 °, coefficient of
restitution €=0.88, and friction coefficient ©=0.50. Flow is di-
rected down the incline.

state flows exist. A typical configuration snapshot in 3D,
defining the computational geometry, is shown in Fig. 1.

In our simulations, initiation of flow is achieved by tilting
at a large angle (24-30°) to induce flow. This procedure
removes any configuration construction history effects. We
then reduce the inclination to a lower angle and allow the
simulation to run until we observe a steady-state flow regime
(if one exists). We define steady state as flow wherein the
energy input from gravity balances that dissipated from fric-
tion and collisions, so that the total kinetic energy of the
system reaches a macroscopically constant value. In this
case, the results are independent of sample history.

In Fig. 2, we draw phase boundaries for both two- and
three-dimensional flows as a function of the external control
parameters: tilt angle 6 and pile height H. This should be
compared to a similar experimental determination recently
obtained by Pouliquen [29]. The salient features are the ex-
istence in both 2D and 3D of three principal regions, corre-
sponding to no flow, stable flow, and unstable flow. For a
system of given thickness and fixed microscopic interaction
parameters, these three regions are separated by two angles:
0., the angle of repose, and 6,,,,, the maximum stability
angle, the largest angle for which stable flow is obtained,
shown by solid and dashed lines in Fig. 2, respectively.

For 6<4,, granular flow cannot be sustained. In the re-
gion 0,<6<4,,,,, we obtain steady-state flow with packing
fraction independent of depth. The region of constant pack-
ing fraction in the flowing material for steady-state systems
is accompanied by a smoothly varying, nonlinear velocity
profile. For 6>6,,,,, the development of a shear thinning
layer at the bottom of the pile results in lift-off and unstable
acceleration of the entire pile. The exact locations of these
phase boundaries depend on the model parameters such as
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FIG. 2. Phase behavior of granular particles in chute flow geometry, characterized by pile height H vs tilt angle # for monodisperse
systems in (a) 2D with x=0.50 and €= 0.92 (identified as Model L2 in Table I), and (b) 3D with «=0.50 and €=0.88 (identified as Model
L3). Both figures are for the spring dash-pot interaction model with rough bottom surface. Solid circles indicate the region of steady-state
flow, open symbols correspond to no flow or unstable flow. In 3D we have identified hysteretic flow as +.

and e. For instance, in 2D, if € is reduced from 0.92 to 0.82,
the maximum angle of steady-state flow increases from
~23° to 26 °. Similarly, reducing u typically reduces the
range of stable flow.

It is well known that granular systems exhibit hysteresis.
Such behavior is usually attributed to system preparation and
associated history effects [30]. Although we observe three
distinct regimes, the behavior close to the phase boundaries
is sensitive to the procedure for the initiation of flow. Indeed,
we have observed hysteresis in our 3D simulations when
approaching 6, from either side, particularly for thinner
piles. The hysteresis was significantly reduced upon increas-
ing pile height H. Crystallization of the 2D monodisperse
pile upon the arrest of flow was primarily responsible for the
large hysteresis observed in that case.

Besides the phase diagram, our most important results
concern the detailed structure and rheology of the steady-
state flowing regime. In this regime, we do see a constant
density profile with height, as well as the Bagnold scaling of
Eq. (1). The amplitude of the strain rate goes to zero at the
angle of repose; thus relations such as Eq. (1) possess an
additional strong angular dependence.

We also analyzed the normal stresses in the flowing state,
and found a number of results, most notably that the normal
stress perpendicular to the free surface o, is approximately,
but not exactly, equal to the normal stress parallel to the flow
Opp-

There are two fundamental puzzles in these results for the
rheology of chute flow. The first and smaller puzzle is the
appearance of an anomalous normal stress difference o,
—0,.. We have been unable to define a simple, local, di-
mensionally consistent and rotationally invariant constitutive

relation connecting o to y? that recovers this behavior.

The second, and deeper puzzle, is the relationship be-
tween the rheology and the Coulomb yield criterion. As the
angle of repose is approached from above, the amplitude of
the flow goes to zero, but the tensor structure of o remains
approximately liquidlike, instead of recovering the large nor-
mal stress difference characteristic of the Coulomb yield cri-
terion, which presumably applies to the static pile at the

angle of repose. The one exception to this observation is the
surface stress in three dimensions, where the normal stress
differences do become large as the angle of repose is ap-
proached, suggesting that surface yield may control the fail-
ure of the static state. In the bulk, however, we are left with
a transition to a static state that appears continuous in the
shear rate, but is apparently discontinuous in normal stress.
We do not believe that an understanding of chute flow rhe-
ology is possible without resolving this seeming paradox.

We present the simulation scheme in Sec. II, detailing the
interparticle force laws. In Sec. III, we report our compre-
hensive simulation analysis, including the behavior of the
density and velocity profiles for our systems with varying
interaction parameters. In Sec. IV, we present a detailed dis-
cussion of stress analysis and rheology of chute flow sys-
tems. In Sec. V we summarize our findings.

II. SIMULATION METHODOLOGY

We use the methods of molecular dynamics to perform
2D and 3D simulations of granular particles. For this study
we model N monodisperse spheres of diameter d and mass
m, supported on the xy plane by a rough bed. The computa-
tional geometry of the present 3D system consists of a rect-
angular box with periodic boundary conditions in the x
(flow) and y (vorticity) directions and constrained in the ver-
tical z direction by a fixed rough, bottom wall and a free top
surface, as in Fig. 1. Simulations in periodic cells attempt to
study flow down infinitely long and wide chutes, while using
a finite number of particles.

In 3D, the fixed bottom is constructed from a random
conformation of spheres of the same diameter d as those in
the bulk by taking a slice with areal fraction very close to
random close packing (approximately 1.2 particle diameters
thick) from a previously packed state. This simulates an ex-
perimental procedure whereby glue is spread over the origi-
nal smooth chute surface and particles are then sprinkled
onto this surface to construct a rough floor approximately
one particle layer thick. For 2D studies, the bottom wall is
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constructed from a regular array of spheres of diameter 2d
and particle motion is restricted to the xz plane.

We employed a contact force model that captures the ma-
jor features of granular interactions. In 2D, interactions be-
tween (projected) spheres are modeled using a linear spring
model with velocity-dependent damping (the spring-dashpot
interaction) and static friction. In 3D, the spring-dashpot
model and static friction are also used, as well as Hertzian
contact forces with static friction. In the presentation of the
results, we will specify which model is employed, and dis-
cuss the differences.

The implementation of the contact forces, both the normal
forces and the shear (friction) tangential forces, is essentially
a reduced version of that employed by Walton and Braun
[22], developed earlier by Cundall and Strack [28]. More
recent versions of these models now exist [31-33]. We ig-
nore hysteretic effects between loading or unloading normal
contacts and we do not differentiate between frictional direc-
tions at the same contact point at different time steps as does
Walton [23].

Static friction is implemented by keeping track of the
elastic shear displacement throughout the lifetime of a con-
tact. For two contacting particles {i,/}, at positions {r;,r;},
with velocities {v;,v;} and angular velocities {®;,®;}, the
force on particle i is computed as follows: the normal com-
pression §;;, relative normal velocity Vi relative tangential
velocity v,,, are given by

S=d—ry. (@)

vﬂj/_:(vij-n,-j)n,-j, (3)
V,ij:V,'j_an.j_%(wi+wj)><rij’ )

where r;=r,—r;, n;=r;/r;, with r;=|r;|, and v;

=V;—V;. The rate of change of the elastic tangential dis-
placement u, . set to zero at the initiation of a contact, is

given by

a’u,ij (urij'vij)rij )
— =V, ——————.
dt lij r.24
ij
The second term in Eq. (5) arises from the rigid body rota-
tion around the contact point and insures that u, always lies
ij

in the local tangent plane of contact. Normal and tangential
forces acting on particle i are given by

Fn,.j:f( 6;jld)(k,6;n;;— )’nmefan,.j)a (6)
inj:f(éij/d)(_kr“zij_')’tmeffvzl.j)a (7)

where k,, and 7, , are elastic and viscoelastic constants,
respectively, and meg=m;m;/(m;+m;) is the effective mass
of spheres with masses m; and m;. The corresponding con-
tact force on particle j is simply given by Newton’s third
law, i.e., F;;= —F;;. For spheres of equal mass m, as is the
case here, mg=m/2; f(x)=1 for the linear spring-

dashpot model, denoted henceforth as Model L, or f(x)

PHYSICAL REVIEW E 64 051302

TABLE 1. Parameter values used in our standard simulation set
for the 2D and 3D linear spring models [Models 1.2 and L3, f(x)
=1], and the 3D Hertzian model [Model H3, f(x)= x]. For Model
H3, € is velocity dependent.

Model D f(x)  k, Yo o kilkyo vilyv. €
L2 2 1 2X10° 335 277 0 050 092
L3 3 1 2X10° 500 277 0 050 088
H3 3 x 2x10° 500 2/7 0 050

=\/x for Hertzian contacts with viscoelastic damping be-
tween spheres, denoted as Model H.

Our results are given in nondimensional quantities by de-
fining the following normalization parameters: distances,
times, velocities, forces, elastic constants, and stresses are,
respectively, measured in units of d,t,= \/%,m,: \/g_d,Fo
=mg.,k,=mgld, and o,=mg/d>. For a realistic simulation
of glass spheres with diameter =100 wum, the appropriate
elastic constant kﬁlass: 0(10'%) necessitates a very small
time step for accurate simulation, prohibiting any large-scale
study. In our simulations, we typically use a value for %,
=0(10°) which we believe captures the general behavior of
intermediate-to-high-k systems, thus offering a reasonable
representation of realistic granular materials (we discuss this
aspect further in Sec. III B). A complete list of model param-
eters used in our standard simulation set, which consists of
2D and 3D versions of Model L (L2 and L3), and a 3D
version of Model H (H3), are given in Table 1.

In a gravitational field g, the translational and rotational
accelerations of particles are determined by Newton’s second
law, in terms of the total forces and torques on each particle
i

FEOt:m[g-l-Z F”ij+F’ij’ (8)
J

1
7_Eot: —5 ; rinF,t_j. 9)

The amount of energy lost in collisions is characterized
by the inelasticity through the value of the coefficient of
restitution. For Model L, there are separate coefficients, €,
and ¢, for the normal and tangential directions, which are
related to their respective damping coefficients 7y, , and
spring constants k,, ,

en,t:exp(_ 7n,ttcol/2)’ (10)
where the collision time ¢.,; is given by
teor=(2k, Im—yp14)~ 2. (11)

The value of the spring constant should be large enough to
avoid grain interpenetration, yet not so large as to require an
unreasonably small simulation time step ¢, since an accu-
rate simulation typically requires 8¢~ .,;/50. For Model H,
the effective coefficients of restitution depend on the initial
velocity of the particles.
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The static yield criterion, characterized by a local particle
friction coefficient u [34], is modeled by truncating the mag-
nitude of w, ~as necessary to satisfy |Ff,—j| < |,LLF”U|. Thus the

contact surfaces are treated as ‘‘stuck’ while F ’t/< mF, "

and as ‘‘slipping’” while the yield criterion is satisfied. This
““proportional loading’’ approximation [35] is a simplifica-
tion of the much more complicated and hysteretic behavior
of real contacts [36]. To test the robustness of the propor-
tional loading assumption, we also carried out simulations
with Model L in which u, is not truncated but the local yield
criterion F,<uF,, is implemented. Note that we do not be-
lieve this to be a physically reasonable choice. Results for
the two cases are similar, although the average kinetic energy
is somewhat smaller (by approximately 18% for Model L2)
when u, is truncated compared to those simulations when u,
is unbounded.

The components of the stress tensor o ,g Within a given
sampling volume V are computed as the sum over all par-
ticles i within that sampling volume of the contact stress
(virial) and kinetic terms,

! F e my s p
UUBZVE Z ) +m(vi—vT)(vF—vF)|, (12)
i JFI

where F 5 =F f,-,- +F ffj , and v is the time-averaged velocity of
the particles within the sampling volume V. The time-
averaged velocity must be subtracted since the kinetic por-
tion of the stress tensor is entirely due to fluctuations in the
velocity field.

For Hertzian contacts [37], the ratio k,/k, depends on the
Poisson ratio of the material, and is about 2/3 for most ma-
terials. For ease in our simulations, we use a value
k,/k,=2/7, which makes the period of normal and shear con-
tact oscillations equal to each other for Model L [38]. How-
ever, the contact dynamics are not very sensitive to the pre-
cise value of this ratio. We have performed simulations with
different values of k,/k, to test how this ratio may affect our
results; different values of this ratio yield nearly identical
results. The only difference we observe is a slight increase in
the total, averaged kinetic energy (KE) of the system when
k;/k,>2/7, and a decrease for k,/k,<<2/7. For example,
when we set k,/k,,=2/3 instead of 2/7, the total averaged KE
increases by about 10%, whereas all other macroscopic
quantities measured in the simulations, such as density and
stress, remain essentially unchanged.

Similarly, although all results reported here are for
v,/v,=0 (i.e., no rotational velocity damping term) we have
also carried out simulations to measure the effect of intro-
ducing rotational damping, v,/y,>0. When we set 7,
=1, , we observe a slight decrease, of about 8%, in the total
averaged KE, compared with those simulations that have vy,
=0. Making v,/7y, nonzero quickens the approach to the
steady state by draining out more energy. However, all other
quantities are, again, unchanged. We discuss reasons why we
observe minimal changes with these interaction parameters
in Sec. Il B.

Typical values for the friction coefficient u range be-
tween 0.4 and 0.6 for many materials. We chose u=0.50 for

PHYSICAL REVIEW E 64 051302

most of our simulations, though variations in p will be dis-
cussed in Sec. III B. Similarly, the value of € is chosen to
reflect the properties of a realistic granular particle.

The equations of motion for the translational and rota-
tional degrees of freedom are integrated with either a third-
order Gear predictor-corrector or velocity-Verlet scheme
[39] with a time step 8r=10"* for k,=2X 10°. All data was
taken after the system had reached the steady state. To reach
the steady state, simulations were required to run for 1—2
X 1075t when starting from a nonflowing state for N
<10000, and the largest system in 2D (H=200) required a
run time of 2—5X 10%5z. On a 500-MHz DEC Alpha proces-
sor, our code requires about 5 days to simulate 10 million
time steps of a 3D 8000-particle granular system. We have
also created a parallel version of the 3D code using the stan-
dardized message-passing interface library. The parallel code
partitions the simulation domain into small 3D sub-blocks
using the methods described in Ref. [40]. Even on a cluster
computer with relatively low interprocessor communication
bandwidth, the code runs at high parallel efficiencies as long
as we simulate 1000 or so particles per processor. For ex-
ample, on 8 processors of our Alpha/Myrinet cluster, we can
simulate 15 million time steps/day of the same 8000-particle
system.

For the imposition of chute flows with varying tilt angles,
we rotate the gravity vector g in the xz plane by the tilt angle
6 away from the —z direction; the flow is from left to right
in this sense. This means that the z axis is always normal to
the free surface. In 3D the area of the bottom is A=L,L,
where L, and L, are the dimensions of the simulation cell in
the x and y directions, respectively. For the 3D simulations,
we define a measure of the height of the pile by defining H
=Nd?/A as the pile height if it were sitting on a level plane
at rest in a simple cubic lattice. For example, for N=_8000
and L,=20d and L,= 10d, H=40 (although due to the
precise configuration, the actual measured height ~37). This
is a useful definition for comparing between different system
sizes. We study a range of system sizes, 1000=<N=20000.
For the largest system, H=100. The influence of other wall
dimensions L, , L, was also studied. For the 2D runs, the x
dimension of the periodic side is fixed at 100d (i.e., 50-large
particles long) and the pile height 2<H=<200, i.e.,
N=200-20000.

In 2D, the initial state was constructed by building a tri-
angular lattice of particles. The tilt angle was then increased
until flow occurred. The initial flow occurred only for 6
=23 °, This minimum value to induce flow depends on the
size and spacing of bottom plate particles. The initial failure
occurred mostly at the bottom of the pile, followed by move-
ment of a dilation front toward the top of the pile as shown in
Fig. 3. Once this initial steady state was achieved, the angle
6 was adjusted to its desired value, and the system equili-
brated to its final steady state. In 3D, we started the system
from a randomly diluted simple cubic lattice. The angle was
then increased to a large angle #=30° to induce disorder
and settling of particles. The angle # was then decreased to
the desired value and flow allowed to continue until a steady
state was reached, before measurements were taken.
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In 3D, to test for hysteresis near 6., # was reduced to
below 6, until the system settled down into a disordered state
and stopped flowing. # was subsequently increased to 6"
and the system began flowing. This angle of flow initiation
was sometimes different from the angle of cessation of flow
6:'°? when taking a flowing state and then lowering # down
to 6'°7 to stop the flow. However, this small hysteretic be-
havior, in 3D, only occurs for thin piles at low angles.

In 2D the equivalent phase diagram can only be con-
structed by taking a flowing state at angle # and then lower-
ing to 6°?. Once the 2D state stops flowing the system
spontaneously crystallizes into a polycrystalline ordered
state. To induce flow from this ordered state requires increas-
ing @ to a much higher angle than 6,7 .

PHYSICAL REVIEW E 64 051302

FIG. 3. Time sequence of a
typical configuration in 2D fol-
lowing an instantaneous change in
the inclination angle 6 from 0 ° to
24 °. Results are for N=10000,
p#=0.50, and €=0.82, and for
times 7= (a) 100, (b) 400, (c) 600,
and (d) 6000. Flow is left to right.
As the flow progresses, the dila-
tion front propagates upwards
through the system, destroying the
initial ordered array; the pile con-
sequently “‘fluffs’” up.

II1. RESULTS: VELOCITY AND DENSITY PROFILES
A. Kinematics of steady-state systems

We focus our main attention on the regime of steady-state
flow for moderate to deep piles, for which 6, is independent
of depth. In Fig. 4 we plot the density and velocity (in the
direction of flow) of z profiles over a range of inclination
angles 6, for a series of simulations in 2D and 3D. Figure
4(a) is for a 2D system (Model L2, cf. Table 1) of N
=10000 particles, corresponding to H=100. In Fig. 4(b),
the equivalent 3D model (Model L3 with N=8000, H
=40) denoted by the open symbols, is compared to the 3D
Hertzian model (Model H3). The tilt angle was varied be-
tween 18°—30° in all cases. In 2D the system becomes

6=18" ) )
0.8 1 j 0.6
6 07 Vo5 ¢ 055
0.6 | E 05
045

FIG. 4. Packing fraction ¢ and
velocity v, profiles, as a function
of distance from bottom z, for (a)
2D spring-dash-pot model (Model

L2), with H=100, at tilt angles of
6=18, 19, 20, 21, 22, and 23 de-
grees. (b) 3D, H=40 systems at
6=20, 22, 24, and 26 degrees,
with Model L3 (open symbols)
and Model H3 (solid lines).

10

20 30 40 50

051302-6



GRANULAR FLOW DOWN AN INCLINED PLANE. ..

4.0 . . :
—————— 8=23°
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FIG. 5. z component of the mean-square displacement for three
angles, 6=21°, 22°, and 23 °, for Model L3, with H=40.

unstable to an accelerating flow above 23 ° and in 3D the
unstable flow regime is observed above 26 °.

In both 2D and 3D, the packing fraction remains constant
over almost 40 layers in 3D, and 100 layers in 2D. For all
steady-state systems, as the tilt angle is increased, the value
of the bulk packing fraction decreases. This decrease accom-
panies a growing dilated region (of lower packing fraction)
near the free surface at the top. All the velocity profiles are
concave, and velocities increase in value with increasing tilt
angles. Consequently, the total kinetic energy of the system
rises with increasing angle [41].

‘We monitor vertical mixing of the bulk by measuring the
bulk-averaged, mean-square displacement of particles over
time. Figure 5 shows the mean-square displacement of par-
ticles normal to the surface (z°) as a function of simulation
time for Model L3, over a range of tilt angles. The linear
relationship demonstrates well-defined diffusive motion in
the z direction, suggesting thorough mixing in the system.
Similar results are observed in 2D. At long times (z?) will
reach a constant due to the finite height of the pile.

By observing a sequence of snapshots (not shown here) of
tracer particles at various heights in the bulk, we also find
that diffusion is somewhat faster near the bottom of the pile.
This is indicative of the fact that fluctuations in the particle
velocities are greater closer to the bottom wall. Figure 6

PHYSICAL REVIEW E 64 051302

>/<dv

2
o

p<odv

40

FIG. 6. Profiles of the kinetic portion of the diagonal elements
of the stress tensor p{(Sv®)?), normalized by their maximum value
along the curve, for Model L3 inclined at 21°(———), 23°
(———),and 25°(—").

depicts the diagonal components of the kinetic part of the
stress tensor, p{(Sv®)?), where p is the mass density and

Sv*=v*—v7, at three different angles for Model L3. Indeed
we do find that the velocity fluctuations (frequently termed
“‘granular temperature’’ in the literature of dilute granular
flows) are greatest at the bottom of the pile (away from the
actual plate) and decrease with height until the values appear
to level off at the top free surface.

This behavior partially illustrates how the pile is able to
maintain a constant density profile, even though the stresses
increase towards the bottom, and the flowing pile has a finite
compressibility, as evidenced by the changing density as a
function of tilt angle 6. Particles deeper into the pile experi-
ence increasing compaction forces due to the load of the
particles above, yet a constant density is maintained through
the increased particle velocity fluctuations.

The data sets shown in Fig. 4 are for one system size only.
In Fig. 7, density and velocity profiles for systems of varying
heights are compared. The densities measured deep in the
pile, as well as the density and strain rate profiles near the
surface, are independent of the overall height of the pile.

FIG. 7. Density and velocity
profiles for (a) 2D systems (Model
L2) for 6=20° with sizes H

=200, 100, 50, and 25, and (b)
3D systems (Model L3) for 6

0.9
08 \{& N 06 |
07 Vo \
0.6 !
P 0.2
0.5 :
04 0
80 -
200 — H=200
60 -
v, -—— H=100 | v(2
100 ---- H= 50 407
T e H= 25 20 |
0 e ) 0
0 100 200

(a)

(b)
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FIG. 8. Density and velocity profiles for thin systems (Model
1.2), with H=10, at 20 ° and 23 °. These profiles are very different
from the thicker piles.

This suggests that the rheology of the system is local in this
regime; i.e., that constitutive relations locally relate stress
and strain rate. For reasons alluded to in Sec. IV D, we have
been unable to identify these constitutive relations.

We note that the behavior observed in Figs. 4 and 7 is true
only for H=20. For smaller piles, the behavior is very dif-
ferent, as seen in Fig. 8, where a non-Bagnold velocity pro-
file is observed. Recent experimental studies in heap flow
geometries, for thin surface flows, observe an exponential
decay of the velocity with depth [11,42]. Similar results are
obtained in shear flow experiments [43].

B. Dependence on Interaction Parameters

In this section, we investigate the sensitivity of these re-
sults to the particle interaction parameters. We independently
vary the internal coefficient of friction w, the coefficient of
restitution €, and the value of the spring constant k,. We
observe that while the density of the bulk material does not
depend sensitively on these interaction parameters, the ve-
locity profiles do.

Figure 9 shows the sensitivity to the friction coefficient u
by depicting density, velocity, and strain rate profiles for (a)
Model L2 with H=50 and 6=20°, where ©=0.15, 0.25,
0.50, and 1.0, and (b) Model L3 with H=40 and #=22°, for

PHYSICAL REVIEW E 64 051302

values of ©=0.15, 0.25, 0.5, and 1.0. The data suggest that
there is minimal change in the bulk density over this range in
M. In the bottom panels of Fig. 9, the shear rate dv,/dz
scaled by dv'y*/dz is plotted for the various values of u.

Similarly, Fig. 10 shows the profiles for the same systems
as described in Fig. 9, but with a fixed ©=0.5 and varying
coefficients of restitution e, i.e., varying the inelasticity of
the system. Again we see that variations in € have little ef-
fect on the flow behavior of these systems, particularly in
3D, provided that the system is able to reach steady state.
[For low w (=~0.10) and high € (= 0.96 for 2D and 0.98
for 3D), the systems become unstable.]

Another microscopic parameter we have investigated is
the effective hardness of the particle, determined by the
value of the spring constant k,. We vary k, and keep €
constant by adjusting the value of vy, . Simulations investi-
gating this parameter can be time consuming: increasing k,,
by a factor of 100 requires a reduction in the time step by a
factor of 10. Fortunately, as Fig. 11 (measured for Model L2
with #=20°,H=50) indicates, the effect of variations in &k,
is minimal, provided k,, is sufficiently large.

C. Dependence on Tilt Angle

Judging by the insensitivity of the macroscopic quantities
to the various interaction parameters for Model L (as shown),
as well as Model H, we see that to a good approximation,
effects due to material properties and system size can be
neglected in the steady-state regime. As shown in Fig. 12,
the packing densities vary approximately linearly with 6 and
approach the maximum values ¢35 =0.815(5) and ¢35"
=0.590(5) at 6,,p~17.8° and 6,3,~19.4° for 2D and
3D, respectively. In 3D, we obtain a static packing fraction
&3p="0.595, when the tilt is reduced below 6,. Experimen-
tal studies of fluidized granular beds also obtain a similar
value as the gas flow is reduced to yield a static packing [44].
In 2D, upon lowering the tilt angle below 6,, we observe
compaction to a polycrystalline triangular lattice with ¢,p
=0.9.

It is interesting to note that the asymptotic packing frac-
tions ¢55" and @5y are close to the values one would obtain
assuming the flow was the densest possible flow of lines (in
2D) or planes (3D) of close-packed particles parallel to the
top surface. For the 2D case, the packing corresponds to a

FIG. 9. Density, velocity, and
strain rate profiles for different

values of the particle friction co-
efficient for (a) Model L2 at @
=20°,H=50 for ©=0.15, 0.25,

0.50, and 1.0, and (b) Model L3 at
0=22°, H=40 for u=0.15,
0.25, 0.50, and 1.0.
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—--—- e=0.96

— e=0.58

——- e=0,78
- e=(),88 FIG. 10. Density and velocity

profiles for different values of €

—--— e=0.98

for (a) Model 1.2 at #=20°,H
=50 for €=0.72, 0.82, 0.92, and
0.96, and (b) Model L3 at 6
=22°, H=40 for e=0.58, 0.78,

60

square lattice with a packing fraction of 7/4=0.79. For the
3D case, the sliding planes would be square lattices, stacked
to form triangular lattices in the y—z plane. This arrange-
ment has a packing fraction of /(3 \/§ )=0.60.

IV. RESULTS: STRESS ANALYSIS
A. Cauchy Equations

The stress tensor is symmetric: o;;=o0;;, with D(D
+1)/2 independent components in D-dimensional space.
The Cauchy (force-balance) condition provides only D equa-
tions, leaving the solution underdetermined. Thus, an addi-
tional D(D —1)/2 constitutive relations are needed to close
the equations and to solve for the transmission of stress in a
granular system.

In 2D, the steady-state Cauchy equations are

——==pgcos b, (13)

=pg sin 6. (14)

60

FIG. 11. Density and velocity profiles for different values of the
spring constant k, , for Model L2 at §=20°,H=50.

0.88, and 0.98.
o.,(z)=gcos GJ dzp(z), (15)
o (z)=0_(z)tan 6, (16)

where p is the number density of spheres (¢p= wpd”/2D for
dimensionality D=2 and 3). If, as in our case, the density p
is constant,

Uzz(Z):gPCOS 0(h—z), (17)
0. (z)=gpsin §(h—z), (18)

where h is the effective height of the flowing pile, which
appears as a constant of integration in Eq. (17). o, cannot
be determined from these considerations, since we lack a
constitutive relation that would determine it. Nevertheless,
important features of the behavior of the stress tensor can be
obtained by Mohr-Coulomb analysis [45].

B. Mohr-Coulomb Analysis

The Mohr circle, shown in Fig. 13(a), is a geometrical
construction that enables visualization of rotational transfor-

N
0.8 '[ . . 1
0,,,~178 e- o2
[ )
O
07t b aL ]
]
0,5~ 194°
06 [ E
"’9‘*\_‘\_'
‘9“ | | u
<o
0.5 . . . .
18° 20° 22° 24° 26°
0

FIG. 12. Tilt dependence of the packing fraction in the region of
constant packing fraction, for Models L2 (solid circles), L3 (solid
squares), and H3 (open diamonds). The dashed lines denote the
linear dependence on tilt angle near the angle of repose.
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FIG. 13. (a) The Mohr circle is a graphical tool that is used to determine transformations of a rank 2 tensor (such as stress) under rotation.
The stress components for a given coordinate system are represented by points A and B, which form a diameter of the circle. The transformed
stress components upon a rotation of the coordinate system by angle ¢/ can be found by a rotation of these points by 2 ¢ around the circle.
The point C, which has a tangent that passes through the origin, corresponds to the orientation of a shear plane (at an angle ¢ to the x axis)
with the largest ratio of shear to normal stress. (b) The stress angle 2 ¢ [COA in (a)] as a function of height for #=20° (O), 22° (0O),
24° (<0),and 26° (A). The results are for Model H3 with H=40. The lines are fits that decay exponentially from 2@ at the effective
height & [cf. Eq. (17)] to 2¢® ! in the bulk, with a typical decay length of 1.3 to 2.2d, indicating a surface layer about 5d to 84 thick.

mations of the stress tensor. The circle is drawn in the o
— 7 plane, such that the points A(o,,,0,,) and B(o,,,
—o,,) form a diameter of the circle, centered at point O.
Coordinates of the points on the circle represent the normal
(o) and shear (7) components of the stress tensor associated
with all possible shear planes. Upon a rotation of the coor-
dinate system, i.e., the plane in which shear is specified, by
an angle ¢, the representative points rotate by an angle 2 ¢
around the circle.

At a given tilt angle, o, and o,, are determined by the
Cauchy equations, which fixes the location of point A
(o, /0o,,=tan §). However, o, and thus the location of
point B, is undetermined by the Cauchy equations, and de-
pends on the rheology.

The *‘stress angle’” 2= COA, formed by the stress point
A, the origin of the Mohr Circle O, and point C, whose
tangent passes through the origin of the (o, 7) plane, can be
used as a surrogate for any quantity that completes the de-
scription of the x —z stress state, since it uniquely identifies
the two-dimensional stress state of the flowing pile (for 6
>46,) by fixing the value of o,,. For a pile with a uniform
Coulomb yield criterion that is at incipient yield everywhere

(IYE) when =6, , the points C and A coincide, and there-
fore ¢=0. On the other hand, if the flowing pile behaves like
a fluid, o,,= o, , and consequently sin 2¢=tan 6.

Z

C. Stress Tensor Near the Surface

In all cases, the behavior of 2 ¢ as a function of depth can
be fitted to an empirical form that starts at a “‘surface’” value
at the effective height 4 and approaches a ‘‘bulk’ value ex-
ponentially [see Fig. 13(b)]

2¢(Z):2¢bulk+2(¢surf_ gDbulk)ef(/t*z)/(‘i‘ (19)

surf

Figure 14 depicts the values for the fitting parameters 2 ¢
and 2 @™ as a function of tilt angle for the three main mod-
els studied in this paper. The following observations can be
made:

(i) 2¢, and consequently all the ratios of stress tensor
components, becomes independent of depth below a transi-
tional surface layer about 5d to 84 in thickness.

(ii) In 2D [Model L2, see Fig. 14(a)], as 6 is lowered to
6., the stress state at the surface moves even farther from

40°
30°
20°
2¢ -
100 | //‘/ OZ(p::;, L3
o O2¢ o L3
o° _G@.u...,e“m—-@ """" &0 .2(P:ulk’ H3
W29, H3
_10° = = R z 3
o o2 24 26 B
(b) o

FIG. 14. The stress angle at the surface, 2 ¢ (circles), and in the bulk, 2 @™ (squares), for (a) Model L2 (open symbols connected by

dotted lines), and (b) Model L3 (open symbols connected by dotted lines) and H3 (solid symbols connected by dashed lines). For Model L2,
the rheology at the surface (z=#h) near 6, is even farther away from the IYE condition compared to the bulk. However, both 3D models
observe near-IYE conditions at the surface near 6, , suggesting that the arrest of flow may be initiated by the surface rather than the bulk.
The solid lines depict behavior expected without a normal stress anomaly, when sin 2¢=tan 6.
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FIG. 15. Profiling the components of the stress tensor at 6
=22° in (a) Model L2 for H=100, (b) Model L3 for H=40.

IYE compared to the bulk. Independent observations confirm
that the top surface does not play any discernible role in the
arrest and start of flow; this primarily occurs near the bottom
surface.

(iii) However, for both models in 3D [Fig. 14(b)], as 6 is
lowered to 6,, the surface layer does approach incipient
yield (2¢=0) while the bulk remains far from it. It appears
that the stabilization of the surface layer at 6= 6, is respon-
sible for the arrest and subsequent restart of flow in the entire
system, accompanied by a near elimination of flow hyster-
esis.

(iv) The bulk has nearly identical normal stresses o, and
0., which would have corresponded to 2 ¢= arcsin(tan )
depicted by the solid lines in Fig. 14. In other words, the
normal stress anomalies discussed in Sec. IVD are quite
small compared to what one would have attributed to a plas-
tic material at incipient yield.

(v) The transitional surface layer is not directly related to
the dilated layer; the former is much thicker near 8= 6, and
penetrates well into the region of constant density, as can be
seen by comparing Figs. 4 and 13(b). In fact, upon approach-
ing 6, , the width of the surface rheological layer ¢ increases
slightly whereas the width of the dilated layer decreases sub-
stantially.

D. Bulk Rheology

Having identified the behavior associated with the free
surface at the top, we can now investigate the stress tensor
below this surface layer. For tilt angles sufficiently above
0, , where the granular medium behaves roughly like a fluid,
one might expect the normal stresses (o, 0o,,, 0 in
3D, o, and o, in 2D) to be equal. In 3D, we find that o,
is smaller than the xx and zz components by 15—20%, sug-
gesting that consolidation and compaction normal to the
shear plane is poorer. The normal stresses and the driving
shear stress o, , for the 2D and 3D linear-spring model are
shown in Fig. 15. The components (o, ,0,,) are not shown,
since they vanish due to the symmetries in the geometry;
they are indeed measured to be zero within the error bars
associated with the sample size and averaging time.
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FIG. 16. Dependence of the normal stress anomaly y on tilt
angle 6 for Models 1.2 and L3 (closed symbols), and Model H3
(open symbols). Errors are of order symbol size.

We observe that for both the 2D and 3D systems (and for
both linear-spring and Hertz models), although o, ~0,_,
there are small but systematic deviations from perfect equal-
ity that become independent of depth in the bulk. Let us
define a ‘‘normal stress anomaly’’ y as

x= = (20)

This is simply an alternate parametrization of the stress angle
2 ¢ defined earlier, introduced as a convenience to emphasize
the small deviations around fluidlike behavior, for which y
=0. Therefore, x is also independent of height z except near
the top and bottom surfaces. With this in mind, we plot the
bulk value of y vs @ in Fig. 16, noting a strong angle depen-
dence, in which y is neither monotonic in 8 nor of a specific
sign. We have evaluated a class of homogeneous, polyno-
mial, rotationally invariant constitutive stress-strain rate re-
lations, but have not been able to satisfactorily describe these
rather peculiar normal stress anomalies.

The fact that the stress varies linearly with depth and our
earlier observations of constant density suggests that the
analysis relevant to our systems is that due to Bagnold [1].
Bagnold’s collisional-momentum transfer analysis for granu-
lar systems works under the assumption of a constant density
profile, resulting in stress profiles that vary linearly with
depth. The essence of Bagnold’s theory is a constitutive
equation whereby the shear stress o, is proportional to the
square of the strain rate y>=[dv (z)/dz]*, where v(z) is
the velocity in the direction of flow at height z [46]:

0= Af¥ 1)

Combined with Eq. (18), and the no-slip boundary condition
at z=0, this results in a velocity profile of the form,

_ 3/2
vx(z)=ABagh3’2(§\/pgsina) 1—(}%) } (22)

From Fig. 17, we observe that for the bulk of the flow, the

relationship o, x ¥? holds to a good approximation below
the first 5-8 layers, and away from the bottom wall, for the
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FIG. 17. Rheology curves of
chute flow systems-shear strain vs
shear stress; a) 2D, (Model L2,
H=100) and b) 3D (H=40):
Model L3 (symbols) and Model
H3 (solid lines). Bagnold scaling
fits in the bulk are shown by
dashed lines for Model L and dot-
ted lines for Model H.

10 20 %
(a) o (b)

2D and 3D systems. We have fitted the ‘‘Bagnold’ scaling
with the dotted lines, the solid lines and symbols represent
the simulation data [47]. The tilt dependence of the overall
amplitude of the strain rate Ag,,, is shown in Fig. 13. In 3D,
Apg,y continuously approaches zero at the angle of repose,
whereas in 2D, there is a jump in this amplitude, consistent
with the overall hysteretic behavior.

Another way to test this scaling is by plotting the average
velocity (v?)!? as a function of H (which is proportional to
h). The scaling in Fig. 19 shows that (v?)"?«H®, where «
=1.52%+0.05. This result also agrees well with experiment
[29]. If we rescale the data from Fig. 7, we find good agree-
ment apart from the region near the top surface where the
density is no longer constant. This suggests that Bagnold’s
theory may provide an approximate description of the bulk
motion of our systems. In fact, Bagnold scaling is a generic
dimensional result for the situation where the time scale of
the system is only set by the inverse of the shear rate, as is
the case here [2].

Bagnold’s original stress-strain rate relationship arises
from a momentum-transfer mechanism that is based on bi-
nary collisions. From the simulation data, we find that the
dominant term in the stress is due to lasting contacts between
particles, and the ballistic (kinetic) contribution to the stress
is significantly smaller (about 1% of the total value). Thus,
the success of the Bagnold scaling is based on the dimen-
sional structure of the problem, rather than on the particular
momentum-transfer mechanism that he identified.

Another method to test the nature of collisions is to com-
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03} eL2
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Agg 02 | OH3

ol ¥
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0

FIG. 18. Strain rate amplitude A g, = v/ \/; associated with the
bulk Bagnold rheology for the three model systems. Whereas 3D
amplitudes extrapolate to zero at 6,, there is a finite jump associ-
ated with the 2D amplitude at 6, .

pute the average coordination number Z. as a function of
inclination angle. This data, for the 2D and 3D linear-spring
systems, is shown in Fig. 20. In a system dominated by bi-
nary collisions, one would expect Z.<<1; this is clearly not
the case for our system. The observed behavior is an increas-
ing Z, as 6 approaches the angle of repose from above. Nor-
malized this way for a static 2D triangular lattice with no
free particles, the value would be 3. Similarly, for 3D static
packings, one might expect a value between 4 —6 [48].

Because of these observations, we reason that contribu-
tions to the kinetic term of the stress tensor do not play a
significant role in determining the macroscopic quantities
measured. It might then be argued that for a densely packed
pile of stiff objects in motion, the overall time evolution of
the system in the configurational phase space is primarily
constrained and controlled by aspects of geometrical pack-
ing, rather than the specific form of the stiff force laws be-
tween particles or dissipation functions. This might be why
the system is so insensitive to variations in the interaction
parameters, as described in Sec. III B.

V. CONCLUSIONS

We have concentrated on the steady-state nature of chute
flows, specifying first the region in phase space in which
such flows can be observed, and second the structure and
rheology of these flows.

3

10
® 3D: p=0.50
10° L 0 2D: u=0.50
02D: p=0.25
g/\ 10'
>
\% o
10°
10—1 0 I1 I2 3
10 10 10 10

FIG. 19. Scaling of velocity in the direction of flow <v§(z)
> 122 with system height H in; (a) 2D at 20 ° with e=0.92, for two
different values of u, (b) model H3 at 24 °. The slope of the lines
indicate that <p?>'"2cH® with a=1.52+0.05.
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FIG. 20. Averaged instantaneous coordination number Z,.,as a
function of tilt angle for Model L2 with H=100, and Model L3
with H=40.

A region of constant packing fraction is a generic feature
in our 2D and (two) 3D models, with only a small dilated
layer at the free surface. Analysis of the velocity profiles has
revealed that to a good approximation, Bagnold scaling
holds: the Bagnold velocity profile, v,>H', and rheology,

oy, is reasonably verified away from the surface. This is
in contrast with earlier simulations on chute flows, which
indicated linear velocity profiles. We argue that although this
latter may be the case for small systems, such as flowing
layers less than 20-particles high, steady flows of moderately
thick systems are well-approximated by Bagnold scaling.

PHYSICAL REVIEW E 64 051302

Although the regime of Bagnold-like flow appears to
dominate the system, we have found that deviations from
this simple theory exist. The normal stress anomaly remains
a mystery, and our fits to the stress-strain rate curves apply
only away from the top and bottom surfaces. We have also
found that the transmission of stress in such dense flows is
dominated by contacts, as opposed to binary collisions in
Bagnold’s analysis of dilute flows.

Finally, we observe that the normal stresses in bulk flows
do not approach a Coulomb yield criterion structure at the
angle of repose, despite the continuous disappearance of the
shear rate at this threshold. The fact that Coulomb yield is
approached at the surface for 3D flows hints at a special role
for surface failure in this case.

Our simulation code, both in its simple and parallelized
versions, enables us to study large systems for very long-
time scales, and we continue to investigate some of the out-
standing issues in this area. We will report elsewhere the
differences between rough and smooth bottom surfaces [3].
We will also go on to study 3D planar Couette flows, extend-
ing Ref. [49], and will be reporting on this in the future.
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