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Outline

Examples of semilinear spdes.

Smooth cocycles in Hilbert space. Stationary
trajectories.

Existence of cocycles generated by linear and
semilinear stochastic evolution equations (sees).
(Kolmogorov’s continuity theorem fails). [Mo.2].
Linearization of a cocycle along a stationary
trajectory.

Ergodic theory of cocycles in Hilbert space.

Hyperbolicity of stationary trajectories (via
Lyapunov exponents).

Stable manifolds. ([M.Z.Z]).
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Notation

(Ω,F , P ) := probability space; e.g. Wiener space.

θ : R × Ω → Ω group of P -preserving ergodic
transformations on (Ω,F , P ); e.g. Wiener shift:

θ(t, ω)(s) := ω(t+ s) − ω(t), t, s ∈ R, ω ∈ Ω.

H := real (separable) Hilbert space, norm | · |.

B(H) := Borel σ-algebra of H .

M := d-dimensional smooth (oriented) compact
Riemannian manifold with boundary ∂M .

dξ := Riemannian volume on M .
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Notation-Contd

∆ := Laplacian on M .

Hk
0 (M,R) := Sobolev space of all functions

u : M → R (vanishing on ∂M ) with all derivatives
up to order k square-integrable with respect to dξ.
Hk

0 (M,R) is a Hilbert space under usual Sobolev
norm.

L(j)(H) := continuous H-valued j-multilinear maps
on H .
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Examples: Affine Linear SEEs

Affine Linear SEEs (Additive Noise):

du(t, x) = −Au(t, x) dt+B0 dW (t), t > 0

u(0, x) = x ∈ H.

}

A hyperbolic: 0 /∈ σ(A)–discrete bounded below.

W Brownian motion with covariance Hilbert space K.

B0 : K → H , Hilbert Schmidt. Mild solutions.

See has stationary solution, and affine linear semiflow on

H .
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Reaction-Diffusion Equations

Stochastic Reaction-Diffusion Equation:

du =
1

2
∆u dt+ (1 − |u|α)u dt+

∞
∑

i=1

σiu dWi(t),

Wi := independent standard Brownian motions on R.

σi ∈ Hs
0(M,R), s > 2 + d/2;

∑∞
i=1 ‖σi‖

2
Hs

0
< ∞.

Dirichlet boundary conditions. Weak solutions.

Has C1 stochastic semiflow on H := L2(M,R) for

α <
4

d
.

Lipschitz semiflow for α even integer.
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Stochastic Heat Equation

Stochastic Heat Equation:

du(t) =
1

2
∆u(t) dt+

∞
∑

i=1

σiu(t) dWi(t) + f(u(t)) dt

u(0) = ψ ∈ Hk
0 (M)

Wi as above; σi ∈ Hs
0(M,R),

∑∞
i=1 ‖σi‖

2
Hs

0
<∞,

s > k + d/2; d := dimM ; f : R → R is C∞
b .

Dirichlet boundary conditions. Weak solutions.

Has C∞ stochastic semiflow on Hk
0 (M) for k >

d

2
.
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Semilinear Parabolic SPDEs

Semilinear Parabolic SPDEs:

In stochastic heat equation replace ∆ by a second order
self-adjoint elliptic linear differential operator:

L :=
d

∑

i,j=1

aij(ξ)
∂2

∂ξi∂ξj
+

d
∑

i=1

bi(ξ)
∂

∂ξi

on M .

Dirichlet boundary condition. Weak solutions.

Smooth coefficients ai,j : M → R, bi : M → R.
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Parabolic SPDEs-contd

View parabolic spde as a semilinear stochastic evolution
equation (see):

du(t) = −Au(t) dt+ F (u(t)) dt +
∞

∑

i=1

Biu(t) dWi(t)

u(0) = x ∈ H := Hk
0 (M).

A := −L, Bi(u) := σiu, F (u) := f ◦ u, u ∈ H .

Let k > d
2 . Then Nemytskii operator F : H → H is C∞.

Smooth stochastic semiflow on Hk
0 (M).
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Burgers Equation

Considered by many authors in recent years. (e.g.
[E.K.M.S]).

One-dimensional stochastic Burgers equation:

du+ u
∂u

∂ξ
dt =

1

2

∂2u

∂ξ2
dt+

∞
∑

i=1

σi(ξ) dWi(t)

Wi independent one dimensional Brownian motions.

σi ∈ C2([0, 1]); ‖σi‖C2 ≤
C

i2
, i ≥ 1. Mild solutions.

Has C1 stochastic semiflow on L2([0, 1],R).
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The Cocycle

k = non-negative integer, ε ∈ (0, 1]. H Hilbert.
A Ck,ε perfect cocycle (U, θ) on H is a measurable
random field U : R+ ×H × Ω → H such that:

For each ω ∈ Ω, the map

R
+ ×H 3 (t, x) 7→ U(t, x, ω) ∈ H

is continuous; for fixed (t, ω) ∈ R
+ × Ω, the map

H 3 x 7→ U(t, x, ω) ∈ H

is Ck,ε (DkU(t, x, ω) is Cε in x on bounded sets in
H).
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The Cocycle-Contd

U(t1 + t2, ·, ω) = U(t2, ·, θ(t1, ω)) ◦ U(t1, ·, ω)
for all t1, t2 ∈ R

+, all ω ∈ Ω.

U(0, x, ω) = x for all x ∈ H,ω ∈ Ω.
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The Cocycle Property

H H H

Ω
ω θ(t1, ω) θ(t1 + t2, ω)

t = 0 t = t1 t = t1 + t2

U(t1, ·, ω) U(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

•x

•
U(t1, x, ω)

•U(t1 + t2, x, ω)
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Stationary Point

A random variable Y : Ω → H is a stationary point for
the cocycle (U, θ) if

U(t, Y (ω), ω) = Y (θ(t, ω))

for all t ∈ R
+ and every ω ∈ Ω.

Denote a stationary trajectory by

U(t, Y ) = Y (θ(t)).

For sde’s: a non-anticipating stationary point corre-

sponds to an invariant measure for the one-point motion.
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Linearization

Linearize a Ck,ε cocycle (U, θ) along a stationary random
point Y :

Get an L(H)-valued cocycle (DU(t, Y (ω), ω), θ(t, ω)).

Follows from cocycle property of U and chain rule:

DU(t1 + t2, Y (ω), ω)

= DU(t2, Y (θ(t1, ω)), θ(t1, ω)) ◦DU(t1, Y (ω), ω)

for all ω ∈ Ω, t1, t2 ≥ 0.
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Linearization-contd

Assume U(t, ·, ω) locally compact and

E log+ sup
0≤t1,t2≤1

‖DU(t2, Y (θ(t1)), θ(t1))‖L(H) <∞.

Apply Oseledec-Ruelle Theorem to linearized cocycle

([Ru.2]):

Get a sequence of closed finite-codimensional Oseledec
spaces

· · ·Ei+1(ω) ⊂ Ei(ω) ⊂ · · · ⊂ E2(ω) ⊂ E1(ω) = H,

all ω ∈ Ω∗, a sure event in F satisfying θ(t, ·)(Ω∗) = Ω∗

for all t ∈ R.
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Linearization-contd

Obtain Lyapunov spectrum

{· · · < λi+1 < λi < · · · < λ2 < λ1};

lim
t→∞

1

t
log |DU(t, Y (ω), ω)(x)|

=

{

λi if x ∈ Ei(ω)\Ei+1(ω),

−∞ if x ∈ E∞(ω).

Ei(ω) = {x ∈ H : lim
t→∞

1

t
log |DU(t, Y (ω), ω)(x)| ≤ λi},

i ≥ 1.
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Linearization: Spectral Theorem

0 0

ω θ(t, ω)
Ω

DU(t, Y (ω), ω)

θ(t, ·)

E1 = H

E2(ω)

E3(ω)

H

E2(θ(t, ω))

E3(θ(t, ω))
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Hyperbolicity

A stationary point Y (ω) of (U, θ) is hyperbolic if the
linearized cocycle (DU(t, Y (ω), ω), θ(t, ω)) has a
non-zero Lyapunov spectrum

{· · · < λi+1 < λi < · · · < λ2 < λ1}.

That is
λi 6= 0 for all i ≥ 1.

(Expect hyperbolicity to be a “generic” property.)

Ergodicity: λ1 < 0.
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Hyperbolicity-Contd

{U(ω),S(ω) : ω ∈ Ω∗} := unstable and stable subspaces
associated with the linearized cocycle (DU, θ) ([Mo.3],
[M.S] ).

Then get a measurable invariant splitting

H = U(ω) ⊕ S(ω), ω ∈ Ω∗,

DU(t, Y (ω), ω)(U(ω)) = U(θ(t, ω)),

DU(t, Y (ω), ω)(S(ω)) ⊆ S(θ(t, ω)),

for all t ≥ 0.
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Hyperbolicity-Contd

Have exponential dichotomies:

|DU(t, Y (ω), ω)(x)| ≥ |x|eδ1t

for all t ≥ τ ∗1 , x ∈ U(ω);

|DU(t, Y (ω), ω)(x)| ≤ |x|e−δ2t

for all t ≥ τ ∗2 , x ∈ S(ω), with τ ∗i = τ ∗i (x, ω) > 0, random

times and δi > 0, fixed, i = 1, 2.

SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.22/71



Hyperbolicity-Contd

ω θ(t, ω)
Ω

DU(t, Y (ω), ω)

θ(t, ·)

S(ω)

U(ω)

S(θ(t, ω))

U(θ(t, ω))

H H

0 0
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Linear SEEs

Existence of semiflows for mild solutions of linear sees:

du(t, x, ·) = −Au(t, x, ·) dt +Bu(t, x, ·) dW (t),

t > 0

u(0, x, ω) = x ∈ H.

A : D(A) ⊂ H → H closed linear operator on a
separable real Hilbert space H .

A has complete orthonormal system of eigenvectors
{en : n ≥ 1} with corresponding (bounded below)
(non-zero) eigenvalues {µn, n ≥ 1}; i.e.,
Aen = µnen, n ≥ 1;
e.g. A = −∆ on compact smooth Riemannian manifold.
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Linear SEEs-Contd

(−A) generates a strongly continuous semigroup of
bounded linear operators

Tt : H → H, t ≥ 0.

W (t), t ≥ 0, E-valued cylindrical Brownian motion on
canonical filtered Wiener space (Ω,F , (Ft)t≥0, P ).
K ⊂ E Hilbert-Schmidt embedding. ([D.Z] ).

L2(K,H) := Hilbert space of all Hilbert-Schmidt
operators S : K → H; H-S norm

‖S‖2 :=

[ ∞
∑

k=1

|S(fk)|
2

]1/2

,
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Linear SEEs-Contd

fk, k ≥ 1, cons in K.
| · | := norm on H . L2(H) := L2(H,H).

B : H → L2(K,H) bounded (affine) linear operator.

Stochastic integral in (see) as in ([D.Z] ).

θ : R × Ω → Ω standard P -preserving ergodic Wiener
shift on Ω. (W, θ) is a helix:

W (t1 + t2, ω) −W (t1, ω) = W (t2, θ(t1, ω))

for all t1, t2 ∈ R, ω ∈ Ω.

SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.26/71



Linear SEEs-Contd

fk, k ≥ 1, cons in K.
| · | := norm on H . L2(H) := L2(H,H).

B : H → L2(K,H) bounded (affine) linear operator.

Stochastic integral in (see) as in ([D.Z] ).

θ : R × Ω → Ω standard P -preserving ergodic Wiener
shift on Ω. (W, θ) is a helix:

W (t1 + t2, ω) −W (t1, ω) = W (t2, θ(t1, ω))

for all t1, t2 ∈ R, ω ∈ Ω.

SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.26/71



Mild Solutions

A mild solution of the linear see is a family of
(B(R+) ⊗F ,B(H))-measurable, (Ft)t≥0-adapted
processes u(·, x, ·) : R+ × Ω → H, x ∈ H , s.t.

u(t, x, ·) = Ttx+

∫ t

0

Tt−sBu(s, x, ·) dW (s), t ≥ 0.

Integral equation holds x-almost surely, x ∈ H .

Is u(t, x, ·) pathwise continuous linear in x?
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Kolmogorov Fails!

Kolmogorov’s continuity theorem fails for random field
I : L2([0, 1],R) → L2(Ω,R)

I(x) :=

∫ 1

0

x(t) dW (t), x ∈ L2([0, 1],R).

No continuous (or even Borel measurable linear!)
selection

L2([0, 1],R) × Ω → R

(x, ω) 7→ I(x, ω)

of I ([Mo.1] ).
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Lifting

Lift semigroup Tt, t ≥ 0, to a strongly continuous
semigroup of bounded linear operators
T̃t : L2(K,H) → L2(K,H), t ≥ 0, via composition
T̃t(C) := Tt ◦ C, C ∈ L2(K,H), t ≥ 0.

Lift stochastic integral
∫ t

0

T̃t−s({[B ◦ v(s)](x)}) dW (s), x ∈ H, t ≥ 0,

to L2(H) for adapted square-integrable
v : R

+ × Ω → L2(H). Denote lifting by
∫ t

0

Tt−sBv(s) dW (s).
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Lifting-contd

That is:

[
∫ t

0

Tt−sBv(s) dW (s)

]

(x) =

∫ t

0

T̃t−s({[B ◦ v(s)](x)}) dW (s)

for all t ≥ 0, x-a.s..
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Regularity Hypotheses

Hypothesis (A1):
∞

∑

n=1

µ−1
n ‖B(en)‖

2
L2(K,H) <∞.

Hypothesis (A2):

For some α ∈ (0, 1), A−α is trace-class, i.e.,
∑∞

n=1 µ
−α
n <∞.

Hypothesis (A3):

A−1 is trace-class and Tt ∈ L(H), t ≥ 0, is a
strongly continuous contraction semigroup.
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Regularity Hypotheses-contd

Hypothesis (B):

B : H → L2(K,H) extends to a bounded linear

operator B ∈ L(H,L(E,H)) ;
∞

∑

k=1

‖Bk‖
2 <∞,

where Bk ∈ L(H) is defined by

Bk(x) := B(x)(fk), x ∈ H, k ≥ 1.

No restriction on dimM under (A1) for examples of

spdes: e.g. B ∈ L2(H,L2(K,H).
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Theorem 1: The Linear Flow

Assume hypothesis (B) and any one of hypotheses
(A1), (A2) or (A3). Then the mild solution of the
linear see has a Borel (strongly) measurable (Ft)t≥0-
adapted version φ : R

+ × Ω → L(H) with the
following properties:

Under (A2),

E sup
0≤t≤a

‖φ(t, ·)‖2p
L(H) <∞,

whenever p ∈ (1, α−1], a ∈ R
+.
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Theorem 1-Contd: “Chaos"!

For each t > 0 and almost all ω ∈ Ω,
φ(t, ω) − Tt ∈ L2(H) has “chaos-type”
representation

φ(t, ·) − Tt =
∞

∑

n=1

∫ t

0

Tt−s1
B

∫ s1

0

Ts1−s2
B · · ·

· · ·

∫ sn−1

0

Tsn−1−sn
BTsn

dW (sn)

· · · dW (s2) dW (s1).

Iterated Itô stochastic integrals are lifted
integrals in L2(H), and series converges
absolutely in L2(H). SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.34/71



Theorem 1-contd

Under (A1) or (A3),

E sup
0≤t≤a

‖φ(t, ·)‖2
L(H) <∞,

(φ, θ) is a perfect L(H)-valued cocycle:

φ(t+ s, ω) = φ(t, θ(s, ω)) ◦ φ(s, ω)

for all s, t ≥ 0 and all ω ∈ Ω;

sup
0≤s≤t≤a

‖φ(t− s, θ(s, ω))‖L(H) <∞, for all ω ∈ Ω

and all a > 0.
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Semilinear SEE

Consider the semilinear stochastic evolution equation:

du(t) = −Au(t)dt+ F (u(t))dt

+Bu(t) dW (t), t > 0,

u(0) = x ∈ H











Operators A,B satisfy hypothesis (B) and any one of
hypotheses (A1), (A2) or (A3) (of Theorem 1).
F : H → H is (Fréchet) Ck,ε (k ≥ 1), with linear
growth:

|F (v)| ≤ C(1 + |v|), v ∈ H

for some positive constant C.
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Mild Solution: Semilinear SEE

Define a mild solution of semilinear see as a family of
(B(R+) ⊗F ,B(H))-measurable, (Ft)t≥0-adapted
processes u(·, x, ·) : R+ × Ω → H , x ∈ H, satisfying:

u(t, x, ·) = Tt(x) +

∫ t

0

Tt−s(F (u(s, x, ·))) ds

+

∫ t

0

Tt−sBu(s, x, ·) dW (s),

for all t ≥ 0, x-a.s. ([D–Z] ).
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Random Integral Equation

Obtain a Ck perfect cocycle (U, θ) for mild solutions of
the semilinear see, via the random integral equation on
H:

U(t, x, ω) = φ(t, ω)(x)

+

∫ t

0

φ(t− s, θ(s, ω))(F (U(s, x, ω))) ds,

each ω ∈ Ω, t ≥ 0, x ∈ H .
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Theorem 2

Assume that the operators A,B satisfy hypothesis
(B) and (A1) (or (A2) or (A3)). Let Tt, t > 0, be

compact. Suppose that F : H → H is Ck,ε and has
linear growth. Then the mild solution of the
semilinear see has a Borel measurable version

U : R+ ×H × Ω → H

with the following properties:

For each x ∈ H, U(·, x, ·) : R
+ × Ω → H is

(Ft)t≥0-adapted and is a mild solution of the
semilinear see.
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Theorem 2-contd

(U, θ) is a Ck,ε perfect cocycle.

For each (t, ω) ∈ (0,∞) × Ω, the map

H 3 x 7→ U(t, x, ω) ∈ H

takes bounded sets into relatively compact sets.
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Theorem 2-contd

For each (t, x, ω) ∈ (0,∞) ×H × Ω, 1 ≤ j ≤ k,

the j-th Fréchet derivative D(j)U(t, x, ω)

∈ L(j)(H) is compact, and the map

[0,∞) ×H × Ω 3

(t, x, ω) 7→ D(j)U(t, x, ω) ∈ L(j)(H)

is strongly measurable.

L(j)(H) := continuous H-valued j-multilinear
maps on H.
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Theorem 2-contd

For any positive a, ρ,

E sup
0≤t≤a
|x|≤ρ
1≤j≤k

{

‖D(j)U(t, x, ·)‖L(j)(H)

}

<∞,

and

E

{

sup
0≤t≤a
x∈H

|U(t, x, ·)|2p

(1 + |x|2p)

}

<∞

for all positive integers p.
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The Stable Manifold Theorem

F̄ := P−completion of F .

B(x, ρ) open ball, radius ρ, center x ∈ H;

B̄(x, ρ) closed ball.

Semilinear see:

du(t) = −Au(t) dt+ F (u(t)) dt

+Bu(t) dW (t), t > 0,

u(0) = x ∈ H.











SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.43/71



The Stable Manifold Theorem

F̄ := P−completion of F .

B(x, ρ) open ball, radius ρ, center x ∈ H;

B̄(x, ρ) closed ball.

Semilinear see:

du(t) = −Au(t) dt+ F (u(t)) dt

+Bu(t) dW (t), t > 0,

u(0) = x ∈ H.











SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.43/71



The Stable Manifold Theorem

F̄ := P−completion of F .

B(x, ρ) open ball, radius ρ, center x ∈ H;

B̄(x, ρ) closed ball.

Semilinear see:

du(t) = −Au(t) dt+ F (u(t)) dt

+Bu(t) dW (t), t > 0,

u(0) = x ∈ H.











SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.43/71



The Stable Manifold Theorem

F̄ := P−completion of F .

B(x, ρ) open ball, radius ρ, center x ∈ H;

B̄(x, ρ) closed ball.

Semilinear see:

du(t) = −Au(t) dt+ F (u(t)) dt

+Bu(t) dW (t), t > 0,

u(0) = x ∈ H.











SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.43/71



Theorem 3: Stable Manifolds

Assume that the operators A,B satisfy hypothesis
(B) and (A1) (or (A2) or (A3)). Let Tt, t > 0, be

compact. Suppose that F : H → H is Ck,ε and has
linear growth. Let Y : Ω → H be a hyperbolic
stationary point of the semilinear see such that
E(|Y (·)|ε0H) <∞ for some ε0 > 0.

Denote by

{· · · < λi+1 < λi < · · · < λ2 < λ1}

the Lyapunov spectrum of the linearized cocycle

(DU(t, Y (ω), ω), θ(t, ω), t ≥ 0) of the semilinear see.
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Theorem 3-contd

Let λi0 := the largest negative Lyapunov exponent of
the linearized cocycle, and λi0−1 its smallest positive
Lyapunov exponent:

{· · · < λi+1 < λi < · · ·λi0 < 0 < λi0−1 < · · · < λ1}.

Fix ε1 ∈ (0,−λi0) and ε2 ∈ (0, λi0−1):

{· · ·λi < · · ·λi0 < −ε1 < 0 < ε2 < λi0−1 < · · · < λ1}.
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Theorem 3-contd

Then the following exist:

a sure event Ω∗ ∈ F with θ(t, ·)(Ω∗) = Ω∗ for all
t ∈ R,

F̄-measurable random variables
ρi, βi : Ω∗ → (0, 1), βi > ρi > 0, i = 1, 2, such
that for each ω ∈ Ω∗, the following is true:

There are Ck,ε (ε ∈ (0, δ)) submanifolds S̃(ω), Ũ(ω)

of B̄(Y (ω), ρ1(ω)) and B̄(Y (ω), ρ2(ω)) (resp.) with

the following properties:
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Theorem 3-contd

(a) S̃(ω) is the set of all x ∈ B̄(Y (ω), ρ1(ω)) such
that

|U(n, x, ω) − Y (θ(n, ω))| ≤ β1(ω) e(λi0
+ε1)n

for all integers n ≥ 0. Furthermore,

lim sup
t→∞

1

t
log |U(t, x, ω) − Y (θ(t, ω))| ≤ λi0

for all x ∈ S̃(ω).

Each stable subspace S(ω) of the lin-

earized semiflow DU is tangent at Y (ω) to the sub-

manifold S̃(ω), viz. TY (ω)S̃(ω) = S(ω).
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Theorem 3-contd

In particular, codim S̃(ω) = codim S(ω), is fixed and
finite.

(b) lim sup
t→∞

1

t
log

[

sup

{

|U(t, x1, ω) − U(t, x2, ω)|

|x1 − x2|
:

x1 6= x2, x1, x2 ∈ S̃(ω)

}]

≤ λi0.
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Theorem 3-contd

(c) (Cocycle-invariance of the stable manifolds):
There exists τ1(ω) ≥ 0 such that

U(t, ·, ω)(S̃(ω)) ⊆ S̃(θ(t, ω))

for all t ≥ τ1(ω). Also

DU(t, Y (ω), ω)(S(ω)) ⊆ S(θ(t, ω)), t ≥ 0.
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Theorem 3-contd

(d) Ũ(ω) is the set of all x ∈ B̄(Y (ω), ρ2(ω)) with
the property that there is a unique discrete-time
history process y(·, ω) : {−n : n ≥ 0} → H such that
y(0, ω) = x and for each integer n ≥ 1, one has

U(1, y(−n, ω), θ(−n, ω)) = y(−(n− 1), ω)

and

|y(−n, ω) − Y (θ(−n, ω))| ≤ β2(ω)e−(λi0−1−ε2)n.
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Theorem 3-contd

Furthermore, for each x ∈ Ũ(ω), there is a unique
continuous-time history process also denoted by
y(·, ω) : (−∞, 0] → H such that y(0, ω) = x,
U(t, y(s, ω), θ(s, ω)) = y(t+ s, ω) for all s ≤ 0,
0 ≤ t ≤ −s, and

lim sup
t→∞

1

t
log |y(−t, ω) − Y (θ(−t, ω))| ≤ −λi0−1.

Each unstable subspace U(ω) of the linearized

semiflow DU is tangent at Y (ω) to Ũ(ω), viz.

TY (ω)Ũ(ω) = U(ω). In particular, dim Ũ(ω) is finite

and non-random.
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Theorem 3-contd

(e) Let y(·, xi, ω) be the history processes associated

with xi = y(0, xi, ω) ∈ Ũ(ω), i = 1, 2. Then

lim sup
t→∞

1

t
log

[

sup

{

|y(−t, x1, ω) − y(−t, x2, ω)|

|x1 − x2|
:

x1 6= x2, xi ∈ Ũ(ω), i = 1, 2

}]

≤ −λi0−1.
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Theorem 3-contd

(f) (Cocycle-invariance of the unstable manifolds):

There exists τ2(ω) ≥ 0 such that

Ũ(ω) ⊆ U(t, ·, θ(−t, ω))(Ũ(θ(−t, ω)))

for all t ≥ τ2(ω).

Also

DU(t, ·, θ(−t, ω))(U(θ(−t, ω))) = U(ω), t ≥ 0;

and the restriction DU(t, ·, θ(−t, ω))|U(θ(−t, ω)),

t ≥ 0, is a linear homeomorphism from U(θ(−t, ω))

onto U(ω).
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Theorem 3-contd

(g) The submanifolds Ũ(ω) and S̃(ω) are
transversal, viz.

H = TY (ω)Ũ(ω) ⊕ TY (ω)S̃(ω).

If F is C∞
b , then the local stable and unstable

manifolds S̃(ω), Ũ(ω) are C∞.

Ergodicity of Y : Ũ(ω) = {Y (ω)}
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SEMILINEAR SPDEsAS DYNAMICAL SYSTEMS – p.54/71



A Stationary Tube

ρ(ω)
Y (ω)

X(t, η, ω)

Y (θ(t, ω))

•

•

•
•

•

•

•

•

η

ρ(θ(t, ω))
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Stable/Unstable Manifolds

ω θ(t, ω)Ω

U(t, ·, ω)

θ(t, ·)

S(ω)

U(ω)

S̃(ω)

Ũ(ω)

U(θ(t,ω))

S̃(θ(t,ω))

S(θ(t,ω))

Ũ(θ(t,ω))

H H

Y (ω)
Y (θ(t,ω))
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Examples Revisited

Local stable manifold theorem applies to all examples:

Stochastic semilinear heat equation

Stochastic semilinear parabolic pdes

Stochastic reaction diffusion equations

Stochastic Burgers equation
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SKETCH OF PROOF
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Proof of Theorem 3: Strategy

By definition, a stationary random point Y (ω) ∈ H
is invariant under the semiflow U ; viz
U(t, Y ) = Y (θ(t, ·)) for all times t.

Linearize the semiflow U along the stationary point
Y (ω) in H . By stationarity of Y and the cocycle
property of U , this gives a linear perfect cocycle
(DU(t, Y ), θ(t, ·)) in L(H).
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Strategy-contd

Ergodicity of θ allows for the notion of
hyperbolicity of a stationary point of U via
Oseledec-Ruelle theorem:

Use local compactness of the semiflow for positive t,
and apply multiplicative ergodic theorem to get a
discrete non-random Lyapunov spectrum
{λi : i ≥ 1} for the linearized cocycle. Y is
hyperbolic if λi 6= 0 for every i.
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Strategy-contd

Assume that ‖Y ‖ε0 is integrable (for small ε0).
Variational method of construction of the semiflow
shows that the linearized cocycle satisfies
hypotheses of perfect versions of ergodic theorem
and Kingman’s subadditive ergodic theorem. These
refined versions give invariance of the Oseledec
spaces under the continuous-time linearized cocycle.
Thus the stable/unstable subspaces will serve as
tangent spaces to the local stable/unstable manifolds
of the non-linear semiflow U .
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Strategy-contd

Establish continuous-time integrability estimates on
the spatial derivatives of the non-linear cocycle U in
a neighborhood of the stationary point Y . Estimates
follow from the variational construction of the
stochastic semiflow.
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Strategy-contd

Introduce the auxiliary perfect cocycle

Z(t, ·, ω) := U(t, (·) + Y (ω), ω) − Y (θ(t, ω)),

t ∈ R
+, ω ∈ Ω.

Refine arguments in ([Ru.2], Theorems 5.1 and 6.1)
to construct local stable/ unstable manifolds for the
discrete cocycle (Z(n, ·, ω), θ(n, ω)) near 0 and
hence (by translation) for U(n, ·, ω) near Y (ω) for
all ω sampled from a θ(t, ·)-invariant sure event in Ω.
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Strategy-contd

This is possible because of the continuous-time
integrability estimates, the perfect ergodic theorem
and the perfect subadditive ergodic theorem. By
interpolating between discrete times and further
refining the arguments in [Ru.2], show that the
above manifolds also serve as local stable/unstable
manifolds for the continuous-time semiflow U near
Y .
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Strategy-contd

Final key step:

Establish the asymptotic invariance of the local
stable manifolds under the stochastic semiflow U .
Use arguments underlying the proofs of Theorems
4.1 and 5.1 in [Ru.2] and some difficult estimates
using the continuous-time integrability properties,
and the perfect subadditive ergodic theorem.
Asymptotic invariance of the local unstable
manifolds follows by employing the concept of a
stochastic history process for U coupled with
similar arguments to the above. Existence of history
process compensates for the lack of invertibility of
the semiflow. �
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THANK YOU!
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THE END!
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