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1. Introduction

The one-way error components model with individual effects is:

yit = x′itβ + uit, i = 1, ..., n, t = 1, ..., T, (1)

where yit is the dependent variable for individual i at time t, and xit is a vector of observables

for which we assume that xi, i = 1, ..., n, are independent and identically distributed (IID)

with finite eighth moments and non-singular variance-covariance matrix. The variable uit =

µi +νit is the model’s error, composed of two components. The unobserved individual effects

µ1, ..., µn are the permanent component, random and IID with zero population mean and

finite eighth moments. The unobserved random variables νit are the transitory component,

zero-mean and IID across i and t, with finite eighth moments. Also, µi is independent of νi

for all i, and both µi and νit are independent of xit for all i and T .

We are interested in the distribution of the error components. The normal distribution is

usually invoked to obtain the exact null distribution of hypothesis tests for the parameters β,

hence departures from normality are clearly an important issue for economic inference when

samples are sufficiently small. Normality is also invoked to obtain the exact distribution of

tests for individual effects, and Blanchard and Mátyás (1996) examine the consequences of

non-normal error components for the performance of such tests.

As noted by Baltagi (1998), in economic panel data modelling it can be important to

adjust for departures of error components from normality. For example, Horowitz and Marka-

tou (1996) study the dynamics of worker earnings, and for this purpose they need to estimate

the joint distribution of the T -vector yi, conditional on the T -vector xi. In this case one

needs estimates of the error component distributions.

The present work proposes tests for normality of the error component distributions. We

obtain formulas for the skewness and kurtosis of the error components, as functions of the
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moments and cross-moments of the errors. We use these formulas to estimate skewness and

kurtosis in the error components, and to test for non-normality. The tests are straightforward

to implement and have convenient chi square asymptotic distributions.

2. Moments of Error Components

Denoting by Fµ and Fν the (cumulative) distribution functions for the two unobserved

error components, we compute higher order moments of these distributions, up to fourth

order. Since, by assumption, the first moments of µ and ν are both zero, e.g.
∫

z dFµ(z) =

∫
z dFν(z) = 0, it follows that, for each such distribution F , the quantity φk ≡

∫
zkdF (z) is,

for k ≥ 2, the centered k-th moment. For positive integers j and k we let

ψj ≡ E uj
it , ψj,k ≡ E uj

isu
k
it , (2)

for any given i and distinct s and t. Due to the assumed structure of the error components, ψj

and ψj,k are invariant to the choice of i, s and t. The second moments of the error components,

which are well known functions of the error distribution (see Hsiao 1986, Baltagi 1995), can

be expressed as: φµ,2 = ψ1,1 and φν,2 = ψ2 − ψ1,1.

For the third moments of the error components, we have first:

ψµ,3 = ψ1,2, (3)

which is true since ψ1,2 = Euisu
2
it = E(µi + νis)(µi + νit)

2, and applying the zero-mean and

independence properties of the error components, ψ1,2 = Eµ3
i = ψµ,3. For the remaining

error component, we have:

ψν,3 = ψ3 − ψ1,2. (4)

To verify this, we have ψ3 ≡ Eu3
it = E(µi + νit)

3, and applying the zero-mean and indepen-

dence properties of error components, we deduce that Eu3
it = φµ,3 +φν,3, and combining this

2



fact with (3) yields (4).

To further interpret skewness in the error components, we note first from (3) that for

each individual i, non-zero skewness φµ,3 in the permanent component induces correlation

between the error uis at time s and the squared errors u2
it at remaining times. A measure of

this nonlinear dependence is the correlation ψ1,2√
ψ2(ψ4−ψ2

2)
between uis and u2

it. This correlation

is obviously determined by ψ1,2, ψ2 and ψ4, and we have ψ1,2 = φµ,3, ψ2 = φµ,2 + φν,2, and

ψ4 = φµ,4 + φν,4 + 6φν,2φµ,2. Hence, while the skewness φµ,3 of the permanent component

contributes to nonlinear dependence via ψ1,2, the skewness φν,3 of the transitory component

has no effect on this dependence. We also note that, since third moments can be negative,

and since the sum of error component third moments equals the error third moment, it is

possible to have skewness in the error components but no skewness in the error itself.

For the fourth moments, we have first:

ψµ,4 = ψ1,3 − 3 ψ1,1(ψ2 − ψ1,1). (5)

This holds since ψ1,3 = E(uisu
3
it), and by expanding terms and applying zero-mean and

independence assumptions, we obtain ψ1,3 = E(µ4
i ) + 3E(µ2

i )E(ν2
it), and hence conclude (5).

For the second error component:

φν,4 = ψ4 − ψ1,3 − 3 ψ1,1(ψ2 − ψ1,1), (6)

which is true since, first, ψ4 = Eµ4
i + Eν4

it + 6 Eµ2
i Eν2

it, and combining this with (5) yields

(6).

To further interpret the fourth moments and kurtosis in the error components, we recall

that, for normally distributed variables z, φz,4 = 3 φ2
z,2 and so the kurtosis φz,4

(φz,2)2
equals

3. Non-normal levels of kurtosis are those less than three (platykurtotic) and greater than

three (leptokurtotic), and we deduce from (5) that the permanent component µ has normal

kurtosis if and only if
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ψ1,3 − 3 ψ2ψ1,1 = 0, (7)

while from (6) we deduce that the transitory component ν has normal kurtosis if and only if

ψ4 − ψ1,3 − 3 ψ2(ψ2 − ψ1,1) = 0. (8)

According to (7), if µ has normal kurtosis then the covariance ψ1,3 between uis and u3
it is

positive and given by the product of variances for the error and its permanent component.

According to (8), with normal kurtosis in ν there may or may not be positive covariance

between uis and u3
it, and the sign of the covariance is determined by the relative magnitudes

of the quantities ψ2, ψ4 and ψ1,1.

3. Normality Tests

To test for the normality of error components, we first obtain estimates of the moments ψj

and cross-moments ψjk for the relevant j and k. With β̂ any weakly consistent estimator of

β (such as those described in Hsiao 1986 and Baltagi 1995), the residuals are ûit = yit−x′itβ̂,

and we obtain

ψ̂j =
1

nT

n∑

i=1

T∑

t=1

ûj
it, (9)

and

ψ̂j,k =
1

nT (T − 1)

n∑

i=1

∑

s6=t

ûj
isû

k
it, (10)

for each j and k. We require estimates of the variances and covariances for the statistics ψ̂j

and ψ̂ij, and in the interest of simplicity we propose the following form:
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Ca;b = n−1
n∑

i=1

(ai − ā)(bi − b̄), (11)

where ai and bi are quantities of type T−1 ∑T
t=1 ûj

it or (T (T − 1))−1 ∑
s 6=t û

j
isû

k
it, and ā and b̄

are the sample averages of ai and bi. As a and b are each identified by a specific j or (j, k),

we use the notation Cja;jb
, Cja;ja,jb

, etc., for Ca;b.

To test for skewness in the error components we introduce the ratios:

zµ,1 =
ψ̂1,2√
C1,2;1,2

, zν,1 =
ψ̂3 − ψ̂1,2√

C3;3 + C1,2;1,2 − 2 C3;1,2

, (12)

where the numerator of the ratio zµ,1 estimates the skewness (3) of the error’s permanent

component, and the denominator estimates (consistently) the standard deviation of the

statistic defined by the numerator. The numerator of zν,1 estimates the skewness (4) of

the transitory component, and the denominator, once again, estimates (consistently) the

standard deviation of the statistic defined by the numerator.

To test for non-normal kurtosis, we introduce the ratios:

z3 =
ψ̂1,3 − 3 ψ̂2ψ̂1,1√

C1,3;1,3 + 9 (ψ̂2
2C1,1;1,1 + ψ̂2

1,1C2;2 + 2 ψ̂2ψ̂1,1C2;1,1)− 6 (ψ̂2C1,3;1,1 + ψ̂1,1C1,3;2)
, (13)

z4 =
ψ̂4 − ψ̂1,3 − 3ψ̂2(ψ̂2 − ψ̂1,1)√

h
, (14)

where

h = C4;4 + C1,3;1,3 − 2 C4;1,3 +

9
(

(ψ̂2 − ψ̂1,1)
2C2;2 + ψ̂2

2(C2;2 + C1,1;1,1 − 2 C2;1,1 ) + 2 ψ̂2(ψ̂2 − ψ̂1,1)(C2;2 − C2;11)
)
−

6
(
ψ̂2( 2 (C2;4 − C2;1,3) + C1,3;1,1 − C4;1,1) + ψ̂1,1(C2;1,3 − C2;4)

)
.

5



In (5) and (6), the numerator of the ratio zµ,2 estimates a quantity which equals 0 if and

only if the error’s permanent component has normal kurtosis, while the numerator of zν,2

estimates a quantity which equals 0 if and only if the transitory component has normal

kurtosis. The denominators of these ratios estimate (consistently) the standard deviation of

the statistics defined by the numerators.

We have four null hypotheses of interest, denoted Hµ,1, Hµ,2, Hν,1, Hν,2, the first two

signifying zero skewness and normal kurtosis, respectively, in µ, and the second two signi-

fying zero skewness and normal kurtosis in ν. Under Hµ,1, the statistic zµ,1 is unit normal

asymptotically, and under Hµ,2 the statistic zµ,2 is asymptotically unit normal, with anal-

ogous results for zν,1 and zν,2. Facilitating these facts are the consistency of the estimator

β̂ and the consistency of the variance estimators appearing in the denominators of ratios

zµ,1, zµ,2, zν,1, zν,2. We obtain the consistent variance estimators using standard asymptotic

approximations for smooth functions of statistics converging to constants (as for example in

van der Vaart 1998, p. 33).

To tests each of the four null hypotheses, we propose to use the relevant z2 statistic,

rejecting if the statistic exceeds the chi square critical value. Asymptotically, the statis-

tics zµ,1 and zµ,2 are independent under joint hypothesis Hµ,1 ∩ Hµ,2, while zν,1 and zν,2

are independent under the joint hypothesis Hν,1 ∩Hν,2 (verified using standard asymptotic

approximations to smooth functions of normal statistics). To test the first joint hypothesis

we use z2
µ,1 + z2

µ2
, asymptotically chi square (with 2 degrees of freedom), and we proceed

analogously with the second joint null hypothesis. Interestingly, the statistics zµ,1 and zν,1

are not asymptotically independent under Hµ,1 ∩Hν,1.

it is not possible to test both the permanent and transitory error components for

We have performed simulations (omitted for brevity) to corroborate the asymptotic dis-

tributions of the tests. For all tests the theory shows good accuracy even in fairly small

samples (n ≥ 50), when testing at the 1 percent level. Some distortion is noticeable when
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testing at the 5 percent level in samples as large as n = 500.

4. Conclusion

The present work provides estimators and tests of skewness and kurtosis of the error

components. A legitimate question is whether the aim of such methods points in a direction

of more general economic interest than the technical aspects of error component models. We

would say ‘yes’, to the extent that economists want to further the prospect of fully specified

probability models of panel data.
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Blanchard, P. and L. Mátyás, 1996, Robustness of tests for error component models to

non-normality, Economics Letters 51, 161-167.

Horowitz, J.L. and M. Markatou, 1996, Semiparametric estimation of regression models for

panel data, Review of Economic Studies 63, 145-168.

Hsiao, C., 1986, Analysis of panel data (Cambridge University Press, Cambridge).

van der Vaart, A.W., 1998, Asymptotic Statistics (Cambridge University Press, Cambridge)

8


	Southern Illinois University Carbondale
	OpenSIUC
	7-2001

	Testing the Distribution of Error Components in Panel Data Models
	Scott Gilbert
	Recommended Citation



