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Abstract- The advance in high-throughput genomic technolo-
gies including microarrays has generated a tremendous amount
of gene expression data for the entire genome. Deciphering
transcriptional networks that convey information on members
of gene clusters and cluster interactions is a crucial analysis task
in the post-sequence era. Most of the existing analysis methods
for large-scale genome-wide gene expression profiles involve
several steps that often require human intervention. We propose
a random matrix theory-based approach to analyze the cross
correlations of gene expression data in an entirely automatic and
objective manner to eliminate the ambiguities and subjectivity
inherent to human decisions. The correlations calculated from
experimental measurements typically contain both "genuine" and
"random" components. In the proposed approach, we remove the
"random" component by testing the statistics of the eigenvalues
of the correlation matrix against a "null hypothesis" a truly
random correlation matrix obtained from mutually uncorrelated
expression data series. Our investigation on the components of
deviating eigenvectors using varimax orthogonal rotation reveals
distinct functional modules. We apply the proposed approach to
the publicly available yeast cycle expression data and produce a

transcriptional network that consists of interacting functional
modules. The experimental results nicely conform to those
obtained in previously published literatures.
Keywords: Random Matrix, Microarray, Pearson correlation, Eigen-
value, Eigenvector, Varimax orthogonal rotation.

I. INTRODUCTION

The exponential growth of genomic sequence data starting
in early 1980s has spurred the development of computa-
tional tools for DNA sequence similarity searches, structural
predictions, and functional predictions. The emergence of
high-throughput genomic technologies in the late 1990s has
enabled the analysis of higher order cellular processes based
on genome-wide expression profiles such as oligonucleotide
or cDNA microarray. Genes now can be affiliated by their
co-regulated expression waveforms in addition to sequence

similarity and proximity on the chromosome as in gene content
analysis. Genes ascribed to the same cluster are usually
responsible for a specific physiological process or belong to
the same molecular complex. Such transcriptome (mRNAs)
datasets deliver new knowledge and insights to the existing
genome (genes) datasets, and can be used to guide proteome
(proteins) and interactome research that aims to extract key
biological features such as protein-protein interactions and
subcellular localizations more accurately and efficiently.

However, organizing genome-wide gene expression data
into meaningful function modules remains a great challenge.
Many computational techniques have been proposed to con-
jecture the cellular network based on microarray hybridization
data. Examples include Boolean network methods, differential
equation-based network methods, Bayesian network methods,
hierarchical clustering, K means clustering, self-organizing
map (SOM), and correlation-based association network meth-
ods.

Boolean network method [7], [3] is a coarse simplification
of gene network to determine the gene state as either 0 or 1
from the inputs of many other genes. Differential equation-
based network models [4] gene networks as a set of non-
linear differential equations that can indicate the gene rate
change without the assumption of discrete time steps. Bayesian
network gives a graphical display of dependence structure
based on conditional probabilities among genes. In hierarchical
clustering, a dendogram is constructed by iteratively grouping
together genes with the highest correlation, which is essentially
a greedy algorithm achieving local optimality and disregards
negative association [10]. K means clustering [8] serves as
an improved approach to hierarchical clustering but requiring
a subjective specification on the number of clusters. SOM [11]
is a neural network-based iterative clustering method and
also requires the user to estimate the initial cluster number.
The correlation-based association network technique has been
commonly adopted to identify cellular networks due to its
computational simplicity and the nature of microarray data
(typically noisy, highly dimensional and significantly under-
sampled). However, the association network method relies on
arbitrarily assigned thresholds for link cutoff, which inevitably
introduces subjectivity in network structure and topology.
A novel technology, which can determine the structure of
transcriptional networks and uncover biological regularities in
a computerized and unbiased way, has been under active study
by biological scientists.
We propose and develop a system to construct and analyze

various aspects of transcriptional networks based on random
matrix theory (RMT). Correlation matrix for yeast genome
demands a significant amount of computing cycles to calculate
all eigenvalues and eigenvectors. High performance computing
resources such as supercomputer and Linux cluster as well as
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parallel programming techniques should be utilized to address
this problem. We aim to tackle computing problems with
tens or hundreds of thousands genes within short period of
computing time.

The rest of the paper is organized as follows: mathematical
model and data preparation are discussed in Section II. In
Section III, we present the statistics of correlation matrix.
Discussion on deviating eigenstates based on random ma-
trix theory is given in Section IV. Genes are clustered and
functional modules are identified in Section V. Experimental
results on yeast cycle data are presented in Section VI to
demonstrate the effectiveness of our method. We conclude our
work in Section VII.

II. PROBLEM FORMULATION
We define the expression signal of gene i 1, ...,N in

various samples s= 1,...,K as:

Wi (s) ln(In(Es ) (1)

where Esi (s) denotes the expression signal of sample s for
gene i, and Eci (s) is the corresponding control signal. Due
to the various levels of expression signal shown by different
genes, we normalize the data as:

wi (s)
WI (s) -(Wi

(i

where vi- KW72)-(Wi)2 represents the standard deviation
of Wi, and (Wi) stands for the average over different samples
for gene i. From this normalized N x K data matrix M, we

calculate the cross-correlation matrix C according to

C-( I MMT. (3)
K

Pearson correlation coefficient Cy between gene x and y,

each with k data series, can also be calculated from Eq. 4:

C , (Xi - X1 (yi -YP (4)
(K -l)sxsy

where sx and sy denotes the standard deviations. Pearson
correlation ranges from as perfect correlation to -1 as perfect
anti-correlation. When C11 = 0, no correlation exists between
genes i and j.

However, conducting direct study on these empirical cross-

correlation coefficients is rather difficult due to the unique
properties of microarray experiments. Firstly, the cross-

correlation between any pair of genes may not be constant:
such co-regulations can fluctuate over time or under different
sample conditions. Secondly, the limited number of samples
that a microarray is typically conducted upon, may introduce
significant "measurement noise" that compromises the accu-

racy of the underlying correlations.
In order to filter out randomness contained within the em-

pirical cross-correlation matrix, we test the eigenstates of this
correlation matrix against those of a controlled counterpart,
a truly random correlation matrix generated by computer

random generator. Statistic properties that conform to the truly
random matrix are labeled as noise contributions; on the other
hand, any deviating eigenstates are treated as genuine correla-
tions, which will be amplified and analyzed for transcriptional
network construction.

III. STATISTICS OF CORRELATION MATRIX

A. Distribution of correlation coefficients
We contrast the distribution P(C1j) for cross-correlation

matrix C with P (Rj1), where R denotes a random correlation
matrix constructed from a series of mutually uncorrelated data
with zero mean and unit variance generated by a computer.
Fig. 1(a) shows that P (Rij) demonstrates a Gaussian distri-
bution with zero mean, which indicates complete randomness
within the data. However, P(C11) as shown in Fig. l(b) is
asymmetric and centered around a positive value in contrast
to P(Rij), which implies that positive correlation is more
pronounced than negative correlation among genes.

B. Distribution of eigenvalues
We further compare the probability distributions pC PI)

and pR (i ) of the eigenvalues )i calculated from the cross-
correlation matrix C and the random matrix R, respectively.
Eigenvalues are arranged in a descreasing order such that
2i > i+ 1. The probability distributions PC (Ak) and pR (2k)
are plotted in Fig. 2(a) and Fig. 2(b). It has been observed
that a set of the eigenvalues of C fall within the well-defined
range of [A,A+] calculated from R, with a few deviating from
the upper and lower bounds conveying the true correlation
information. This observation enables us to separate the real
correlation from the randomness. Such denoising process is
necessary since microarray data is extremely undersampled
and may introduce significant measurement noise. Interest-
ingly, Kwapien et al. [6] found that increasing the length
of time series or number of samples would cause eigenvalues
to deviate more from the random matrix eigenvalue bounds.
They declared that the bulk of the correlation matrix is not
pure noise as conventionally thought to be. Based on their
results, it is possible that more subtle and less prevalent co-
regulated gene groups could be squeezed out of the noise
segment if we are able to acquire a larger sample size K.
However, experimental results are still needed to validate
this assumption. In practice, a large sample size K from the
perspective of mathematical view is not always feasible for
most biological datasets due to the considerable time and
material resources involved in bio-related experiments.

C. Distribution of nearest-neighbor eigenvalues
The comparison made above between PC(A) and pR(i)

alone is not sufficient to show that the majority of the
eigenvalue spectrum of C is random. In general, matrices with
the same eigenvalue distribution may have different eigenvalue
correlations, and vice versa [9]. Hence, we also need to
examine the correlation in the eigenvalues of C to determine
if it conforms to that of a random matrix.
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(b) Distribution of gene expression correlation coefficients.

Fig. 1. Comparison of correlation coefficient distributions.
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(a) Distribution of eigenvalues of gene expression correlation matrix.
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(b) Distribution of eigenvalues of random system.

Fig. 2. Comparison of eigenvalue distributions: x axis represents the eigenvalues and y axis represents the probability densities.

RMT makes two universal predictions for real symmetric
matrices: the nearest neighbor spacing distribution (NNSD)
of eigenvalues follows Gaussian orthogonal ensemble(GOE)
statistics as in Eq. 5, if there exists correlation between nearest-
neighbor eigenvalues, while follows Poisson if there is no
correlation. In order to ensure the uniform average value
for eigenvalue spacing throughout the spectrum, we map the
eigenvalues to new unfolded eigenvalues, whose distribution is
uniform. Unfolding procedure guarantees that eigenvalue spac-
ing is represented in units of local mean eigenvalue spacing. To
realize this, one can replace )Lj by the unfolded spectrum Xi'
fa, ()y), where fa, ()li) is the smoothed integrated density of
eigenvalues obtained by fitting the original integrated density
to a cubic spline or by local density average. We compute the
nearest neighbor spacing distribution P (n), n = )U-i' 1. We
know that P (n) for random matrix follows the Wigner-Dyson
distribution. Our experiments show that the NNSD P (n) for

C conforms well with PGOE (n).

PGOE (n) -2 exp( 22). (5)

These results support the assumption that the majority of
the eigenvalues are of randomness in nature both from the
perspective of eigenvalue distribution and eigenvalue corre-
lation distribution. Thus, random matrix theory serves as an
ideal mathematical tool to investigate microarray datasets that
typically have a significant amount of noise and errors.

IV. DEVIATING EIGENVALUES AND EIGENVECTORS

A. Deviating eigenvalue
We consider the set of eigenvalues that deviate from the

eigenvalue range of the random matrix as genuine correlation.
The amount of variance contributed by each eigenvector (fac-
tor) can be reflected by the proportion of eigenvalue over the

0 L--A

(a) Distribution of random correlation coefficients.
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Fig. 3. Variance explained by sorted descending eigenvalues.

sum of all eigenvalues based on principle component analysis
(PCA). In other words, principle factors are responsible for
the majority of variation within the data. Thus, only large
eigenvalues, usually greater than 1, and their corresponding
eigenvectors are retained for further treatment and gene group
analysis. The rest of the eigenstates contain either insignificant
or noisy information. We can see from Fig. 3, a plot of variance
versus eigenvalue, that a large proportion of variation is picked
up by the first several large eigenvalues.

B. Deviating eigenvector components
Deviating eigenvalues naturally lead us to the investigation

of their corresponding deviating eigenvectors. There are N
eigenvectors u' in total, i= 1 ...N. Each eigenvector ui has
N components corresponding to N gene variables. All eigen-
vectors are perpendicular(orthogonal) to each other and are
normalized to length of 1. The probability distribution of
eigenvector components for different eigenvalues are plotted
and compared against that of a random matrix, which follows
Gaussian distribution with zero mean and unit variance.

1 7 u2\
/3(u) = exp 2 (6)

The probability distribution of the eigenvector components
with the corresponding eigenvalue Ak from the bulk A_ < Sk <
A+ shows a good agreement with Gaussian distribution as
indicated by the lower right graph in Fig. 4. The deviating
eigenvector components demonstrate a significant deviation
from the Gaussian distribution as shown by the upper and
lower left graphs in Fig. 4. It has been also observed that the
distribution curve is gradually reforming to approximate the
shape of a Gaussian distribution when eigenstates approach
the characteristic region represented by a random matrix.

V. FUNCTIONAL MODULES IDENTIFICATION

A. Collective behavior from the largest eigenvalue
The observation also shows that if the majority of gene

expression correlations are co-regulated, the eigenvector com-
ponents corresponding to the largest eigenvalue with contri-
bution from almost all genes have the same sign as shown
in Fig. 5. Such eigenvector components distribution can be
commonly found in a specific gene cluster, where most of
the genes are co-regulated with a few to be anti-co-regulated.

Fig. 5. Distribution of eigenvector component for u1.

It further supports the existence of housekeeping genes in a
significant number, which are constitutively expressed to carry
out basic cell functions needed for the sustenance of the cell.
Similar phenomena are also observed in financial stocks data,
and can be interpreted as a common influence to all stocks by
certain stimuli such as newsbreaks of interest rate increase [9].
We quantify the alike collective behavior of the entire genome
by eigensignals computed as the scalar product of the sample
series on the first eigenvector u1:

N
1 (S) = IUi1 Wi (S).

i=l
(7)

We have the following when the common influence effect is
considered:

(8)

where z1 (s) is common to all genes, and aci and fPi are
gene-specific constants, which can be estimated by least
squares regression. The largest eigenvalue is usually an order
of magnitude larger than the rest of the eigenvalues. Such
strong eigensignal can significantly suppress the effect of other

N
eigenvalues because of the fact that ~,i = Tr(C) =N. We

want to remove the effect of ),j in order to augment the impact
of the remaining eigenvalues for easy and reliable study. From
Eq. 8, we calculate the residuals ei (s) as the matrix elements
to construct a new correlation matrix C'. The eigenstates of
C' are then analyzed to build transcriptional networks capable
of revealing some subtle gene clusters that might have been
masked by the largest eigenvalue ),I.

B. Loading factor and orthogonal rotation

After acquiring a set of normalized eigenvectors, we trans-
form the eigenvector components to loading factors by taking
the multiplication of vector components and the square root
of corresponding eigenvalue. Each eigenvector represents one
factor leading to one gene cluster. A larger loading factor
indicates that the corresponding gene "load" more on that
eigenvector, or that gene is more expression-dominating for
that cluster. To simplify the eigenvector structure and make

a
.G. 04 -0 03 -0-02 -0-01 0

Wi (s) = ai + Piz, (s) + -ei (s),
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Fig. 4. Distribution of eigenvector component for u ,u , u80.

the interpretation of gene clusters easier and more reliable,
we apply orthogonal rotation to the retained eigenvectors.
Since the rotation is performed in the subspace of the entire
eigenstates, the total variation explained by the newly rotated
factors are always less then the original space, but the variation
within the subspace remains the same before and after rotation,
only the partition of variation changes.
VARIMAX [5] is a simple and popular rotation method that

transforms the principle data axes such that each eigenvector
will contain a small number of large loadings and a large
number of zeroes or small loadings. Biologically speaking,
each gene tends to load heavily on only one or a few gene

clusters. Thus, gene clusters consist of a reduced number
of genes compared with pre-rotation results. The rationale
behind VARIMAX is that a rotation (linear combination) of the
original factors is searched in order to maximize the variance
within factor loadings. A rotation matrix R can be determined
to specify such rotation as following:

R [ Cos Oj Cos ijj 1

Cosojs cos Jj j

where Oi,j is the rotation angle from old axis i to new axis j.
The graphical representation for a 2D orthogonal rotation is
illustrated in Fig. 6 with dotted lines representing new axes.

C. Stability ofgene clusters in samples
The stability of gene clustering based on our eigenstates

analysis can be evaluated in terms of variance of total expres-

sion signals denoted by Z' for eigenvector i among different
samples and time series. The variances are directly associ-
ated with the corresponding eigenvalues as one of the most
important properties of eigensignals [6] in Eq. 10. The gene

cluster derived from eigenvector with larger eigenvalue is more
unstable compared with gene cluster associated with smaller
eigenvalue. Note that variance levels indicate the consistence
of gene members across different samples.

N
Z () UiWk- (S)z'(s) XuY Wk

k-

(9)

Stab(u') (Z') (ul)TCUl = k where i = 1, ...N (10)

VI. EXPERIMENTAL DATA ANALYSIS

The program in this work is implemented in C++ and
currently runs on a single workstation1.

The components of a deviating eigenvector with large values
are identified as gene members belong to a specific functional

1We are now in the process of transitting our system from a workstation
to a supercomputer or Linux cluster running ScaLAPACK [1] for parallel
eigenstates computation.

0.'
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Fig. 9. Some functional modules and their gene members.
,xi

Fig. 6. A 2D orthogonal rotation.

Fig. 7. Yeast transcriptional network.

Fig. 8. Subgroups within one group.

Fig. 10. Sub-functional modules and their gene members.

module involved in a similar cellular pathway. Yeast cell
cycling data, as used in the manuscript, is one of the best
known microarray dataset and has been extensively evaluated.
Therefore, the structure of the network has been quite well
understood. By applying RMT method on this dataset, we

have demonstrated that our results are consistent with available
biological knowledge, which allows us to reach the conclusion
that we have identified functional modules. The entire yeast
genome is partitioned into a large number of functional
modules sharing similar expression patterns based on public
available microarray data downloaded from yeast cell cycle
project at [2].

Fig. 7 shows 17 distinct modules such as protein biogen-
esis, DNA replication and repair, energy metabolism, protein
degradation, heat shock protein, TCA cycle, protein folding,
allantoin mechanism, and histone. Various colors of the edge
represent different ranges of correlation value between two
genes (vertices). It can be visually observed that correlations
within groups are much higher represented by red or orange
links than correlations between different groups indicated by
blue or green links, which strongly indicates the effectiveness
of our clustering approach. For groups with a large number
of genes, we recursively apply the same method to identify
subgroups within large groups. Fig. 8 is the refined submodular

yj

YJ

l>1

.U-

-1
O-ldC..1

0. .Z
.I~~~~~~~~~~~~~~~~~.;I
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results for the first group in blue with 230 genes in Fig. 7. Two
major submodules are identified as glycolysis and cell cycle.

VII. CONCLUSIONS
High-throughput genomic technologies such as microarrays

have provided gene expression data at the transcription level.
Its unprecedented power for the study of gene expression of
thousands of genes simultaneously can be potentially used to
unveil the topology and functions of transcriptional networks.
In this paper, we explored random matrix theory and orthogo-
nal rotation techniques to dissect transcriptional networks and
identify various functional modules.
Luo et al [?] also proposed a random matrix theory-based

approach to infer transcriptional networks based on microarray
data. However, their analysis is mainly focused on eigenvalues.
In addition, their method require more computation cycles to
calculate eigenvalues for many different correlation matrices.
In our approach, we only need to compute eigenstates for one
correlation matrix.
Most previous clustering methods partition members into

non-overlapping groups. However, in our method, one gene is
allowed in multiple groups, which is a legitimate assumption
from the biological perspective since a single gene may
get involved in different pathways. Transitively co-regulated
genes, which are not directly correlated but both of which
have correlation with the same gene, can also be detected and
grouped. Our method is computationally efficient, objective
without human intervention, and robust to high levels of noise.
Function of unknown genes are conjectured and explored
through their associated function modules.

Since our computational analysis is solely based on a
single microarray dataset, we only obtain rough structure of
functional modules. If genes in the same functional module do
not show significant correlation in expression pattern, we will
not be able to identify them using RMT method. It is likely
that genes in the same functional module show significant
correlation under one condition but not under another con-
dition (For example, module of heat shock proteins are rarely
identified in other yeast microarray dataset). By consolidating
results from multiple microarray datasets, we could improve
the integrity of functional modules. The authors will work
toward this direction in the future.

In general, we think that "all the subjective factors induced
by humans built into the microarray data itself' can be
divided into two categories: systematic subjective factors (e.g.
overlook low-density signals of spots if signal/background
signal is set to be high, which will impact every slide of the
whole dataset) and random subjective factors. RMT method,
or any existing clustering method (e.g. hierarchical clustering,
K-means, SOM, etc.), is unable to deal with systematic sub-
jective factors. On the other hand, RMT method is capable of
removing the random subjective noise, which normally lead
to low correlation between genes.

It would be our future interest to apply this method to human
genome data with 30k genes. A highly parallel implementation
of our algorithm is needed to address large-scale biological

applications. Our code can easily migrate to supercomputers
or cluster machines to utilize high performance computing
resources. Some advanced visualization techniques will also
be introduced at a later stage to aid data comprehension and
inspire discoveries.
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