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Abstract
Background: Sudden death syndrome (SDS) of soybean (Glycine max L. Merr.) is an economically
important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed
Fusarium virguliforme (Fv). Due to the complexity and length of the soybean-Fusarium interaction, the
molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully
understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow
host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of
phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among
transcript abundances (TAs) of functional orthologous genes of soybean and A. thaliana involved in the
interaction will provide insights into plant resistance to F. viguliforme.

Results: In this study, we reported the analyses of microarrays measuring TA in whole plants after A.
thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant
variations in TAs. The total number of increased transcripts was nearly four times more than that of
decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen
infection in A. thaliana was identified and compared to that reported in soybean.

Conclusion: Microarray experiments allow the interrogation of tens of thousands of transcripts
simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to
Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana
enabled a broad view of the functional relationships and molecular interactions among plant genes involved
in F. virguliforme resistance.
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Background
Transcriptional changes play a major role in many plant
defense processes [1]. Investigation of alterations in tran-
script abundance in functional genomics has provided
unique opportunities to delve into gene functions by the
comparison of species, tissue and time specific transcript
accumulation for thousands of genes simultaneously [2-
4]. The transcript abundances of the annotated genes of
Arabidopsis, soybean and many other crops can be evalu-
ated in parallel using high-density microarrays of
sequenced cDNAs (AGI, 2000) or oligomers [5]. Microar-
ray experiments have enabled the detection of significant
variation in mRNA abundance and improved the under-
standing of the molecular mechanism of partial defense
responses [6-9]. The host-pathogen interaction involved
in incomplete, quantitative and partial resistance of soy-
bean roots to F. virguliforme has been intensively investi-
gated [9-11]. Transcription factors, chromatin remodeling
proteins and transcript stabilizing factors are likely candi-
dates to be involved. Regulated pathways are expected to
include the synthesis of phytoalexins, signal molecules,
cell wall deposition and carbon (C) and nitrogen parti-
tioning.

Several studies suggested that disease resistance genes
shared the same specificity across distantly related plant
species [12-15]. The specificity of response was main-
tained, perhaps because of balancing selection, in lineages
leading to multiple plant species [16]. However, it is diffi-
cult to conclude that a unified model of host-pathogen
interactions has been determined because many of the
genes underlying pathogen recognition were functional
orthologs rather than the closest sequence homologous in
different species.

Phytoalexins, phytoanticipins and signal molecules are
three major natural products involved in plant defense
with common precursors [17]. Phenylalanine ammonia-
lyase (PAL; EC 4.3.1.5) expression has been associated
with resistance to fungal pathogens in many plant species
[18,19]. PAL catalyzes the deamination of phenylalanine
to produce trans-cinnamic acid, the first step in the phe-
nylpropanoid pathway leading to phytoalexins, lignins or
coumarins. Multiple isoforms of the pal gene were identi-
fied in plants [20]. Manipulation of PAL, the first enzyme
of the phenylpropanoid pathway together with the down-
stream enzymes such as cinnamate 4-hydroxylase (C4H;
EC 1.14.13.11), diphenol oxidase (laccase; EC 1.10.3.2)
and 4-hydroxycinnamoyl CoA ligase (4CL; EC 6.2.1.12),
revealed an association with resistance to viral and fungal
infection [21-23]. Reduction of phenylpropanoid biosyn-
thesis in tobacco via down-regulation of PAL reduced
local and systemic acquired resistance to fungal or viral
infection [24,25]. Phenylpropanoid derived polymers like
lignin also play an important role as a physical barrier

against pathogen invasion [26]. Lignin, a complex
racemic aromatic heteropolymer is the second most abun-
dant cell wall polymer (after cellulose) and provides rigid-
ity for the cell wall and a physical barrier against
pathogens [27]. Lignin is synthesized from the phenylpro-
panoid metabolism reactions. These series of hydroxyla-
tion and O-methylation and conversion of side-chain
carboxyl to an alcohol result in the building blocks of
lignin, which is initiated by deamination of phenyla-
lanine by the enzyme PAL where hydroxycinnamic acid
esters play a central role [28,29]. 4CL is responsible for the
CoA esterification of p-coumaric acid. Down-regulation
of isozymes of 4CLs may alter metabolite concentrations
other than those involved in lignin production, with a sec-
ondary effect on growth as a consequence [30]. Laccase
was the first enzyme demonstrated to be able to perform
lignin polymerization in vitro. Over-expressed laccase in
the roots caused cell wall lignin deposition increases in
the developing xylem [31,32,23]. Therefore lignin might
be involved in the disease resistance mechanism of plant
cells where wall fortification occurred in response to
many pathogens and would be especially useful against
root rots.

In plant, SnRKs possess a catalytic domain similar to that
of sucrose non-fermenting-1 (SNF1) of yeast (Saccharomy-
ces cerevisiae) and AMP-activated protein kinase (AMPK)
of animals. SnRK1, SnRK2 and SnRK3 are the key mem-
bers of SnRKs family but the SnRK1 subfamily appears to
share direct structural and functional homology with the
SNF1/AMPK family. The SnRK1 protein complex can be
further divided into 3 subunits: the α subunit which is
SNF1-like protein; the β subunit that is composed of SIP1-
, SIP2- and GAL83-like proteins; and the γ subunit that is
SNF4-like protein based on sequence structure and
expression patterns [33,34]. Homologues of SnRKs occur
in all kingdoms and they appear to be highly conserved
among yeasts, animals and plants suggesting that they
may play very similar roles across species [35]. SNF1 mod-
ulates the phosphorylation state of a number of metabolic
enzymes whilst SnRK1 regulates several enzymes involved
in sugar metabolism and cell energy metabolism [36,33].
In yeast, the function of SNF1 is to coordinate about 600
genes to respond to lower cellular glucose concentrations.
Hong et al. [33] identified GAL83 as mediating carbon
partitioning during the plant response to herbivore Man-
duca sexta attack. GAL83, a β-subunit of a heterotrimeric
SnRK1, showed a decrease in source leaves whereas the
abundance of the catalytic α-subunit of SNF remained
unaltered. The herbivore-induced changes in sink-source
relations in Nicotiana attenuata was regulated by the β-sub-
unit of SnRK1 (SNF1-related kinase) protein kinase,
GAL83. GAL83 silenced plants were unable to enhance
root reserves, delay senescence or prolonged flowering
following herbivore attack during early stages of develop-
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ment. In turn, SnRK1 can be used to alter resource alloca-
tion thereby plants may be equipped to better tolerate the
pest attack [37].

Partial resistance can often be subcategorized as rate
reducing resistance for fungal infections of roots [38,39].
Partial resistance may result from a reduced infection fre-
quency, an extended latent period of infection, a reduced
sporulation of the pathogen, or a combination of these
[40-42]. However, the defense pathways that are induced
during partial resistance do not share the same temporal
and spatial patterns of gene expression observed in com-
plete resistance [9,10,40,42,43]. Sudden death syndrome
(SDS) of soybean caused by F. virguliforme [44] results
from two distinct interactions. SDS has the root infection
component, where the fungus exogenously penetrates
root cell walls and infect specific cells and causes root rot
whilst leaf scorch component, where some of the toxins
produced in the roots are translocated to leaves and cause
the leaf scorch. The leaf symptoms only occur in soybean
[45,46] but the root rot occurs in all legumes, most dicots
and some cereals. Both root rot and leaf scorch contrib-
utes to yield losses [38,47]. Arabidopsis thaliana is a host
for many types of phytopathogens. We have observed that
Arabidopsis is also an excellent model plant for F. virguli-
forme resistance (authors unpublished data). Arabidopsis
was a host for F. virguliforme and the responses to the path-
ogen with nicely respect to the spore concentration (Fig-
ure 1). Our date showed that this ecotype demonstrated a
rate reduction resistance to the fungal pathogen. Thus, A.

thaliana should be useful for studying the interactions
between plant and F. virguliforme.

Iqbal et al. [9] measured changes in TAs of 192 known
plant defense and biotic/abiotic stress related genes in
soybean roots at five time points over a period of 10 days
after F. virguliforme inoculation. The cDNA arrays used
were chosen from a soybean root cDNA library [48] and a
subtractive hybridization experiment [9]. The temporal
and spatial response differed among soybean genotypes
with different numbers of SDS resistance genes. The
responses were different in the partial resistance and sus-
ceptible genotypes among genes involved in the plant
defense, signal recognition and transduction and meta-
bolic processes. For most of the responding genes and all
genotypes, there was an initial decrease in TAs in the inoc-
ulated roots. However, by later stages of post inoculation,
the inoculated roots of the partially susceptible cultivars
failed to increase abundance of any transcripts of known
defense-related genes. In the most resistant cultivar, a set
of 35 genes maintained at least a two-fold higher abun-
dance at all time points. The increase in TA in RIL23 was
in contrast to that observed in Essex, susceptible parent,
where most of the ESTs showed either no change or a
decreased TA [9].

Here, we analyzed the changes that occurred in the abun-
dance of transcripts corresponding to 10,560 A. thaliana
expressed sequence tags (ESTs) after A. thaliana cv 'Colum-
bia' was treated with F. virguliforme. Reverse labeled slides
were used. An ortholog analysis was exploited to under-
stand the evolutionary roles of the regulated genes based
on investigation of orthologous relationship between soy-
bean and Arabidopsis. A set of resistance pathways
involved in response to the pathogen infection in A. thal-
iana has been proposed. The comparison of the transcrip-
tional activity in the resistance pathways between soybean
and Arabidopsis after F. virguliforme pathogenesis allows
for the examination of evolution of the disease response
in both species.

Results
Transcript profile of Arabidopsis genes in response to F. 
virguliforme infection
Analysis of the microarray data demonstrated a significant
variation within and between the slides after local and
global normalization [49] and 6,109 genes correlated in
both reverse labeled slides from the 10,560 EST arrayed.
The position and label variations between two replica-
tions did not significantly alter the topography between
slides. The fungal infestation caused 168 transcripts to
increase in abundance more than 1 fold (>1 on Log2
scale). About 24 of the transcripts were increased in abun-
dance more than 2 fold (Log2 scale). In contrast, only
forty-two transcripts were observed to decrease in abun-

Arabidopsis thaliana responded to F. virguliforme with respect to the spore concentrationFigure 1
Arabidopsis thaliana responded to F. virguliforme with respect 
to the spore concentration. The plant exhibited a remarkable 
response to the concentration of the spore on the plant 
fresh weight (mean weight). The mean weights labeled with 
the same letter were not significantly different (P < 0.05).
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dance by more than 1 fold (Log2 scale) and 14 of them
went down more than 2 fold (Log2 scale) following F. vir-
guliform infection. In addition, the number of the up-reg-
ulated genes was nearly four times more than that of
down-regulated genes. Therefore, A. thaliana cv Columbia
responses to F. virguliforme were more similar to resistant
than susceptible soybean cultivars [9].

After the Arabidopsis EST-based microarray data were
converted into Affymetrix 22 K array annotation, the
6,109 genes on the arrays were subjected to pathway con-
struction using the MapMan platform [50]http://
gabi.rzpd.de/projects/MapMan. The majority (3,541) of
genes altered by the treatment (P < 0.05) could not be

assigned to any of the known function (Table 1). In con-
trast, 2,568 genes were assembled into 14 major bins,
each bin representing a set of related pathways (Table 1).
Classification of the transcript abundances changed by F.
virguliforme infestation showed several interesting fea-
tures. There were 571 genes distributed among five pro-
tein metabolism related bins: synthesis, activation,
posttranslational modification, degradation and folding.
Bin16, secondary metabolism, bin29, protein metabolism
and bin30, signal transduction were subjected further
investigation. A large proportion of these protein metabo-
lism related genes was assigned to bin29.2 (synthesis) and
bin29.4 (posttranslational modification). Bin29.4 (pro-
tein post-translational modification) contained many

Table 1: Description of bin distributions in the MapMan platform.

Bin Name Elements p-value

1.1 PS.lightreaction 59 0.04
1.1.4 PS.lightreaction.ATP synthase 6 0.01

TCA/org. transformation.other organic acid
8.2.11 transformaitons.atp-citrate lyase 2 0.03
10.2 cell wall.cellulose synthesis 14 0.01

lipid metabolism.FA synthesis and FA elongation.long
11.1.9 chain fatty acid CoA ligase 5 0.004
12 N-metabolism 13 0.03
12.2 N-metabolism.ammonia metabolism 8 0.04

amino acid metabolism.synthesis.aspartate
13.1.3.4 family.methionine 9 0.046
16.1.4 secondary metabolism.isoprenoids.carotenoids 6 0.04

secondary metabolism.phenylpropanoids.lignin
16.2.1 biosynthesis 18 0.006
16.7 secondary metabolism.wax 4 0.027
16.8.2 secondary metabolism.flavonoids.chalcones 3 0.006

hormone metabolism.brassinosteroid.synthesis-
17.3.1.1.1 degradation.BRs.DET2 3 0.02
19.1 tetrapyrrole synthesis.magnesium chelatase 2 0.03
26.3 misc.gluco-, galacto- and mannosidases 22 0.01
27.1 RNA.processing 71 0.01

RNA.regulation of transcription.TCP transcription factor
27.3.29 family 6 0.04
29.1 protein.aa activation 32 0.02
29.2 protein.synthesis 200 0.004

protein.synthesis.chloroplast/mito – plastid ribosomal
29.2.1 protein 36 0.007

protein.synthesis.chloroplast/mito – plastid ribosomal
29.2.1.1 protein.plastid 21 0.04
29.2.2 protein.synthesis.misc ribososomal protein 106 0.01
29.4 protein.postranslational modification 186 0.03

protein.postranslational modification.kinase.receptor like
29.4.1.51 cytoplasmatic kinase I 2 0.03
29.5.11.4.3.2 protein.degradation.ubiquitin.E3.SCF.FBOX 58 0.01
29.6 protein.folding 25 0.006
30 signalling 267 0.02
30.3 signalling.calcium 59 0.01
35 not assigned 2150 0.02
35.2 not assigned.unknown 1191 0.003

The bin number of the microarray was also denoted from 1–100 and it was only shown for the bins with significant changes in transcript abundance 
at P < 0.05.

http://gabi.rzpd.de/projects/MapMan
http://gabi.rzpd.de/projects/MapMan
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genes involved in published plant defense schema [51].
The 186 genes encompassed in this bin category would
allow various stages of plant response to pathogen chal-
lenge to be investigated. Of the 186 genes involved in pro-
tein posttranslational modification there were only 9
genes with significantly altered TAs. The synthesis of new
proteins and the alteration of the activities of existing pro-
teins by modification have been frequently reported to be
important to plant pathogen resistance.

Further in silico analysis, the platform of the Arabidopsis
Interactions Viewer [52] was used to investigate the poten-
tial molecular protein-protein interaction based on the
observed transcript changes. When the 186 genes were
deployed in the Arabidopsis Interactions Viewer, there
were more than 745 interlogs obtained. However, only
two hubs (AMP kinase and phosphatase associated pro-
tein 46 and TAP46) were identified if these 9 genes were
loaded into the Arabidopsis Interactions Viewer under
higher stringency.

Secondary metabolism and lignin biosynthesis pathways
The 31 genes which had been classified as potentially
being involved in secondary metabolism (bin 16; Table 2;

Figure 2) were prominent. Several other genes that were
reported to be involved in plant responses to pathogen
attack were found within the schema. They were subdi-
vided into pathways leading to isoprenoid, phenylpropa-
noid and lignin biosynthesis. The 18 genes were mapped
into bin 16.1.4 (isoprenoids, carotenoids) included genes
involved in signaling, signaling-calcium, cell wall and cel-
lular synthesis and 13 genes were mapped into bin16.2.1
(phenylpropanoids) and bin16.7 (waxes).

The transcriptional analysis of genes from the multiple
branches of the phenylpropanoid pathway showed that 6
of the 31 genes were significantly altered in TA (Table 2).
Further, TA changes inferred that synthesis of cinnamic
acid in Arabidopsis was one of the early responses to F.
viguliforme infection. Phytoalexins and phytoanticipins
serve both structural and metabolic functions in disease
resistance. Our microarray data showed that the resistance
response of the phenylpropanoid pathway was different
in Arabidopsis and soybean [9]. The microarray data
showed that the phenylpropanoid pathway was activated
during the resistance response in the Arabidopsis. In con-
trast to soybean [9], despite the fact that the PAL was
induced in this metabolic pathway, other major genes

Table 2: The protein-protein interaction carried out by the Arabidopsis Interaction Viewer on Bin 16.

Locus Description Fold change

At3g10340 phenylalanine ammonia-lyase 3.395
At2g23910 cinnamoyl-CoA reductase 2.688
At4g09500 glycosyltransferase family protein 1.131
At5g12210 geranylgeranyl transferase type II beta subunit 1.117
At4g17190 farnesyl pyrophosphate synthetase 2 1.032
At5g62790 1-deoxy-D-xylulose 5-phosphate reductoisomerase 1.013
At2g40230 transferase family protein 0.924
At1g74020 atss-2 strictosidine synthase 0.899
At1g26410 FAD-binding domain-containing protein 0.889
At3g10230 lycopnene beta-cyclase 0.887
At1g62570 flavin-containing monooxygenase family protein 0.826
At5g57840 transferase family protein 0.796
At1g08550 violaxanthin de-epoxidase precursor 0.665
At4g34540 isoflavone reductase family protein 0.665
At1g35190 oxidoreductase 0.633
At2g29330 tropinone reductase, putative 0.603
At4g16330 oxidoreductase 0.559
At1g06570 1;4-hydroxyphenylpyruvate dioxygenase 0.552
At1g58180 carbonic anhydrase family protein 0.541
At4g33360 terpene cyclase 0.523
At3g21240 4-coumaroyl-CoA synthase 2 -0.057
At2g30490 cinnamic acid 4-hydroxylase -0.274
At5g13930 chalcone synthase -0.479
At3g55120 chalcone-flavanone isomerase -0.51
At3g51240 naringenin 3-dioxygenase/flavanone 3-hydroxylase -0.52
At4g34230 cinnamyl-alcohol dehydrogenase -0.556
At4g39330 mannitol dehydrogenase -0.645
At1g17050 geranyl diphosphate synthase -0.821

Key genes were in bold. The value was on Log 2 scale.
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such as cinnamic acid 4-hydroxylase (C4L), chalcone syn-
thase (CHS) and cinnamyl-alcohol dehydrogenase (CAD)
in the phenylpropanoid pathway were all suppressed
(Table 2), indicating that soybean and Arabidopsis did
not share similar strategies in the specific pathway to
resistance F. virguliforme. Based on the up-regulation of
ESTs, total six genes in the phenylpropanoid pathway had
more than 1-fold increase in abundances (Log2 scale).
However, the rest of genes involved in major branches in
the pathway were either down-regulated or no significant
increase in TAs (Table 2). The suppression of these
branches of the phenylpropanoid pathway seemed some-
how different from the soybean response to the pathogen
[9]. Since transcripts of those enzymes leading to the syn-
thesis of flavonols, terpenes and proanthocyanidins,

decrease in abundances of down-stream genes in the pro-
cedure of the resistance response in the pathway but
increase in PAL and cinnamoyl-CoA reductase transcripts
during this same time suggesting the existence of a poten-
tial bypass to synthesize secondary metabolites in the
defense response. After the 192 soybean genes have been
converted into 158 functional orthologs of Arabidopsis
genes, comparison of the protein-protein interaction net-
work in both Arabidopsis and soybean demonstrated a
high specificity trend in gene regulation of the two species
(Figure 3). There were 12 hubs identified in the 158 func-
tional orthologous soybean genes whilst more than 15
network hubs were observed to mediate the resistance in
the up-regulated Arabidopsis genes. Unfortunately, no
resistance pathway was generated from our Arabidopsis

TA changes in responses of Arabidopsis plant to F. virguliformeFigure 2
TA changes in responses of Arabidopsis plant to F. virguliforme. The secondary metabolism in the MapMan program [50] was 
marked in red square. Blue and Red squares were denoted increased (positive) and decreased (negative) transcript abundances 
(TAs), respectively. The bar was shown on log2 scale.
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microarray data by the Arabidopsis Interactions Viewer
program in the bin16 and no significant interlog among
genes in bin16 of the data obtained.

SNF1 (sucrose non-fermenting-1)-related protein kinase 
(SnRK1, AKIN10) gene
When all 50 genes altered in TA from in bin30 (signaling)
were subjected to Arabidopsis Interactions Viewer plat-
form, more than 300 interlogs were identified. The genes
clustered into three major categories based on both inter-
log confidence value and Pearson correlation coefficient.
The first group of the interlogs was mediated around MAP
(mitogen-activated protein) kinases, the second group
was centered on SNF1-related protein kinase 1 (SnRK1;
Figure 4), and the third group was formed around ATMPK
(Table 3). The second group contained 32 genes altered in
TAs and this group was composed of three putative major

nodes with a total 111 hits and 443 interlog confidence
values (Table 3). A putative signal transduction pathway
was derived from the interaction network (Figure 5). The
results suggested that the SnRK1 gene could be important
for coordinating the signal assembly of a cellular appara-
tus associated with the "endogenous fuel gauge" [53],
since of the 31 genes in the reaction center may be differ-
entially regulated by the endogenous AMP and sugar con-
tent in order to maintain cell defense. As shown in Figure
3, SnRK1 was centered among 31 interacting genes. The
group was composed of 3 clades and most genes corre-
sponded to the signal transduction cascade and cellular
responses (data not shown).

Upstream of the SnRK1 signal cascade, the ATMPK cas-
cade may be connected to cellular calcium (through cal-
modulin binding protein) and protein kinases (Figure 4,

Network of protein-protein interaction of A. thaliana and soybean infested with F. virguliformeFigure 3
Network of protein-protein interaction of A. thaliana and soybean infested with F. virguliforme. The networks were generated 
by Cytoscape [67] and visual displays were saved as Cytoscape graphs. Interaction hubs were marked by red.
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11 EMB1644 At5g27720
12 EMB1738 At1g11680
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Hub Description Locus
1 Cyclin family protein At5g48630
2 DNA-D-RNApol At5g41010
3 PAB8 At1g49760
4 ACC1 At1g36160
5 EMB2369 At4g04350
6 EIF3C AT3G56150
7 FKF1 AT5G23410
8 EIF3C At2g45730
9 Cytochrome c1 At3g27240

10 Thump domain At5g12410
11 TAP46 AT5G17420
12 ATP-dependent helicase At3g16840
13 transducin family protein At5g14050
14 vacuolar ATP synthase D At3g58730
15 DCD2 AT3G05300

Soybean functional ortholog 
Resistance  genes in Arabidopsis

Arabidopsis up and down regulated 
genes

1

5

2

3

4
7

6

9

8

11

10

12

GRIK

SnRK1

SNF4



BMC Genomics 2008, 9(Suppl 2):S6 http://www.biomedcentral.com/1471-2164/9/S2/S6

Page 8 of 15
(page number not for citation purposes)

5). In animals, LKB1 (also called STK11, a recently identi-
fied tumor suppressor gene) is required for the activation
of AMPK in response to cellular concentrations of AMP
induced by cellular stresses. The increase in AMP pro-
motes phosphorylation by LKB1 [54]. The SnRK1 shared
33% identify with one of the mouse LKB1 paralogs
(BAA76749) and there was a significant interlog predicted
between the SnRK1 and LKB1. Pathogen elicitor or biotic
and abiotic stresses may activate MAPK pathway through
an unknown protein. On the other hand, cellular C and
AMP concentrations may also trigger the AMPK to induce
SnRK1via SNF4. However, the role of the AMPK of Arabi-
dopsis and its molecular significance and molecular frag-
ments located immediately in the upstream of SnRK1 are
still unknown. The TAs of the AMPK (At5g21170) and
cyclin family protein (At5g48630) were significantly
increased by F. virguliform but ACC1 (acetyl-CoA carbox-

ylase 1) was suppressed (Table 3). Analysis of functional
orthologs of the soybean genes in Arabidopsis indicated
that significant variations existed between two species fac-
ing the same pathogen. Interestingly, SnRK1 and SNF4
were also found in the soybean resistance network (Figure
3).

Comparison of the fungal resistance genes between 
Arabidopsis and soybean
168 genes with altered TAs in the Arabidopsis microarray
data shared homology to the 192 soybean genes involved
in resistance, signal transduction, plant defense and trans-
port of metabolites. Those TAs from both species were
functionally clustered into three major groups (data not
shown) using CLUSTAL X [55]. The results of multiple
alignments were subjected to phylogenetic analysis with
algorithm of the MEGA4 software [56] using the Maxi-

Interlogs of Bin30 based on Arabidopsis Interactions Viewer [52] SNF1 (sucrose non-fermenting-1)-related protein kinase (SnRK1) gene was positioned in lower part of the figure by the computer programFigure 4
Interlogs of Bin30 based on Arabidopsis Interactions Viewer [52] SNF1 (sucrose non-fermenting-1)-related protein kinase 
(SnRK1) gene was positioned in lower part of the figure by the computer program.
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mum Parsimony analysis with Kimura two parameter dis-
tances. The reliabilities of each branch point were assessed
by the analysis of 500 bootstrap replicates. The Maximum
Parsimony (MP) analysis showed that these genes pos-
sessed homology by evolutionary descent. Maximum Par-
simony phylogenetic analyses partitioned these resistance
genes in Arabidopsis and soybean [9] jointly into 7 clades
(denoted I-VII, data not shown). Each clade contained
various members. Some clades could be further subdi-
vided into subclasses. Clade III contained members that
were the most divergent compared with those encoded by
the other clades. Interestingly, there were several ESTs that
were only found in one species. Majority families or sub-
families in the higher nodes tended to give low bootstrap
values (data not shown).

Discussion
It is well-known that over-expression PAL in tobacco plant
can effectively be used against a virulent fungal pathogen
Cercospora nicotiana infection and also altered the lesion
phenotype inoculated with TMV [57]. Reduction of phe-
nylpropanoid biosynthesis in tobacco via down-regula-
tion of PAL reduces local and systemic acquired resistance

to fungal or viral infection [27,28]. The major function of
PAL is to catalyze phytoalexins and phytoanticipins pro-
duction and thereby reduce disease severity [58]. Consti-
tutive over-expression of the PAL gene from the tropical
pasture legume Stylosanthes humilis in tobacco plants pro-
vided resistance to Cercospora nicotianae and to pathogen
Phytophthora parasitica pv. Nicotianae [59]. The key
enzymes of phenylpropanoid pathway, PAL, C4L and
CHS were all induced in soybean resistance to F. virguli-
forme [9]. The global expression analysis of the Arabidop-
sis plant challenged by F. virguliforme appeared to be
different. The fungal pathogen affected the secondary
metabolism not only in the phenylpropanoid pathway
but also via pathways leading to other cellular functions
(terpenes, phenolics, special N compounds metabolism).
Transcripts of the PAL gene encode the key enzyme feed-
ing all these branches. Therefore, the decreases in most
key transcripts at the times when PAL and cinnamoyl-CoA
reductase transcripts increases in abundance is a novel
finding showing that the synthesis of PAL and cinnamoyl-
CoA reductase transcripts is with negative correlation to
the activity of the other genes during the pathogen stress
response. Perhaps in A. thaliana, the phenylpropanoid
pathway did not directly participate in the cascade of reac-
tions elicited during the defense and probably, the bio-
synthesis of phytoalexins and phytoanticipins was
regulated in different fashions in soybean and Arabidop-
sis. Transcripts of genes involved in the synthesis of lignin,
flavonols, anthocyanins and proanthocyanidins (data not
shown) seemed to be down-regulated during the periods
of time when the genes involved in the synthesis of cin-
namic acid was up-regulated. Arabidopsis lacks isoflavo-
noid and phytoalexins and produces mainly camalexin
rather than a cocktail of isoflavonoids [60]. Therefore, in
Arabidopsis the flavonoids (anthocyanins, proanthocya-
nidins, flavones and flavonols) may indeed not play a sig-
nificant role in defense. In contrast, there was evidence
that cinnamoyl alcohol dehydrogenase (CAD) was
induced rapidly in Arabidopsis infected with Xanthomonas
[61] and CAD is in the pathway that leads to lignin bio-
synthesis. In the phenylpropanoid pathway, key genes
like PAL are encoded by a group of genes showing a great
degree of sequence diversity. Significantly up-regulated
PAL transcripts support for the hypothesis that in Arabi-
dopsis expression of the PAL is significantly associated
with pathogen infection. However, the PAL over-expres-
sion plants caused a significant reduction in growth and
delayed flowering. These phenotypes may also be related
to energy status or amino acid pool availability being
altered by PAL.

It has been shown that the addition of sugar activates
genes related to disease resistance [62]. The metabolic
change in the pathogenesis could negatively affect cellular
C content based on the expression of sugar-repressive

Simplified diagram of putative SnRK1 pathwayFigure 5
Simplified diagram of putative SnRK1 pathway. SnRK1 hub 
was marked by a green ring.
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Table 3: Overview of protein-protein interaction of bin30 based on Arabidopsis Interactions Viewer program.

Protein 1 Protein 2 Interolog 
Confidence 

Value

Interolog 
Confidence

Pearson 
Correlation 
Coefficient

Protein2 
Subcellular 
Localisation

Protein1 
Annotation

Protein2 Annotation Total 
hits

Protein2 fold 
change

At3g45640 At4g26070 27 High 0.65 N/A MAP kinase 3 MAP kinase kinase1 9

At3g45640 At4g29810 9 Medium 0.633 cytosol MAP kinase 3 MAP kinase kinase2 3 1.02

At3g45640 At5g50260 1 Low -0.053 N/A MAP kinase 3 cysteine proteinase 1

At3g01090 At1g09020 287 High 0.822 N/A SnRK1 Sucrose NonFermenting 4 41

At3g01090 At3g45240 27 High 0.829 N/A SnRK1 GRIK kinase 1 9 1.17

At3g01090 At5g48630 24 High 0.661 N/A SnRK1 cyclin family protein 6 2.93

At3g01090 At4g16360 20 High 0.732 N/A SnRK1 AMP-activated protein kinase 10 1.16

At3g01090 At5g10270 16 High 0.892 N/A SnRK1 cyclin dependent kinase C 1 4 1.2

At3g01090 At5g63610 16 High 0.726 N/A SnRK1 HUA ENHANCER 3 4

At3g01090 At1g15780 6 Medium 0.878 N/A SnRK1 unknown protein 3 1.16

At3g01090 At4g05320 6 Medium 0.74 N/A SnRK1 polyubiquitin 10 3 1.12

At3g01090 At1g01960 4 Medium 0.829 N/A SnRK1 G-nucleotide exchange factor 2

At3g01090 At1g09200 4 Medium 0.565 N/A SnRK1 histone H3 2 1.4

At3g01090 At1g24290 4 Medium 0.694 N/A SnRK1 AAA-type ATPase protein 2

At3g01090 At3g54610 4 Medium 0.766 nucleus SnRK1 Histon acetyltransferase 1 2

At3g01090 At4g18880 4 Medium 0.199 nucleus SnRK1 HS transcription factor A4A 2

At3g01090 At5g21170 3 Medium 0.571 N/A SnRK1 AMP-activated protein kinase 3 2.17

At3g01090 At1g05570 2 Medium 0.586 PM SnRK1 callose synthase 2

At3g01090 At1g14400 1 Low 0.831 N/A SnRK1 ubiquitin carrier protein 1 1 1.15

At3g01090 At1g16030 1 Low -0.04 plastid SnRK1 HS protein 70B 1

At3g01090 At1g20970 1 Low 0.744 N/A SnRK1 adhesin-related 1

At3g01090 At1g35160 1 Low 0.807 NC, cytosol SnRK1 general regulatory factor 4 1

At3g01090 At1g36160 1 Low 0.747 PM, cytosol SnRK1 acetyl-CoA carboxylase 1 0.33

At3g01090 At1g50370 1 Low 0.854 N/A SnRK1 ser/thr protein phosphatase 1

At3g01090 At1g75560 1 Low 0.741 nucleus SnRK1 zinc knuckle family protein 1

At3g01090 At2g32850 1 Low 0.837 N/A SnRK1 protein kinase family protein 1 1.24

At3g01090 At2g37840 1 Low 0.71 N/A SnRK1 protein kinase family protein 1

At3g01090 At2g43790 1 Low 0.665 N/A SnRK1 ATMPK6 1 0.86

At3g01090 At3g56640 1 Low 0.777 N/A SnRK1 exocyst complex subunit 1

At3g01090 At4g10310 1 Low 0.385 N/A SnRK1 sodium ion transporter 1
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At3g01090 At4g26070 1 Low 0.297 N/A SnRK1 MAP kinase kinase 1 1

At3g01090 At4g26840 1 Low 0.72 nucleus SnRK1 small ubiquitin-like modifier 1 1 0.79

At3g01090 At5g44740 1 Low 0.686 N/A SnRK1 UMUC-like DNA repair protein 1

At3g01090 At5g53770 1 Low 0.668 N/A SnRK1 nucleotidyltransferase 1

At1g59580 At4g29810 12 High 0.621 cytosol MAP kinase 2 ATMKK2 12 1.02

At1g59580 At2g31660 8 Medium 0.521 nucleus MAP kinase 2 SAD2 8

At1g59580 At2g17700 6 Medium 0.358 N/A MAP kinase 2 protein kinase 6 0.88

At1g59580 At1g58230 4 Medium 0.57 mitochondria MAP kinase 2 WD-40 repeat protein 4

At1g59580 At2g35320 4 Medium 0.601 N/A MAP kinase 2 protein tyrosine phosphatase 4

At1g59580 At4g21820 4 Medium 0.099 N/A MAP kinase 2 calmodulin-binding protein 4

At1g59580 At5g17690 4 Medium 0.447 nucleus MAP kinase 2 terminal flower 2 4

At1g59580 At3g58040 2 Medium 0.278 N/A MAP kinase 2 seven in absentia protein 2

At1g59580 At4g24440 2 Medium 0.345 nucleus MAP kinase 2 TFIIA-gamma 2

At1g59580 At4g35780 2 Medium 0.657 N/A MAP kinase 2 protein kinase protein 2

At1g59580 At5g03415 2 Medium 0.269 nucleus MAP kinase 2 DPB__DPB 2

At1g59580 At1g53570 1 Low 0.685 N/A MAP kinase 2 MAP kinase kinase kinase 3 1 1.15

At1g59580 At1g59580 1 Low 1 N/A MAP kinase 2 ATMPK2 1 1.47

Fold change was on Log2 scale.

Table 3: Overview of protein-protein interaction of bin30 based on Arabidopsis Interactions Viewer program. (Continued)
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nuclear genes and may be involved in the regulation of
these genes [63]. Therefore, there should be other mecha-
nisms for maintaining the cellular C concentrations.
Moreover, metabolic movement should provide some
explanation. Our results infer that the metabolite profiles
may affect the status of disease resistance in the Arabidop-
sis plant. The response to C stresses is probably the key
role of SnRK1 in eukaryotes [64]. SnRK1 may represent a
primordial protein that in plants plays an important role
in all resistances. It should be noted that SnRK1 interacts
with 31 proteins, and each is located up- and down-
stream of the gene in the interactome. Perhaps, the SnRK1
sequence has shared motifs with the rest of other proteins
in the network. Interestedly, the presence of proteins in
Arabidopsis related to three subunits of the SnRK1 protein
might indicate an early duplication of these subunits in
the process of evolution. To date, it is still not clear how,
during the course of evolution of multicellular organisms,
the SnRK1 system acquired the ability to be a signal sys-
tem. One important implication is that SnRK1 serves as
one of the hubs for the signal cascades in the plant.
Although the relative specificity of SnRK1 in plants is yet
unknown, it is possible that further investigation of such
role may allow us to draw new resistance pathways based
on energy status. Indeed, plant SnRK1 associated with her-
bivore tolerance was recently identified [53]. Our results
suggest that interaction between SnRK1 with its network
partners may be induced by the fungal pathogen. Further
studies of the gene and the interacting partners should
help to uncover important specific aspects of SNF1-medi-
ated signaling during pathogen infection.

Orthologous genes are defined by direct evolutionary
descent and should play similar developmental or physi-
ological roles. Several gene groups were identified accord-
ing to the outcome of functional orthologous analysis in
this study, showing same functional orthologous relation-
ships in these two species. In our primary results, the 1 to
1 ratio of the orthologous relationship was found among
those several paired groups, indicating these gene groups
were descended from a common ancestor and corre-
sponded to well-conserved functions. These 1 to 1
ortholog classes are presumed to represent conserved
functions in Arabidopsis and soybean, but they shared
diverse bootstrapping value. Diversification following
gene duplication may have occurred but the degree is still
unknown. Twenty-eight pairs of the genes from both spe-
cies were taxoned together and each pair possessed
unique bootstrapping value and Kimura phylogenetic dis-
tance (data not shown). Based on phylogenetic analysis,
the organization of soybean phenylalanine ammonia-
lyase (PAL) proteins were very similar to that of the Arabi-
dopsis PAL proteins, implying that the soybean and Ara-
bidopsis PAL proteins analyzed here were all derived from
a common ancestor. The fact that these clades were

formed by both Arabidopsis and soybean PAL genes gave
a suggestion that these PAL genes existed before the diver-
gence of monocots and dicots. Interestingly, fair numbers
of EST sequences were not found in the other organism,
even in closely related gene families that were associated
with the fungal resistance. However, detailed screening
phylogenetic relationship among those resistance genes is
necessary for detection of the gene evolution.

Plants possess an ability of resistance to most potentially
pathogenic microbes. Gene transcriptional changes are
critical for many plant defense processes [1]. Soybean SDS
consists of root infection and leaf scorch. With the limita-
tions in the study of solely predicted gene interactions,
definite conclusions about the nature of the resistant
response to F. virguliforme infection cannot yet be made.
Investigation on differentially expressed genes of Arabi-
dopsis and soybean in response to F. virguliforme can lead
to better understanding of the mechanisms of resistant
crops for certain disease. Microarray experiment allows
interrogation of tens of thousands of genes simultane-
ously. To understand the molecular interactions involved
in F. virguliforme resistance, we have integrated results
from the soybean SDS resistance with Arabidopsis DNA
microarray studies by in silico analyses. The results of this
study can be used as a model system to facilitate the
understanding of plant resistance to F. virguliforme.

Methods and materials
Plant materials
Arabidopsis thaliana cv. Columbia plants were germinated
from seeds under conditions of 16 h photoperiod (500
μE/M2/sec) with temperatures at 22°C day/18°C night
and 80% (v/v) relative humidity in a growth chamber.
Plants were grown on rafts floating on liquid MS medium
[65]. There were 30 plants per treatment arranged in a ran-
domized complete block with three plants per treatment
per block. Twenty-one days after planting, synchronously
growing plants were selected and collected.

Inoculation of roots with F. virguliforme spores
The F. virguliforme isolate 'Mont-1' was obtained from Dr.
Shiuxian Li at the National Soybean Research Laboratory
(Urbana, IL). F. virguliforme was cultured on potato dex-
trose agar medium (PDA, Difco, Detroit, MI) supple-
mented with 80 mg ml-1 tetracycline and a few drops of
Tween 20. A spore suspension of F. virguliforme isolate
'Mont-1' was prepared as described [66]. The spore sus-
pension, at 5 × 104 spore ml-1 with sterile distilled water,
was made by adding F. virguliforme spores from several F.
virguliforme culture plates and was continuously stirred on
a stir flask to keep a uniform suspension. The spore sus-
pension was poured on the growth medium for the
infested plants and the same volume of sterile distilled
water was added to non-infested plants.
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RNA isolation and microarray procedure
RNA was isolated separately from both inoculated and
non-inoculated roots of 30 A. thaliana plants that were
bulked and ground to a fine powder in liquid nitrogen.
RNA was extracted with a RNeasy Plant Mini Kit (Qiagen,
Valencia, CA) according to the manufacturer's instruc-
tions. RNA samples were treated with DNase in order to
remove any residual DNA using the RNase-free DNase kit
(Qiagen GmbH, Hilden, Germany) according to the man-
ufacturer's instructions. After DNase treatment, RNA was
purified on RNeasy mini spin columns (Qiagen, Valencia,
CA). The quantity and quality of the RNA recovered was
determined by spectrophotometry at 260–280 nm and
electrophoresis on a 1.2% (w/v) agarose, 20% (v/v) for-
maldehyde gel. The microarray hybridization and slide
scanning were carried out by the facility at AFGC http://
afgc.stanford.edu. Microarrays (16561.xls and 27314.xls
at ftp://smd-ftp.stanford.edu/smd/organisms/AT/ were
used in the experiment. The mRNA samples correspond-
ing to treatment (infested) and control (non-infested) was
labeled during the cDNA synthesis with Cy3- or Cy5-
labeled dUTP and with one technical replicate labeled by
reversed dye compared to the first hybridization.

Data analysis
A visualization software, MapMan was used to perform a
gene ontology where the set of Arabidopsis genes of the
microarray was assigned based on the non-redundant and
hierarchically categorized assignment of BINs and sub-
BINs at TIGR (The Institute for Genomic Research). The
ontology was derived from the Affymetrix 22 K array cor-
responding to similar or sub-modal biological functions
[50]http://gabi.rzpd.de/projects/MapMan/. The classifica-
tion of Image Annotator in the software was also used to
diagram the data display. The changes were expressed rel-
ative to those in pathogen challenged roots. Transcripts
that increased in abundance were denoted in blue, and
transcripts were decreased in abundance were denoted in
red. In the scale used for the visualized data, a 1-fold
change (Log2 scale) was required to produce a visible col-
oration, and the scale saturates at a 3-fold (log2 scale)
change. Blue and Red squares were denoted increased
(positive) and decreased (negative) transcript abundances
(TAs), respectively. The bar was shown on log2 scale. The
Arabidopsis Interaction Viewer queries a database of
19,979 predicted and 1,499 confirmed interacting pro-
teins. The predicted interactions (interologs) were gener-
ated by Geisler-Lee et al. [52]. Output of two interlogs was
transferred to the Cytoscape software environment [67]
for network visualization and modeling against each
other in order to catalog all of their conserved pathways
and gene interaction networks. The program was
equipped with a plug-in architecture for customizing
applications. The visual displays were saved as a Cyto-
scape graphs.

Stringent quality control measures were applied to all
stages of data analysis. The Microarray data were normal-
ized by local (local background value was subtracted from
the intensity value of each spot) and global metrics. The
procedures described by Pevsner [49] were followed to
adjust for differences in the intensity of the two labels.
Coefficients of means and variances on the signal intensi-
ties in each channel and ratio of signals from two repli-
cates were calculated by our C++ program (available on
request), which was also used to handle the missing and
extra data values. The average ratio for a signal microarray
from two replicates was computed by the equation of
[Ratio1st+ (1/Ratio2nd)]/2. The Student's t-test was used
to determine the statistical significance for genes consid-
ered between and within Microarrays slides and the plant
mean weight differences (P < 0.05).

Phylogenetic analyses
Functional sequence analysis was performed on amino
acid sequences using Clustal X [55] with the default set-
tings. Nucleotide sequences were aligned with Clustal W
[68]. The results of multiple alignments were subjected to
phylogenetic analysis using the algorithm of the MEGA
package version 4.0 using the Maximum Parsimony anal-
ysis with Kimura two parameter distances [56]. The Maxi-
mum-Parsimony was assessed by 500 bootstrap
replicates. Only nucleotide sequences were employed in
phylogenetic analysis based on higher stringy considera-
tion for the phylogenetic tree construction.
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