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Applications and Algorithms for Least Trimmed Sum

of Absolute Deviations Regression

Douglas M. Hawkins and David Olive∗

University of Minnesota

August 3, 2003

Abstract

High breakdown estimation (HBE) addresses the problem of getting reliable

parameter estimates in the face of outliers that may be numerous and badly placed.

In multiple regression, the standard HBE’s have been those defined by the least

median of squares (LMS) and the least trimmed squares (LTS) criteria. Both

criteria lead to a partitioning of the data set’s n cases into two “halves” – the

covered “half” of cases are accommodated by the fit, while the uncovered “half”,

which is intended to include any outliers, are ignored. In LMS, the criterion is the

Chebyshev norm of the residuals of the covered cases, while in LTS the criterion

is the sum of squared residuals of the covered cases. Neither LMS nor LTS is

∗Douglas M. Hawkins is Professor and David Olive is Visiting Assistant Professor, School of Statistics,

University of Minnesota, St. Paul, MN 55108, U S A. The authors are grateful to the editors and referees

for a number of helpful suggestions for improvement in the article.
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entirely satisfactory. LMS has a statistical efficiency of zero if the true residuals

are normal, and so is unattractive, particularly for large data sets. LTS is preferable

on efficiency grounds, but its exact computation turns out to involve an intolerable

computational load in any but quite small data sets.

The criterion of least trimmed sum of absolute deviations (LTA) is found by

minimizing the sum of absolute residuals of the covered cases. We show in this

article that LTA is an attractive alternative to LMS and LTS, particularly for large

data sets. It has a statistical efficiency that is not much below that of LTS for

outlier-free normal data and better than LTS for more peaked error distributions.

As its computational complexity is of a lower order than LMS and LTS, it can also

be evaluated exactly in much larger samples than either LMS or LTS. Finally, just

as its full-sample equivalent, the L1 norm, is robust against outliers on low leverage

cases, LTA is able to cover larger subsets than LTS in those data sets where not

all outliers are on high leverage cases.

For samples too large for exact evaluation of the LTA, we outline a “feasible

solution algorithm”, which provides excellent approximations to the exact LTA

solution using quite modest computation.

KEY WORDS: High Breakdown; Least Median of Squares; Least Trimmed Sum

of Squares; Missing Values; Outliers; Robust Estimation; L1 Norm.
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1 INTRODUCTION

Consider the Gaussian regression model

Y = Xβ + ε (1.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

and ε is an n × 1 vector of errors. The ith case (yi, x
T
i ) corresponds to the ith element

yi of Y and the ith row xT
i of X. We will also consider models with “clean” cases and

contaminated cases.

When we have a subsample

Ji = {j1, ..., jh}

of size h ≥ p of the original data, by applying any convenient fitting criterion to the data

(YJi
, XJi

), we can obtain an estimator bJi
of β. Possible criteria include ordinary least

squares (OLS), the Chebyshev (minimum maximum absolute deviation) norm, and the

L1 norm. To compute the criterion Q(bJi
), we need the n residuals

r1(bJi
), . . . , rn(bJi

) where

rk(bJi
) = yk − xT

k bJi
, (1.2)

and these three criteria aim to minimize in b

LTS :
∑h

i=1 |r(b)|2(i)

LMS : |r(b)|(h)

LTA :
∑h

i=1 |r(b)|(i)

where |r(b)|(i) is the ith smallest absolute residual from fit b. LMS and LTS were proposed

by Rousseeuw (1984) and LTA by Bassett (1991), Hössjer (1991, 1994) and Tableman
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(1994a,b).

It is conventional to set h = [(n + p + 1)/2], a choice that maximizes the breakdown

of the resulting estimator. It is frequently valuable to use larger values of h (for example

in data sets where large numbers of outliers are unlikely and we want to get the benefit

of statistical efficiency from covering more cases); and to explore the fits for a range of

values of h.

Finding the LMS, LTS or LTA estimator leads to a two-stage problem – identifying

the “best” subset of size h to cover; and then finding the Chebyshev, OLS or L1 fit to this

subset. In general, there is no completely reliable method other than full enumeration

to identify the “best” subset to cover (that is, the subset whose fit criterion will be

the smallest among all possible subsets of size h), and so computing any of these HBE’s

involves a substantial combinatorial problem. We will show that, while LTA also involves

a combinatorial search, it is smaller than that required for LMS and far smaller than

that required for LTS. This much smaller computational requirement, in part, motivates

a closer consideration of the statistical properties of LTA.

2 THE LTA ESTIMATOR

Both LTA and LTS involve the parameter h, the number of “covered” cases. The re-

maining n−h cases, by being ignored, are “trimmed”. If h = hn is a sequence of integers

such that h/n → γ, then 1 − γ is the approximate amount of trimming. The LTA(γ)
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estimator β̂LTA is the fit that minimizes

QLTA(b) =
h∑

i=1

|r(b)|(i) (2.1)

where |r(b)|(i) is the ith smallest absolute residual from fit b. Several authors have

examined the LTA estimator in the location model (a model including an intercept, but

no nontrivial predictors). For the location model, Bassett(1991) gives an algorithm, and

Tableman (1994a,b) derives the influence function and asymptotics. In the regression

model, LTA is a special case of the R-estimators of Hössjer (1991, 1994).

2.1 Breakdown and Bias of LTS, LMS, and LTA

The three estimators LTS(γ), LMS(γ) and LTA(γ) have breakdown value

min(1 − γ, γ).

See Hössjer (1994, p. 151). Breakdown proofs in Rousseeuw and Bassett (1991) and

Niinimaa, Oja, and Tableman (1990) could also be modified to give the result. Yohai

and Zamar (1993, p. 1832 for LTA) show that LTS, LMS, and LTA have finite maximum

asymptotic bias when the contamination proportion is less than 1−γ where 0.5 < γ < 1.

Croux, Rousseeuw, and Van Beal (1996, p. 219) show that the maxbias curve of LTA is

lower than that of LTS.

2.2 Asymptotic variances of LTA and LTS

Many regression estimators β̂ satisfy

√
n(β̂ − β) → N(0, V (β̂, F ) W )
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where

XTX

n
→ W−1.

For example, Koenker and Bassett (1978) and Bassett and Koenker (1978) show that the

L1 estimator has greater statistical efficiency than OLS for more “peaked” distributions

in which f(0) > 1/(2σ) where σ2 = Var(εi).

Let the zero median error distribution F be continuous and strictly increasing on its

interval support with a symmetric, unimodal, density f. Also assume that f is differen-

tiable on (0,∞). Then the conjectured asymptotic variance of LTS(γ) is

V (LTS(γ), F ) =

∫ F−1(1/2+γ/2)
F−1(1/2−γ/2) x2dF (x)

[γ − 2F−1(1/2 + γ/2)f(F−1(1/2 + γ/2))]2
. (2.2)

See Rousseeuw and Leroy (1987, p. 180, p. 191), Tableman (1994a, p. 337), and remark

2.7 of Stromberg, Hawkins, and Hössjer (1997).

Combining Tableman(1994b, p. 392) with Hössjer (1994, p. 150) leads to the conjec-

ture that the asymptotic variance for LTA(γ) is

V (LTA(γ), F ) =
γ

4[f(0) − f(F−1(1/2 + γ/2))]2
. (2.3)

Rigorous proofs for these conjectures have only been given in the location model - see

Tableman (1994b) and Butler (1982). As γ → 1, the efficiency of LTS approaches that of

OLS and the efficiency of LTA approaches that of L1. The results of Oosterhoff (1994)

suggest that when γ = 0.5, LTA will be more efficient than LTS only for sharply peaked

distributions such as the double exponential; we will explore this issue below.
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The normal case. At the standard normal

V (LTS(γ), Φ) =
1

γ − 2kφ(k)
(2.4)

while

V (LTA(γ), Φ) =
γ

4[φ(0) − φ(k)]2
(2.5)

where φ is the standard normal pdf and

k = Φ−1(0.5 + γ/2).

The double-exponential case. For a double exponential DE(0,1) random variable,

V (LTS(γ), DE(0, 1)) =
2 − (2 + 2k + k2) exp(−k)

[γ − k exp(−k)]2

while

V (LTA(γ), DE(0, 1)) =
1

γ

where k = − log(1−γ). Note that LTA(0.5) and OLS have the same asymptotic efficiency

at the double exponential distribution.

The Cauchy case. Since the Cauchy distribution has infinite variance, so does the

OLS estimator, though the full-sample L1 estimator and the trimmed estimators have

finite variance. Hence

V (LTS(γ), C(0, 1)) =
2k − πγ

π[γ − 2k
π(1+k2)

]2

and

V (LTA(γ), C(0, 1)) =
γ

4[ 1
π
− 1

π(1+k2)
]2
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where k = tan(πγ/2). The LTA sampling variance converges to a finite value as γ → 1

while that of LTS increases without bound. LTS(0.5) is slightly more efficient than

LTA(0.5), but LTA pulls ahead of LTS as the amount of trimming is reduced.

We simulated LTA and LTS for the location model (that is, an intercept but no non-

trivial predictors) using the above three models. For the location model, computation

of the estimators is easy and fast. Find the order statistics Y(1) ≤ Y(2) ≤ . . . ≤ Y(n)

of the data, and evaluate the variance (for LTS) and the sum of absolute deviations

from the median (for LTA) of each of the n − h + 1 half-samples Y(i), . . . , Y(i+h−1), for

i = 1, . . . , n − h + 1. The minimum across these half-samples then defines the LTA and

LTS estimates.

We computed the sample standard deviations (SD) of the resulting location estimates

from 1000 runs of each sample size studied. Tables 1, 2, and 3 list
√

n SD from the

simulations. The entry n = ∞ lists the asymptotic standard deviation multiplied by

√
n. Table 4 shows the Monte Carlo OLS relative efficiencies. The finite-sample variance

of LTS is known to converge to the asymptotic limit very slowly when the errors are

Gaussian, and this tendency is evident in table 1. The rate of convergence for C(0,1)

data and DE(0,1) data seems to be faster. LTA exhibits similar behavior.

3 COMPUTATION OF THE LTA ESTIMATOR

One of the practical attractions of the LTA estimator is the relative ease (compared with

the LTS or even the LMS estimator) with which it can be computed. The LTA estimator

has the property that it is an L1 fit to some subset of size h of the data, the subset being
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those cases for which this L1 norm is minimized. As an L1 regression corresponds to an

exact fit to some subset of size p, the LTA is similarly characterized as a two-part problem

- identifying the correct subset of size h to cover with the LTA fit, and determining the

subset of size p that minimizes the L1 norm of the fit to these h cases. Denote the number

of subsets of size h from a sample of size n by nCh. There are nCp “elemental” subsets

(subsets of size p), – a much smaller number than nCh in typical applications – and one

of these must provide an LTA solution for the full data set. By reversing the order of the

two-part search therefore, we can dramatically reduce its computational complexity.

Exact fits to subsets of size p have a special place in the area of high breakdown

estimation - these elemental sets have long been used to generate approximations to

other high breakdown fit criteria such as LMS or LTS (Rousseeuw and Leroy 1987). In

the case of LTA though they yield exact solutions and not just approximations.

3.1 Exact calculation of the LTA

The characterization of the LTA as an elemental regression parallels that of the LMS fit

(which is a Chebyshev fit to a suitably chosen subset of size p+1 - Portnoy (1987)), and

leads to an LTA counterpart to Stromberg’s (1993) exact algorithm for LMS:-

• Generate every elemental set.

• For each elemental set, compute the exactly fitting regression function, and get

residuals on all cases in the data set.

• Find the sum of the smallest h absolute values among these residuals.
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• The LTA is given by the elemental fit for which this sum is smallest.

The MVELMS code of Hawkins and Simonoff (1993) contains a provision for generat-

ing all possible elemental sets. While this code was written to implement an approximate

LMS fit, all that is needed to convert it into an LTA code is a change to the calculation

of the criterion value, changing this from the hth smallest absolute order statistic to the

sum of the h smallest absolute values.

This exhaustive algorithm requires the generation of all nCp subsets of size p. From

the viewpoint of computational complexity, it is thus inherently smaller than Stromberg’s

exact algorithm for LMS, which requires the generation of all nC(p + 1) subsets of size

p + 1. The ratio of these numbers of subsets, (p + 1)/(n− p) is substantial for moderate

p, particularly with large n.

Table 5 shows some values of nCp. To gain some feeling for these numbers, evaluating

a million regressions is quite a small computation on a desktop personal computer, but

a billion is excessive. So exhaustive enumeration to get the exact LTA fit is a modest

computation for all the n values listed with a simple linear regression; for n ≤ 200 with

p = 3, n < 100 with p = 4 and n < 50 with p = 5. These maximum sample sizes are

larger than the small text-book size range often discussed in writings on HBE methods.

Exact algorithms for LTA, LMS and LTS all comprise generating all subsets of cases

of some appropriate size, performing a fit to these cases, and evaluating the fit on all

data in the sample. The subset sizes and the type of fit are:-
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Criterion Subset size Fit type Number of possible subsets

LTA p Exact nCp

LMS p+1 Chebyshev nC(p+1)

LTS h Least squares nCh

Croux, Rousseeuw, and Hössjer (1994) propose an exact algorithm for the least quantile

of differences (LQD) estimator using the fact that LQD is just LMS applied to the set of

case differences.

For data sets of interesting size, the number of subsets required for exact evaluation

of the LTA is far smaller than those required for either LMS or LTS. For example, if

n = 100 and p = 4, then LTA involves some 4 million fits, and LMS 75 million. The

default choice of h for LTS, h = 52, would lead to 9×1028 subsets. While LTA leads to a

reasonable computation on a modest personal computer, LMS does not, and LTS is far

beyond the bounds of the thinkable.

3.2 A “feasible solution” method for LTA

While exhaustive study of 500 cases and 3 predictors (an intercept and two slopes, for

example) is manageable, going to 4 predictors takes the problem out of the realm of exact

computation, and this shows the need for some other method suitable for approximating

the LTA in large data sets. The LTA is defined as the L1 fit to a suitably chosen “half”

of the cases. It has the property that the absolute residuals of all cases that it covers

are less than or equal to the absolute residuals of all cases that it does not cover. This
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characterization leads to the following “feasible solution algorithm” (FSA) for LTA:-

1. Generate a random elemental set, and calculate the residuals it gives rise to on each

case in the data set.

2. If the current elemental set gives the L1 fit to the h cases with the smallest absolute

residuals, then it is a feasible solution.

3. If not, then it can not be the solution. Refine it by replacing one of the cases in

the elemental set with a “better” one.

4. Continue until you reach a feasible elemental.

5. Repeat the algorithm with a large number of random starts.

6. Use the feasible solution with the smallest sum of absolute deviations on the h

covered cases.

Clearly, provided this algorithm is started with enough random starts, it must con-

verge to the global LTA. The third step involves the replacement of one case in the

current elemental set with a “better” one, as can be done effectively with a single step

of Bloomfield and Steiger’s (1980) algorithm for the L1 fit to a data set. This algorithm

starts with an arbitrary elemental set and computes the residuals on all cases. If the

current elemental set does not provide the L1 fit, then it is improved by replacing one

of the cases in it with the case whose residual defines a suitably weighted median of the

residuals. Bloomfield and Steiger motivated an heuristic to identify a good case to remove

from the current elemental set, and claimed that the resulting algorithm was inherently

faster than any other algorithm then known.
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A simple adaptation of Bloomfield and Steiger’s full-sample algorithm is suitable for

our problem. At the stage of selecting which case to bring into the current basis, instead

of searching over all n cases, restrict the search to the h cases with the smallest residuals

from the current trial elemental solution. Perform a single exchange, as in the full-sample

version. This leads to a new elemental set which is improved in the sense of being closer

to the L1 fit to the h cases with the currently smallest absolute residuals. The residuals

on all cases are then recomputed using this new elemental regression, during which the

set of cases with the h smallest absolute residuals might change. If the current elemental

set does not provide the L1 fit to the cases with the h smallest residuals, then a further

step of the modified Bloomfield-Steiger algorithm is applied. This process continues until

a feasible solution is reached.

Since the sum of the h smallest absolute residuals decreases at each step of this

algorithm, it follows at once that the algorithm must converge.

FORTRAN codes implementing this feasible solution algorithm, and the exact code

obtained by expanding MVELMS, are at the following website (go to the software icon).

http://www.stat.umn.edu

We defined our feasible solution algorithm for LTA (FLTA) by the property that a

feasible solution gives the L1 fit to the subset of cases that have the h smallest absolute

residuals. We can use parallel definitions to define feasible solution approaches to LMS

and LTS (FLMS and FLTS, respectively). These are not necessarily the same definitions

that have been used in published definitions of these algorithms (Hawkins 1993, 1994),

but are both particularly suitable for large n and better for comparability with the LTA
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we have defined. Ruppert (1992) also uses subset refinement to approximate LMS and

LTS.

Each of the feasible solution algorithms starts with a trial subset and refines it. In

the worst case, if the initial subset contains one or more outlying cases, the algorithm

may converge to a feasible solution that still includes one or more outlying cases. We can

therefore get a conservative estimate of the ability of any of these estimators to locate

outliers by calculating the probability that the initial elemental set consists entirely of

“clean” cases.

Table 6 shows some illustrative figures for the LTA and LTS algorithms for samples

with 10% contamination – a level that is not unrealistically high for many types of

data. We omit LMS because its zero efficiency makes it particularly unattractive in large

samples. The table shows the common log of the probability that a single starting subset

will consist entirely of clean cases.

An entry less than -3 indicates that the probability of getting a clean starting set is

less than 1 in 1000, which implies that the algorithm is likely to fail unless it is restarted

with at least several thousand initial random subsets. This is the case for LTS for all

of the subset sizes of 100 or above, indicating that the LTS algorithm (at least as we

have defined it here) will not work for these larger sample sizes unless it uses a very large

number of random starts. For all of the entries in the table, however, the LTA algorithm

has a high proportion of clean starting subsets, and so a high probability of reaching a

correct identification of sufficiently severe outliers when started with a modest number

of random starting sets.

14



For example, at n = 500, p = 5, the probability that a starting subset is “clean” is

10−0.2249 = 0.6, so a majority of starting subsets will be clean and there is little cause for

concern about the algorithm ending in a contaminated subset.

We generated data sets containing 10% of severe outliers, all of them on high leverage

cases, and investigated the ability of the FLTA and FLTS to converge to a solution in

which all the outliers were uncovered. The results are summarized in table 7, which

shows the execution time per starting subset and the proportion of starting subsets that

converge to a valid solution. The runs used 5,000 random starts. The execution times

are explained quite well by the empiric model

FLTA time = 0.062(np)1.5.

We tested the ability of the FSA for LTA to handle large data sets by analyzing a

simulated data set with 10,000 cases (one third of them outlying) and 10 predictors.

The feasible solution algorithm required under one minute per random start. All feasible

solutions (of which we found 343 in 5,000 random starts) correctly identified the outliers.

Table 8 covers the illustrative case p = 10, and shows as a function of n and of the

contamination proportion δ, the common log of the proportion of starting subsets that are

entirely clean. Using again the rough guidance that a figure above -3 is acceptable (one

random start in 1,000 will be clean so that a few thousand random starts will converge

reliably), we see that the LTA gives acceptable performance across the board, while LTS

(at least if implemented using only the concentration necessary condition) is guaranteed
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to work well only for data sets of modest size and limited contamination.

4 THE IMPACT OF CASE LEVERAGE ON h

There is one final point we have not discussed in detail – the interplay between case

leverage and regression outliers. OLS is affected by all regression outliers, regardless of

their position in X space. The L1 norm by contrast is resistant to regression outliers

occurring on low-leverage cases – this has been a strong argument for the routine use of

the L1 full-sample norm. For example, Hampel, Rousseeuw, Ronchetti, and Stahel (1986,

p. 328) state that L1 has 25% breakdown for uniform design and approximately 24%

breakdown for Gaussian design. L1 is however not robust to regression outliers on high

leverage cases, and for this reason has the same zero breakdown as does OLS. When using

LTS, it is necessary to pick h sufficiently low such that all outliers can be trimmed; with

LTA it is sometimes enough only to trim regression outliers on high leverage cases. This

means that it is reasonable to use higher values for the coverage h when using LTA than

when using LTS. Those who would carry an umbrella regardless of the weather forecast

will continue to stick to the maximum breakdown choice h = [(n + p + 1)/2] since it will

accommodate the worst possible case of the maximum possible number of outliers, all of

them on high leverage cases, but others might increase the coverage h, and thereby get

back some of the statistical efficiency lost at normal data by using the L1 rather than

least squares norm.

For example, in order to obtain Gaussian efficiency roughly twice that of LTS(0.5), it

may be reasonable to use h = 2n/3 with LTA. This will still handle close to 50% outliers,
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provided these split at random between high and low leverage cases.

5 EXAMPLES

Modified octane data set. The modified octane data set (Atkinson 1994) is a well-known

data set of 82 cases and 4 predictors, containing 7 outliers planted on high leverage

cases. It can in principle be analyzed using LTS. However in view of the data set size, it

is impossible to find the exact LTS fit, all one can do is look for a good approximation.

We analyzed the data set using the exact LTA procedure using enumeration of all

possible elemental sets. We found the LTA for all coverages h from 63 to 82 cases. Table 9

and table 10 show some summary values for the different h values in the range. The most

striking feature is perhaps that all the summary values seem quite stable for h values up

to 74, but then started to change substantially as the previously-excluded outliers are

included in the covered set. It is interesting that the change starts one h value before

one might have expected; this is due to case 21 which, while not particularly outlying

in comparison with cases 71-77, is sufficiently different and of high enough leverage to

impact the fit once it is accommodated. This computation took 15.75 hours on a HP

712/60 workstation, a substantial though still reasonable computation on that machine,

but a much smaller one on a more modern desktop machine.

A “missing data” set. Missing values of the predictors are always a problem in

multiple regression. Perhaps the most common approach is to either delete cases that

have missing data, or (in cases where the analyst is not committed to a model using all

predictors) to delete predictors that are not present on all cases. Either approach presents
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a severe dilemma to the data analyst; if one knew the predictor were not needed, one

would rather keep the case and lose the predictor, but if the predictor were needed,

its removal would invalidate the whole analysis. Data sets with a sprinkling of missing

values therefore typically involve many iterations of deleting some mix of affected cases

and affected predictors to get complete data sets that can be fitted and evaluated.

High breakdown methodologies provide a possible third approach. This is to include

all data, but with missing values on predictors assigned some extreme value like the

traditional 9999 to make them massively influential. Faced with a case with a missing

predictor, the high breakdown estimator may then choose to either cover the case, using

a zero coefficient on the predictor with the missing information; or to exclude the case,

as will be necessary if the predictor with the missing value really is informative about the

dependent. Thus a single pass with a high breakdown analysis such as LTA can provide

a starting picture of which predictors appear to be needed and which do not, despite

even quite high levels of missing information.

To illustrate this possibility, along with the handling of conventional outlying values,

we analyzed a physical anthropology data set from the literature. The data set (from

Gladstone 1905-06) investigates the relationship between brain weight measured post

mortem and a number of body dimensions measurable in vivo. This data set contained

276 cases. We used 7 predictors – cause of death (coded as either chronic or acute),

cranium height, length, breadth, volume and circumference, and cephalic index. There

were 77 cases missing information on one or more predictors. The data set also included

five infants less than 7 months old. We carried out an LTA fit using the feasible solution
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algorithm. The coverage was h = 182, a choice motivated by our 2n/3 suggestion, and

one that allows for all 77 cases that had any missing information to be deleted along with

17 outliers.

The results showed several useful features of this approach. First, recall that a feasible

solution is a regression that is an L1 fit to the smallest h residuals it generates, and that

there may be many feasible solutions in a data set. In this data set, three feasible solutions

were particularly interesting; their coefficients (with all variables in standardized units)

and those of the OLS fit using just complete cases were

Fit Cause Height Length Breadth Vol Circum C I

OLS -0.05 0.29 0.35 0.14 0.05 0.02 0.04

LTA 1 0.00 0.38 -3.07 3.73 0.19 0.00 -3.10

LTA 2 0.00 0.41 -3.40 4.02 0.17 0.03 -3.39

LTA 3 0.00 -0.81 -3.83 0.81 3.69 0.00 -2.20

All LTA solutions dropped the predictor “Cause”, preferring to retain the many cases

that were missing this predictor.

The first solution also dropped “Circum”, the head circumference. In this regression,

all the infants were inliers. The second solution retained “Circum” as a predictor, but

trimmed another formerly inlying case that was missing “Circum”. With this decision,

the infants brain weights were again inliers. The third solution dropped “Circum” substi-

tuting “Vol”, and making the infants outliers. The mean absolute residual of the covered

cases was 0.08, and the infants’ absolute residuals were all in excess of 2.5. This shows

the interplay between case characteristics and the apparent importance or otherwise of

predictors.
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We do not know whether to prefer the models that contrasts breadth and length;

largely, it would seem, to accommodate the infants, or to prefer the model that has

contrasts length and volume, recognizing that the resulting model does not describe

infants adequately. It is however very much to the credit of the feasible solution LTA fit

that it identifies these three possibilities for the analyst’s attention.

6 CONCLUSIONS

High breakdown estimation in large data sets is a challenging problem. For data sets

with “normal in the middle” residuals, least trimmed squares (LTS) is attractive on the

grounds of statistical efficiency, but there is no workable way of finding the exact LTS

fit on any but quite small data sets. Switching the criterion to the L1 norm gives the

least trimmed sum of absolute values (LTA) estimator. This sacrifices some statistical

efficiency for “normal in the middle” data, but is more efficient for peaked error distribu-

tions. It is also far easier to compute, both exactly and approximately. These properties

make it potentially very attractive, particularly for the analysis of large data sets.

To the extent that there is concern about the efficiency lost, LTA may be used in the

conventional two-stage way, taking its coefficients as the starting point for an MM, S or

τ estimate. As the estimate has OP (n−0.5) convergence along with its high breakdown,

it will serve this purpose as well as does any other initial OP (n−0.5) high breakdown

estimator, and will do so better than the traditional LMS estimator which has worse

asymptotics and is harder to compute.

Exact computation of the LTA involves enumeration of all elemental subsets of the
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data, and has been implemented through a modification of the Hawkins-Simonoff elemen-

tal set code. A feasible solution algorithm gives good approximations for data sets too

large for exact enumeration. These make the LTA a potentially useful tool for practical

data analysis.

Another less conventional use of the LTA is as a tool for modeling data sets with

missing observations on predictors. By coding missing values as extremes in an LTA

analysis, one may get in a single run indications of which predictors are important (with

the implication that the cases missing those predictors must be either completed in some

way or dropped) and which are not. This use may greatly streamline the initial modeling

step of data with a sprinkling of missing values of predictors.
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Table 1:
√

n SD for N(0,1) Data

n OLS L1 LTA(0.5) LTS(0.5)

20 1.00 1.23 2.20 2.12

40 1.01 1.21 2.56 2.41

100 0.99 1.24 3.13 2.94

400 0.98 1.22 3.84 3.34

600 1.00 1.25 3.87 3.31

∞ 1.00 1.25 4.36 3.74

Table 2:
√

n SD for C(0,1) Data

n OLS L1 LTA(0.5) LTS(0.5)

20 593 1.67 2.07 1.91

40 2969 1.63 2.09 1.99

100 7360 1.65 2.24 2.03

400 1394 1.62 2.18 1.98

600 524 1.54 2.18 1.98

∞ ∞ 1.57 2.22 2.03

Table 3:
√

n SD for DE(0,1) Data

n OLS L1 LTA(0.5) LTS(0.5)

20 1.40 1.12 1.72 1.58

40 1.39 1.10 1.73 1.68

100 1.41 1.05 1.74 1.70

400 1.40 1.06 1.64 1.72

600 1.44 1.05 1.57 1.71

∞ 1.41 1.00 1.41 1.68

25



Table 4: Monte Carlo OLS Relative Efficiencies

dist n L1 LTA(0.5) LTS(0.5) LTA(0.75)

N(0,1) 20 .668 .206 .223 .377

N(0,1) 40 .692 .155 .174 .293

N(0,1) 100 .634 .100 .114 .230

N(0,1) 400 .652 .065 .085 .209

N(0,1) 600 .643 .066 .091 .209

N(0,1) ∞ .637 .053 .071 .199

DE(0,1) 20 1.560 .664 .783 1.157

DE(0,1) 40 1.596 .648 .686 1.069

DE(0,1) 100 1.788 .656 .684 1.204

DE(0,1) 400 1.745 .736 .657 1.236

DE(0,1) 600 1.856 .845 .709 1.355

DE(0,1) ∞ 2.000 1.000 .71 1.500

Table 5: Number of elemental regressions

as a function of n and p

p

n 2 3 4 5

10 45 120 210 252

20 190 1140 4845 15504

30 435 4060 27405 142506

50 1225 19600 230300 2e6

100 4950 161700 3e6 8e6

200 19900 1e6 65e6 3e9

500 124750 21e6 3e9 3e11
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Table 6: Log10 of probability that a

random starting set is clean

p

n 2 3 4 5

25 FLTA -.0740 -.1135 -.1549 -.1984

FLTS -.6576 -.7368 -.7368 -.8239

50 FLTA -.0732 -.1110 -.1496 -.1891

FLTS -1.3359 -1.4151 -1.4151 -1.4981

75 FLTA -.0857 -.1295 -.1739 -.2190

FLTS -2.2851 -2.3761 -2.3761 -2.4700

100 FLTA -.0824 -.1242 -.1665 -.2092

FLTS -2.9665 -3.0547 -3.0547 -3.1449

150 FLTA -.0854 -.1286 -.1720 -.2158

FLTS -4.5941 -4.6852 -4.6852 -4.7777

200 FLTA -.0869 -.1307 -.1748 -.2191

FLTS -6.2209 -6.3135 -6.3135 -6.4071

500 FLTA -.0897 -.1347 -.1797 -.2249

FLTS -15.9785 -16.0736 -16.0736 -16.1692

Table 7: Execution time and success rate

per random start

n

p 50 100 200 500

5 FLTA time 261 718 1858 6560

% good 50 52 53 55

10 FLTA time 583 1697 4948 18587

% good 25 26 31 37

15 FLTA time 1122 3483 10395 42116

% good 15 15 18 24
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Table 8: Log10 probability that a random starting set is clean

δ

n 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

50 FLTA -.20 -.51 -.73 -1.08 -1.34 -1.75 -2.05 -2.53

FLTS -.81 -2.14 -3.11 -4.75 -5.98 -8.16 -9.94 -13.67

100 FLTA -.23 -.48 -.74 -1.02 -1.32 -1.64 -1.99 -2.36

FLTS -1.79 -3.73 -5.87 -8.23 -10.88 -13.93 -17.54 -22.05

200 FLTA -.23 -.47 -.72 -.99 -1.28 -1.59 -1.93 -2.29

FLTS -3.35 -6.97 -10.94 -15.31 -20.20 -25.77 -32.26 -40.17

500 FLTA -.22 -.46 -.71 -.98 -1.26 -1.57 -1.89 -2.24

FLTS -8.03 -16.72 -26.21 -36.65 -48.29 -61.47 -76.76 -95.14
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Table 9: Fitted coefficients by coverage

h Q β̂0 β̂1 β̂2 β̂3 β̂4

63 14.10 96.170 -0.106 -0.074 -0.038 2.650

64 14.72 96.254 -0.104 -0.083 -0.039 2.574

65 15.34 96.254 -0.104 -0.083 -0.039 2.574

66 15.97 96.254 -0.104 -0.083 -0.039 2.574

67 16.68 96.254 -0.104 -0.083 -0.039 2.574

68 17.43 96.370 -0.105 -0.082 -0.039 2.558

69 18.17 96.149 -0.103 -0.062 -0.040 2.589

70 18.95 96.395 -0.102 -0.067 -0.042 2.488

71 19.77 99.046 -0.109 -0.108 -0.062 1.923

72 20.55 99.044 -0.110 -0.108 -0.062 1.930

73 21.47 99.044 -0.110 -0.108 -0.062 1.930

73 21.47 99.044 -0.110 -0.108 -0.062 1.930

74 22.44 98.900 -0.110 -0.112 -0.063 2.044

75 23.58 98.289 -0.108 -0.110 -0.053 2.034

76 27.54 98.156 -0.107 -0.103 -0.051 1.979

77 31.34 97.217 -0.102 -0.090 -0.041 1.995

78 35.20 96.914 -0.100 -0.102 -0.035 1.887

79 38.92 97.066 -0.090 -0.153 -0.036 1.475

80 42.60 96.877 -0.083 -0.224 -0.029 1.139

81 45.13 92.974 -0.070 -0.328 0.027 1.098

82 48.13 92.503 -0.068 -0.332 0.028 1.297
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Table 10: Some summary numbers of the

modified octane data set

h r71 r72 r73 r74 r75 r76 r77

63 -4.02 -4.12 -4.73 -4.35 -6.52 -6.69 -6.37

64 -3.99 -4.07 -4.63 -4.27 -6.28 -6.49 -6.23

65 -3.99 -4.07 -4.63 -4.27 -6.28 -6.49 -6.23

66 -3.99 -4.07 -4.63 -4.27 -6.28 -6.49 -6.23

67 -3.99 -4.07 -4.63 -4.27 -6.28 -6.49 -6.23

68 -4.00 -4.08 -4.66 -4.30 -6.37 -6.58 -6.31

69 -3.97 -4.06 -4.72 -4.33 -6.44 -6.59 -6.28

70 -3.95 -4.02 -4.67 -4.29 -6.32 -6.51 -6.25

71 -4.18 -4.13 -4.71 -4.37 -6.43 -6.84 -6.68

72 -4.19 -4.13 -4.71 -4.37 -6.44 -6.85 -6.69

73 -4.19 -4.13 -4.71 -4.37 -6.44 -6.85 -6.69

74 -4.26 -4.22 -4.76 -4.42 -6.49 -6.89 -6.69

75 -4.08 -4.05 -4.60 -4.28 -6.26 -6.65 -6.53

76 -3.98 -3.95 -4.54 -4.21 -6.19 -6.57 -6.48

77 -3.71 -3.71 -4.33 -4.01 -5.86 -6.19 -6.18

78 -3.51 -3.50 -4.07 -3.79 -5.42 -5.81 -5.94

79 -3.23 -3.16 -3.51 -3.31 -4.14 -4.76 -5.31

80 -2.91 -2.80 -2.83 -2.75 -2.77 -3.64 -4.66

81 -1.83 -1.83 -1.28 -1.45 -0.04 -1.16 -3.04

82 -1.92 -1.95 -1.33 -1.50 0.00 -1.10 -2.95
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