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Abstract

One purpose of asset pricing models is to explain empirical differences in the time-
averaged returns among risky assets. Of interest is whether differences in risk exposure
can explain differences in average returns. In the framework of asset return regression
systems, the problem is to test equality of parameter values across equations. We
examine the performance of Wald and score tests of cross-equation restrictions, with
robustness to empirically documented residual heteroskedasticity and autocorrelation.
The tests display distortions, but in simulation they perform well when applied par-
simoniously. We use the tests to examine the risk exposure of stocks sorted by firm
size.
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1. Introduction

A main purpose of asset pricing models is to explain empirical differences in the average

returns among stocks and other risky assets. In the tradition of the Sharpe (1964) and

Lintner (1965) capital asset pricing model (CAPM) and its generalizations via the Merton

(1973) and Breeden (1979) intertemporal equilibrium models and the Ross (1976) arbitrage

pricing theory (APT), a higher average return is compensation for greater exposure to some

source(s) of risk.

The linear regression model of excess returns on risk factors provides the framework for

much applied work, including recent contributions by Fama and French (1993, 1996) who

propose two ways to judge the success of such models: The magnitude of the fitted model’s

prediction errors, and the proximity of estimated parameters to hypothesized values. Test

statistics, specifically t statistics and F statistics, provide a formal metric for measuring

proximity of unrestricted parameter estimates to the maintained hypothesis, and Gibbons,

Ross and Shanken (1989) and Fama and French (1993, 1996) apply these statistics to the

hypotheses of zero intercept and zero slope restrictions.

In the regression model, it is possible to formally test whether differences in mean return

could be due to differences in risk exposure. The relevant null hypothesis is that differences

in risk exposure have no impact on differences in mean return, e.g. that the slope parameters

(betas) for a given risk factor are the same for each risky asset under study. The hypothesis of

equal slopes across assets is more general than the hypothesis of zero slopes, and it is possible

to encounter risk factors which add explanatory power to the model, with slopes ‘far’ from

zero, yet which are unrelated to differences in mean returns across some interesting sets of

assets. Previous empirical work has shed some light on the issue of beta equality across assets

(including Fama and French 1993, 1996, Li and Hu 1998), and Perez-Quiros and Timmerman

(2000) test equality of parameters for some non-linear dynamic models of returns on small

and large firms, for example.
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The present work studies the problem of testing equality of parameters across equations

in a linear regression system, with robustness to some econometric features of financial data.

While classic t statistics and F statistics provide a valuable metric for judging proximity

of the unrestricted parameter estimates to their equality-restricted counterparts, inference

based on these statistics is not robust to residual heteroskedasticity or serial correlation.

Aware of the potential importance of conditional heteroskedasticity for asset pricing appli-

cations, MacKinlay and Richardson (1991), Ferson and Foerster (1994), Ferson and Kora-

jczyk (1995) and He, Kan, Ng, and Zhang (1996) suggest the use of heteroskedasticity-robust

tests. The presence of autocorrelation in asset returns is well-documented (see, for example,

Campbell, Lo and MacKinlay 1997, Ch. 2), and even in cases where assets returns have

little autocorrelation themselves, when multiplied by risk factors the resulting series may be

strongly autocorrelated, and this insidious phenomenon is important for testing restrictions

on the regression parameters. We find highly significant autocorrelation and heteroskedas-

ticity in model residuals (as in the CAPM, reported later), and for robustness we suggest

the use of heteroskedasticity and autocorrelation consistent (HAC) test methods.

We examine the performance of HAC test methods, in which residual heteroskedasticity

and autocorrelation play no explicit role in model specification, but which are allowed to

be present, in general form. The methods, due to Newey and West (1987, 1994), Andrews

(1991), Andrews and Monahan (1992) and den Haan and Levin (1997), build on earlier

work by White (1980) on heteroskedasticity-robust tests, and on the Hansen (1982) gener-

alized method of moments (GMM). The HAC Wald and score tests, which are equivalent in

large samples under the null and local alternative hypotheses, can nevertheless exhibit great

disparity and distortion in finite samples.

We simulate the behavior of the proposed tests for models calibrated to financial data,

documenting noticeable distortions except in sufficiently parsimonious cases. The source of

distortions lies in the test rule, which relies on the large-sample (chi square) distribution

2



of test statistics, and which generally differs from rules based on the exact (but unknown)

finite-sample distribution. MacKinnon and White (1985) acknowledge the distortions prob-

lem for heteroscedasticity-robust tests, proposing corrective methods, and Ferson and Foer-

ster (1994) examine the importance of distortions for heteroskedasticity-robust tests of some

financial models. Den Haan and Levin (1996) report on test distortions for a variety of

HAC-type tests in a single equation context (see also Cushing and McGarvey 1999), and the

present work describes the multi-equation context. No correction method is available to solve

the distortion problem in our (highly complex) situation, and for useful application we sug-

gest that the practitioner limit the number of assets and parameter restrictions under study.

In some cases such limitations on models size and complexity will be too confining, and a

possible recourse is to build into the regression model a parsimonious specification of het-

eroskedasticity and autocorrelation, to be estimated jointly with the regression parameters.

With this caveat, we recommend the use of HAC Wald and score tests, and our simulations

suggest that the HAC Wald test, with a simple pre-whitening method for parameter estimate

covariance estimation, is a good choice among these tests.

We use the methods to test for differences in risk exposure for small and large firms.

Differences in risk exposure are one possible explanation for observed differences in mean

return for the two types of firms, and a host of other possible explanations have been offered

(see Schwert 1983 for a review of early theories and Fama and French 1992 for more on

empirical evidence). Some researchers attempt to link the underlying risk factors to size and

book-to-market related portfolios (see Fama and French 1993 and Chan and Chen 1991).

Explanations of systematic differences among stock of different capitalization are also based

on statistical factors as in Lehman and Modest (1988) and Connor and Korajczyk (1988)

or on factors loosely connected to economic theory as in Chen, Roll and Ross (1986). Since

statistical and economic factors appear to have similar predictive power with respect to stock

returns (see Ferson and Korajczyk 1995), we use just the economic factors, with which we
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form a variety of parsimonious one-factor and two-factor models.

Using a variety of one-factor models, we find a number of significant differences in risk

exposure for small and large firms, in terms of the market return, default premium, con-

sumption growth, and inflation surprise. To check for stability of risk exposure over time (as

discussed in Ghysels 1998, for example), we split the sample and find that the gap in risk

exposure appears to shift over time, in a way that is not explained by previous literature.

Using a variety of two-factor models, in which the first factor is the market excess return,

we find some significant differences in risk exposure for large and small firms, in terms of

the market return and other factors (default premium, term premium, consumption growth

and inflation surprise), and this pattern also changes from the first to second sub-sample.

The overall impression is that some differences in risk exposure, for small and large firms,

are large in the metric of the proposed statistical tests, and appear to evolve over time.

2. Model

For a collection of n risky assets, each earning a return during periods t = 1, 2, ..., T , let

rit denote the excess return to the i-th asset. The linear regression model of asset returns

takes the form:

rit = α∗i + β∗i xt + εit, i = 1, ..., n, (1)

where xt is a K × 1 vector of factors, β∗i is the true value of the i-th 1 × K vector of

slopes (‘betas’), α∗i is the true value of the i-th intercept, and the errors εit have conditional

expectation E[εit|xt] = 0. In this model, βik is the expected increase in the excess return

rit, given a 1 unit increase in the factor xtk, while αi = E[rit|xt = (0, ..., 0)′], e.g. αi is the

expected excess return when each factor equals 0. The model is linear in the parameters α

and β, but xt itself may be non-linear in some underlying state variables which themselves

may be non-contemporaneous with rt, hence the model may be both non-linear and dynamic
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in the state variables, as in Ferson and Harvey (1999), for example.

In the Sharpe-Lintner CAPM version of the model, x is the excess return on the market

portfolio, the betas measure exposure to market risk, and the alphas are each 0. Other

candidates for x include consumption growth, as in the Breeden (1979) consumption-based

CAPM, and other variables, possibly instruments for some latent factors (see Section 4 for

a detailed discussion). Estimation of the model (1) is the the first step in the Fama and

MacBeth (1973) empirical method (see Ferson and Harvey 1999 for a recent example) and

is also used for tests of various hypotheses (see Fama and French 1993, 1996, Gibbons et al.

1989, and Li and Hu 1998).

The hypotheses of present interest take the form of linear restrictions on β and/or α.

To concisely express such hypotheses for the purpose of testing, we denote by θ the column

vector with entries (top to bottom) α1, β11, ..., β1K , ..., ..., αn, βn1, ..., βnK . With 0p the column

vector consisting of p entries each equal to 0, and with A some user-specified p× n(K + 1)

matrix, each linear restriction on the model parameters takes the form:

H0: Aθ∗ = 0p.

As a familiar example, testing the zero intercepts (α∗i = 0, i = 1, ..., n) restriction is a

common means of testing asset pricing models versus some unspecified ‘anomalies’ (as, for

example, in Gibbons et al. 1989 and Fama and French 1996). For testing the predictive

power of some factors, the relevant hypothesis is that these factors have zero betas, and

specific asset pricing ‘anomalies’ arise as the unexpected rejection of zero betas for some

factors (as in Fama and French 1993, 1996). When testing the zero intercepts or zero betas

null hypothesis, the restriction is of the form:

C θ∗i = 0q, i = 1, ..., n, (2)
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for some q×(K+1) matrix C and some number q of restrictions, in which case the appropriate

form of the matrix A in H0 is:

A = In ⊗ C, (3)

where In is the n×n identity matrix, and ⊗ is the Kronecker product operator. Hypothesis

tests for asset return regressions have typically targeted restrictions of the form (2)-(3).

The practical relevance of ‘anomalies’ is tied to their implied expectations of asset returns,

partly conveyed by:

E rit = α∗i + β∗i1 E xt1 + · · ·+ β∗iK E xtK , i = 1, ..., n, t = 1, ..., T, (4)

in which case differences in unconditional expected returns, across assets, are entirely due

to differences in intercepts and/or differences in slopes. Regardless of possible ‘anomalous’

non-zero intercepts or non-zero betas, if these parameters do not vary across assets then they

contribute nothing to differences in unconditional expected returns. To test for differences

in intercepts and/or slopes across equations, the relevant restriction is of the form:

D θ∗i = D θ∗j , i, j = 1, ..., n, (5)

for some r × (K + 1) matrix D, some number r of restrictions, and all assets i, j. The

appropriate form of the matrix A in H0 is then:

A = Jn ⊗D, (6)

where Jn is the (n−1)×n matrix with entries Jni1 = 1, Jn,i,i+1 = −1, and Jnij = 0 otherwise,

i, j = 1, ..., n. We are primarily interested in testing restrictions of the form (5)-(6).
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3. Tests

In this section we describe methods for testing null hypotheses of the form H0, with

robustness to residual heteroskedasticity and autocorrelation.

3.1. Statistics

A standard method of hypothesis testing in the Sharpe-Lintner CAPM and related models

is the Wald test. This method estimates the model under the alternative (unrestricted)

hypothesis, and compares the estimates to theoretical values. Since each regression equation

in (1) contains the same explanatory variables, a suitable estimation method is ordinary

least squares (OLS), equation-by-equation. We let θ̂ denote the OLS estimator, and we let

V̂θ̂ denote an estimator, further described below, of the variance-covariance matrix for θ̂. For

each given choice of V̂θ̂, the Wald-type test of H0 is:

W = θ̂′A′ (AV̂θ̂A
′)−1

A θ̂. (7)

statistic W measures the distance ( in Rp, with norm ||v|| = v′(AV̂θ̂A
′)−1 v ) between the

vector A θ̂ and the value 0p hypothesized under H0, hence larger values of W suggest larger

departures of the data from H0. Wald tests include t-tests of individual intercepts and/or

betas, as well as F -tests of joint restrictions on several parameters. These classic tests,

which use the standard OLS estimator for V̂θ̂, can perform well in the absence of residual

heteroskedasticity and serial correlation, but suffer distortions in the presence of these effects,

even when the sample size (T ) is large. Hence, due to evidence of these effects (documented

later) for robustness we propose to use HAC estimators V̂θ̂, as discussed in Section 3.2.

A second method for hypothesis testing is the score test. To obtain this test, for any

parameter values αi and βi define the regression residuals for the model (1):

eit = rit − αi − βi xt, i = 1, ..., n, t = 1, . . . , T .
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The relevant sample moments comprise the n(K + 1)× 1 vector m(θ), given by:

m(θ) =
1

T

T∑

t=1

zt ⊗ et,

where zt is the (K + 1) × 1 vector (1, x′t)
′. Denoting by V̂m(θ) a HAC estimator (specified

below) of the variance-covariance matrix of m(θ), the score test statistic is:

S = min
θ∈H0

m(θ)′ V̂ −1
m m(θ). (8)

To carry out the minimization required for S, we iterate over repeated trials, at each stage

simultaneously solving for updated parameter and covariance matrix estimates, as in Hansen,

Heaton and Yaron (1996).

The score test measures the distance (in Rn(K+1), with the norm ||v|| = v′V̂ −1
m v) between

the vector m(θ) of sample moments and the value 0n(K+1) hypothesized under H0, hence

larger values of S suggest larger departures from H0. For testing linear restrictions H0

on linear regression systems, the score test is seldom used and the Wald test is standard

(whereas for nonlinear problems the score test is common, as in Hansen 1982 and Ferson

and Foerster 1994). For HAC-robust Wald tests the exact sampling distribution is unknown

and reliance on asymptotic theory can lead to over-rejection under the null hypothesis, as

reported in Section 5. For this reason, we examine the score test as a possible companion or

alternative to the Wald test.

3.2 Computation

To compute the tests we use the GMM (simultaneous-iteration) routine in EViews 3.1,

with a variety of choices for the HAC-robust covariance estimation method. As options

in this routine we include covariance estimators based on the Bartlett kernel and the data-

dependent Newey and West (1994) bandwidth, with and without pre-whitening (denoted NW
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and NW-P, respectively). We also include the quadratic spectral kernel with the Andrews

(1991) data-dependent bandwidth (without prewhitening, denoted A), and the Andrews and

Monahan (1992) method (denoted AM) with pre-whitening. Finally, we include the simple

pre-whitening method (denoted VARHAC), studied by den Haan and Levin (1996, 1997).

Since the technical details of HAC-robust covariance estimation are neatly summarized in

Campbell, et al. (1997) (see also Cushing and McGarvey 1999), we omit them for brevity.

3.3. Decision Rule

The HAC Wald and score tests have unknown distributions in finite samples, even under

classical conditions, and we take a standard approach (as in Ferson and Foerster 1994 and

Campbell et al. 1997) which is to base test decisions on the asymptotic (chi square) proper-

ties of such tests. For the HAC Wald tests, the asymptotic chi square distribution follows

from asymptotic normality of OLS regression estimators and consistency of HAC covariance

estimators (see, for example, Cushing and McGarvey 1999). For the HAC score tests, the

asymptotic distribution can also be shown chi square by invoking suitable assumptions, as

we now briefly discuss.

To further justify the presumed asymptotic properties of the Wald and score tests, we

assume that the covariance estimators V̂θ̂ and V̂m, when multiplied by the number of time

periods T , converge as follows:

T V̂θ̂

p→ Ωθ, T V̂m
p→ Ωm, (9)

where
p→ denotes convergence in probability, in which case Ωθ and Ωm are the large-T limits

of T times the variance-covariance matrix for β̂, and for m(θ∗), respectively. Simplified

versions S∗ and W ∗ of the Wald and score statistics are then:

W ∗ = θ̂′A′
(
A

Ωθ

T
A′

)−1

A θ̂, (10)
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and

S∗ = min
θ∈H0

m(θ)′
(

Ωm

T

)−1

m(θ), (11)

in which case we assume that:

W = W ∗ + op(1), S = S∗ + op(1), (12)

where op(1) denotes a term converging to 0 in probability.

Under the null hypothesis and suitable regularity conditions (stationarity, finite moments,

mixing, etc., as in White 2000 and Davidson 1994, 2000, for example), the statistics W ∗ and

S∗ are distributed asymptotically as chi square variables with p degrees of freedom (see, for

example Harris and Mátyás 1999), and hence W and S also have this property when (12)

holds. Using these asymptotic distributions, the decision rule for testing H0 is to reject if

the test statistic exceeds the relevant critical value from the chi square distribution.

Despite asymptotic equivalence of the chi square tests S and W , in finite samples they

can behave very differently. In the classical single-equation regression model, with regression

parameters and covariance parameters estimated via maximum likelihood, the inequality of

score (Lagrange multiplier) and Wald test statistics (Buse 1982, Engle 1984) is:

S ≤ W, (13)

and in practice it is possible that S is far smaller than W . Hence, by using the same (chi

square) decision rule for both statistics it is possible to reach different conclusions from the

two tests. The problem arises due to test distortions, caused by use of inaccurate chi square

approximations to the true sampling distribution.

For HAC Wald and score tests of equality between parameters in a regression system,

the inequality (13) generally fails, and test distortions are more complex. To summarize
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the problem faced in applying the chi square decision rule, we note here simply that test

distortions can be severe when the number p of hypothesized restrictions is large, for a given

sample size T . To describe the magnitude of this problem, in Section 5 we report the results

of simulations for testing differences in risk exposure among stocks.

4. Data

As dependent variables in the regression model, we use excess returns on stocks of firms

ranked by capitalization. We use CRSP NYSE Cap-Based Portfolio Indices, monthly time

series based on portfolios rebalanced quarterly. Frequently, cross-sectional differences among

stock returns are investigated using decile indices; however, to limit the number of dependent

variables (and the potential for test distortions, reported later), we use one return for port-

folios combining Deciles 1 through 5, and a second return for deciles 6 through 10, where the

largest companies are in Decile 1 portfolio and the smallest in portfolio 10. These returns are

produced by CRSP, and we calculate excess returns using the 30-Day Treasury Bill return,

also provided by CRSP. We denote the excess returns as rLARGE and rSMALL, respectively.

Summary statistics, for monthly excess returns in the period 1959:02 - 1999:12, are in Ta-

ble 1. The starting period of the data series is determined by availability of the consumption

series (defined below). We further split the sample in two sub-samples, 1959:02-1979:12 and

1980:01-1999:12, enabling us to examine stability of regression parameters. A comparison

of the sample means for excess returns, for the sample period from 1959 to 1979, reveals

that the excess return on the large-cap portfolio (3.02% annually) is far less then the excess

return on the small-cap portfolio (8.08% annually), but the gap in average excess returns

changes sign in the second sub-sample (9.98% for the large-caps vs. 8.34% for the small-caps,

respectively), consistent with Fama and French (1993) and Horowitz, Loughran and Savin

(2000). In all considered sample periods, the excess return on small caps tends to be more

volatile, in accord with Malkiel and Xu (1997).
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As independent variables in the model (see Table 1 for summary statistics, and Table

2 for correlations with dependent variables), we choose ones likely to affect the stochastic

discount rate and/or the expected stream of cash flows. We follow Chen, et al. (1986) and

use data on the stock market, bond market, the business cycle and inflation. We augment

the dataset by the growth of monetary base to address the issue of asymmetric reaction

of firms of different capitalization to restrictive monetary policy (see Gertler and Gilchrist

1994, Li and Hu 1998 and Perez-Quiros and Timmermmann 2000). We do not use portfolios

constructed by Chan and Chen (1991) or by Fama and French (1993) since there would

be size related variables on both sides of the regression equation, potentially resulting in

spurious estimates, especially in the present model with limited number of excess returns.

To describe the stock market we employ the CRSP NYSE value-weighted index. Again,

we use returns in excess of the 30-Day Treasury Bill, denoting the results by rV W . The

correlation with the large-cap return is close to one, and since the large-cap firms account

for most of the market value, this is not surprising (see Table 2, Fama and French 1996

report a similar correlation).

We consider two bond market variables. The effect of unanticipated changes in bond risk

premia is measured by the difference (rDEF ) between interest rates on the low grade bonds

and long-term government securities. The low grade bond interest rate is measured by the

Seasoned Baa Corporate Bond Yield, collected by Moody’s Investors Service and available

at the St. Louis Federal Reserve bank’s website. The long-term government bond return-to-

maturity is from the 5-year Treasury Bonds, also obtained from the St. Louis Fed website.

To describe the term structure we use the difference between the one-period holding return

on the 5-year Treasury Bond, collected by CRSP, and the first lag of the return on a 30-Day

Treasury Bill. This term premium (rTERM) proxies for the influence of changes in the term

structure on equity returns.

As measures of real economic activity, we include the growth rates of industrial production
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and real per capita consumption. We obtain industrial production data (Market Groups,

series b50001, seasonally adjusted) from the Federal Reserve Board’s website, and we obtain

consumption data (series PCEND, non-durables, series PCES, services, POP, population,

series CPIAUCSL, Consumer Price Index For All Urban Consumers, All Items 1982-84=100,

all series seasonally adjusted), from the St. Louis Fed’s website.

To get a one-period forecast of the inflation rate, we run a regression of the inflation rate,

measured by the above consumer price index, on a constant, its lagged value, the lagged

value of a Treasury Bill rate and a moving average term (see Fama and Gibbons 1984 for

a similar procedure). The unexpected inflation (πUI), in the style of Chen et al. (1986),

is defined as the difference between actual inflation and forecasted inflation. Chen et al.

(1986) also use the change in the expected inflation; since this variable is highly correlated

with the unexpected inflation and implied test results are practically indistinguishable, we

omit them for brevity. For money growth, we use the growth rate of the seasonally adjusted

monetary base (gMON), obtained from the St. Louis Fed’s website (series AMBSL, seasonally

adjusted).

5. Simulation

We use computer simulation to assess performance of HAC Wald and score tests of cross-

equation restrictions. Of interest are rejection rates under the null hypothesis H0 and under

the alternative, and we report the rejection rates of tests for models calibrated to stock

returns. If the chi square distribution is an accurate approximation then the tests W and S

should reject under H0 at a rate near the theoretical test size; otherwise, the tests exhibit

noticeable distortions. When testing equality of parameters across equations, the number of

restrictions is p = r(n− 1), with r the number of parameters restricted in each equation, in

which case large r and/or large n can give rise to major test distortions.

To set up the simulation, we let xt follow a first-order VAR process
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xit = c + φi xt−1 + uit, i = 1, 2, (14)

where c is a K×1 vector of constants, φi is an 1×K vector of coefficients and the variables uit

are normally distributed with mean zero, independence over time, and some cross-sectional

variance-covariance matrix Λ.

We estimate (14) by OLS using for xt variables in the set {rV WNY , rTERM , gCONS, gMON},
to see what range of values might be considered realistic for the parameters of the xt process.

For the matrix Φ, consisting of row vectors φ1, ..., φn, estimates of its elements range from

-0.25 to 0.32, and for our simulation we set Φij = 0.10 for i = j and Φij = 0 for i 6= j.

While estimates of the constant term tend to be small relative to elements of Φ, they are

generally significantly positive, and we set c = 0.002 in our simulation exercise. The diagonal

elements of the estimated residual covariance matrix Λ̂ are typically of order 0.0001, and the

off-diagonal elements are typically of a lower order, hence we let Λ be a diagonal matrix with

each diagonal entry equal to 0.0001.

For the regression errors εit in (1), we posit a dynamic model with serial correlation and

generalized autoregressive conditional heteroskedasticity (GARCH), as follows:

εit = ψ1εi,t−1 + ψ2

√
1 + ψ3 ε2

i,t−1 ηit, i = 1, 2,

with η standard normal white noise. Parameter ψ1 specifies the residual autocorrelation,

and parameters ψ2 and ψ3 specifies the residual conditional heteroskedasticity. We choose

ψ’s so that the autocorrelation if the error term εit, as well as its variance relative to that of

x’s, roughly corresponds to what we observe in historical data series, with r1t and r2t excess

returns on portfolios of small and large firms, respectively. In this case, we set ψ1 = .1,

ψ2 = .003, ψ3 = .2. The cross-sectional empirical covariance of ηit is sometimes positive
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and sometimes negative empirically, and we assume that the population covariance between

η1t and η2t is 0. We generate results for the case n = 2, for K = 2 and K = 4, using 500

simulated time series for rit, i = 1, 2, with 240 and 492 observations, corresponding to 20

and 41 years of our historical monthly data, respectively. We use simulation, rather than a

bootstrap method as in Ferson and Foerster (1994), to generate the psuedo-data because the

regression errors have posited dynamics which would not be replicated by standard bootstrap

sampling. We record the number of rejections of the null hypothesis using the chi square

critical values at the 5% level of significance.

Table 3 reports rejection rates under the null hypothesis H0 of equality of all regression

parameters across equations, e.g. the case where the restriction defining matrix D in Section

2 equals the p × p identity matrix. Results are of similar nature when testing equality

of intercepts only, or slopes only (simulation results available on request). We calibrate

all β values to equal to 1, and all α values to equal 0. The results show a tendency for

distortion in both Wald and score tests, for some of the HAC methods, and these effects

can be considerably greater than those of classic t and F tests, for which test distortions are

described in Gibbons, et al. (1989) and Campbell, et al. (1997, Ch. 5, 6). The VARHAC

method, as well as the AM method, do comparatively well. Distortions appear worse in

smaller samples, and in the larger model (K = 4) with more restrictions (p = 5) appearing

under the null hypothesis.

To describe performance under the alternative hypothesis, we generate the times series

for excess returns via:

r1t = x1t + x2t + ε1t, r2t = x1t + 1.1 x2t + ε2t,

for K = 2, and:

r1t = x1t + x2t + x3t + x4t + ε1t, r2t = x1t + x2t + 1.05 (x3t + x4t) + ε2t,
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for K = 4.

Table 4 reports rejection rates under the alternative hypothesis, with lower rejection rates

for the score test than for the Wald test. The disparity can be dramatic in the K = 4 setup,

for some of the HAC methods.

For the sample sizes under study, test performance under null and alternative hypotheses

suggests that the number p of tested restrictions should be kept small, perhaps no more

than 3 in models with K ≤ 2 risk factors. In cases of n > 2 asset returns, which we have

also simulated but omit for brevity, the number p = r(n − 1) of cross-equation restrictions

is larger and the distortions and the disparity in score and Wald tests is often greater than

when n = 2. In such cases we continue to find the rule p ≤ 3 useful for T ≥ 240 observations

and K ≤ 2.

In cases where larger models and a greater number of restrictions are desired, larger sam-

ple sizes (weekly rather than daily data, for example) may be necessary for useful application

of the HAC Wald and score tests. Also possible is to parsimoniously model and estimate the

form of residual heteroskedasticity and autocorrelation in the regression model.

6. Empirical results

We apply the proposed methods to the problem of testing for differences in risk exposure

among firms of different size (market capitalization). We conduct tests of equality of pa-

rameters, equality of slopes for a specified risk factor, equality of intercepts, and intercepts

being equal to zero. The tests are formulated by defining matrices C and D in Section 2

accordingly. We first report on the Sharpe-Lintner CAPM specification the asset return

regression system, including parameter estimates and their HAC standard errors, tests for

residual heteroskedasticity and autocorrelation, tests for parameter equality across assets,

and tests of the zero intercepts hypothesis. For these results we use a variety of technical

specifications (described earlier) for the HAC Wald test and score test, and the results are
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broadly similar for each method. We then turn to tests of various other one-factor models,

as well as two-factor models that include the market excess return as a risk factor, and for

these results we report HAC Wald tests (with VARHAC parameter covariance estimate),

which showed relatively good power and modest distortions in our simulations.

We report, in Table 5, parameter estimates and standard errors (for each of five HAC

parameter covariance estimators) for the CAPM model, with n = 2 excess returns (on small-

cap and large-cap stocks), K = 1 risk factor (value-weighted market portfolio), and three

sample periods (1959-1999, 1959-1979, 1980-1999). Intercept and slope estimates are OLS,

equation-by-equation. For the whole sample 1959-1999 and first sub-sample 1959-1979, the

results are consistent with a market beta in excess of 1 for the small-cap firms, a beta

approximately equal to 1 for large-cap firms, and small intercepts for both firm types. A

similar relationship between betas and the market excess return is reported for instance by

Chan, Chen and Hsieh (1985) and Fama and French (1993). For the second sub-sample,

the results are suggestive of equality among betas across firm types, reflecting the small

difference between mean excess returns on firms of different capitalization in that period.

Table 6 reports residual tests for the CAPM regressions, including tests for cross-equation

error correlation, residual heteroskedasticity and residual autocorrelation. The residuals

indicate strong evidence of error correlations and heteroskedasticity, in which case the HAC

variance-covariance estimates and hypotheses tests are highly appropriate.

We next report hypothesis tests for the market model - see Tables 7 and 8. The test

statistics seem to behave as expected, based on our simulation analysis. The Wald statistic

is always greater than the score statistic, and the two are reasonably close, with only minor

differences in implied p-values. When testing the joint equality of intercepts and slopes for

both assets, at the 5% significance level we reject in the first sub-sample but not in the second

sub-sample, consistent with descriptive evidence in Tables 1 and 5. The test of equality of

betas suggests significant difference in risk exposure, for large and small firms, in the first but
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not second sub-sample, while the test of equal intercepts fails to find a significant difference

during either sub-sample. We also test for whether the intercepts are each 0, with mixed

results (rejection on the second sub-sample but not the first one). The test of zero intercepts

for the market model is essentially a HAC version of the standard F-test commonly applied

in testing the CAPM. As pointed out in Gibbons et al. (1989), the test of the CAPM is

equivalent to the test of ex-ante mean-variance efficiency of a particular portfolio and the

test statistic (either S or W ) can be interpreted as a measure of distance from the mean-

variance frontier. The performance of the market model could be viewed as evidence against

the CAPM since only p-values for the period from 1959 to 1979 are larger than standard

significance values.

Table 9 reports hypothesis tests for a variety of one-factor models other than the market

model, using the Wald test statistic with the VARHAC parameter covariance estimator.

Tests of equal parameters, for small and large firms, reject the null hypothesis for consump-

tion growth and inflation, both in the full sample and each sub-sample, while for the default

premium the null is rejected in the second sub-sample, but not the first. With the exception

of the default premium, the apparent source of this parameter heterogeneity is risk exposure

(beta), in the full sample and each sub-sample. These results correspond to findings of Chan

et al. (1985) who compare similar explanatory variables to portfolios ranked by size for the

sample period 1958-1977, roughly our first sub-sample. The relationship between the excess

return for firms and the default and term premiums is somewhat weaker than indicated in

Fama and French (1993) who use a finer division of firms based not only on the market

capitalization but also on the book-to-market-ratio. Similarly to Li and Hu (1998), betas

do not differ across firms for industrial production and money variables. Tests for a zero

intercept tend to reject the null during the second sub-sample, but not the first sub-sample.

The overall impression is that covariance of excess returns with the various risk factors is

often significantly different for small and large firms, and, in the case of the default premium,
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seems to change over time.

Table 10 reports hypothesis tests for a variety of two-factor models in which the first

factor is the stock market excess return. For each version of the model, tests reject parameter

equality, for small and large firms, in the whole sample and first sub-sample, but not in the

second sub-sample. The apparent source of parameter heterogeneity is mostly difference

in betas (rather than alphas), particularly market beta. Exposure to risk represented by

the second of the two factors shows in each case no significant differences in the first sub-

sample, but frequently shows such differences in the second sub-sample (when the second

factor is the default premium, consumption growth, or unexpected inflation) or overall (term

premium). Tests for zero intercepts tend to reject the null in the whole sample and second

sub-sample, but not in the first sub-sample. The test of zero-intercepts is comparable to the

F-test of Gibbons et. al (1989) conducted in Fama and French (1996), with size-related and

book-to-market related portfolios added to the excess return on the market proxy.

The empirical results suggest importance of risk factors, such as the market excess re-

turn, consumption growth, inflation, the default premium and term premium, in explaining

differences in small and large firm performance. We found considerable instability in risk

exposure over time, which is consistent with the unstable gap in time-averaged returns on

small and large firms (as in Table 1). Future work could attempt to identify models which

explain such instability, using suitably robust test methods such as the HAC tests that we

have studied.

7. Conclusion

In this paper, we have examined the problem of formally comparing assets according to

their risk exposure. In the standard framework of linear regression systems, the problem

is one of testing linear restrictions across equations in the system. Scrutiny of regression

residuals suggests heteroskedasticity and autocorrelation, and hence we proposed the use of
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(HAC) tests robust to these data features. HAC Wald tests showed distortions in simulation,

as did score tests, but both performed well when used parsimoniously. The HAC Wald test,

with parameter estimate covariance estimated by simple prewhitening, showed particular

promise, having relatively good power and distortions not much greater than that of other

tests.

In application to stocks sorted by firm size, we used the tests to address the possibility

that differences in mean returns on small- and large-sized firms coincided with differing

exposure to risk. Among various sources of risk studied, it was market risk (proxied by

the value-weighted market portfolio), consumption growth, inflation surprises, the default

premium and term premium that showed some significant differences in risk exposure for

small and large firms. While we focused on stocks sorted by firm size, future work could apply

the proposed HAC testing methods to stocks sorted by industry or book-to-market ratio, for

example, or to both stock and bond data. As a parallel to the HAC style of robust testing,

it would also be helpful to investigate tests based on fully-specified probability models with

built-in provision for residual heteroskedasticity and autocorrelation.
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Table 1
Summary statistics (annualized, percentages)

rLARGE rSMALL rV W rDEF rTERM gIP gCONS πUI gMON

1959:01-1999:12
Mean 6.41 8.21 6.35 1.85 1.40 3.43 2.09 0.00 6.68
Median 9.78 12.17 9.73 1.81 0.31 4.38 2.39 -0.18 6.57
Maximum 198.80 389.06 195.37 3.93 112.93 71.97 21.60 16.36 32.40
Minimum -261.90 -354.16 -266.67 0.14 -79.19 -50.96 -21.58 -10.69 -11.98
Std. Dev. 50.48 67.14 50.73 0.80 18.82 10.54 5.41 2.51 4.86
Skewness -0.40 -0.18 -0.43 0.18 0.23 -0.10 -0.21 0.52 0.16
Kurtosis 5.22 7.32 5.31 2.26 7.06 9.03 4.49 7.61 5.15

1959:01-1979:12
Mean 3.02 8.08 3.29 1.42 0.17 4.12 2.28 0.19 5.86
Median 4.11 9.67 4.92 1.26 -0.30 4.66 2.45 -0.16 5.98
Maximum 198.80 389.06 195.37 3.54 54.81 71.97 21.60 16.36 22.22
Minimum -144.16 -253.47 -145.93 0.14 -70.98 -50.96 -21.58 -6.89 -10.40
Std. Dev. 49.57 72.57 50.20 0.73 15.33 12.39 5.92 2.59 4.16
Skewness -0.05 0.40 -0.06 0.85 -0.16 -0.11 -0.19 1.08 0.03
Kurtosis 4.13 6.48 4.07 2.97 6.24 8.48 4.29 8.28 3.96

1980:01-1999:12
Mean 9.98 8.34 9.57 2.29 2.68 2.70 1.89 -0.20 7.54
Median 12.38 14.69 12.76 2.25 2.29 3.91 2.24 -0.19 7.32
Maximum 149.87 167.19 149.07 3.93 112.93 25.60 17.78 7.97 32.40
Minimum -261.90 -354.16 -266.67 0.78 -79.19 -30.09 -14.68 -10.69 -11.98
Std. Dev. 51.27 61.08 51.19 0.60 21.86 8.12 4.81 2.41 5.38
Skewness -0.75 -1.19 -0.81 0.31 0.27 -0.40 -0.32 -0.24 0.04
Kurtosis 6.45 8.46 6.72 2.78 6.30 4.35 4.38 6.19 5.34



Table 2
Correlations

rSMALL rLARGE

1959:02-1999:12 rV W 0.87 1.00
rDEF 0.19 0.20
rTERM 0.15 0.24
gIP -0.03 -0.02
gCONS 0.20 0.15
πUI -0.22 -0.20
gMON -0.06 -0.03

1959:02-1979:12 rV W 0.88 1.00
rDEF 0.20 0.20
rTERM 0.17 0.21
gIP 0.04 0.06
gCONS 0.22 0.21
πUI -0.21 -0.22
gMON -0.05 -0.09

1980:01-1999:12 rV W 0.87 1.00
rDEF 0.27 0.18
rTERM 0.16 0.26
gIP -0.15 -0.14
gCONS 0.17 0.09
πUI -0.23 -0.16
gMON -0.07 0.00



Table 3
Rejection rates under null hypothesis

Covariance Matrix Estimator

K sample size test NW NW-P A AM VARHAC

2 240 score 0.03 0.02 0.05 0.05 0.05
wald 0.08 0.07 0.07 0.07 0.07

2 492 score 0.05 0.05 0.06 0.05 0.05
wald 0.08 0.07 0.07 0.06 0.06

4 240 score 0.02 0.01 0.04 0.04 0.04
wald 0.13 0.13 0.10 0.08 0.08

4 492 score 0.03 0.03 0.04 0.04 0.04
wald 0.08 0.08 0.06 0.05 0.05

Table 4
Rejection rates alternative hypothesis

Covariance Matrix Estimator

K sample size test NW NW-P A AM VARHAC

2 240 score 0.78 0.77 0.85 0.84 0.84
wald 0.89 0.89 0.88 0.87 0.87

2 492 score 0.99 0.99 0.99 0.99 0.99
wald 1.00 1.00 1.00 1.00 1.00

4 240 score 0.26 0.26 0.43 0.48 0.48
wald 0.62 0.61 0.61 0.58 0.58

4 492 score 0.76 0.74 0.82 0.84 0.84
wald 0.87 0.87 0.88 0.88 0.88



Table 5
Estimation of the market model

standard errors

years f. size prm. estimate NW NW-P A AM VARHAC

59-99 small α 0.000822 0.00138 0.00138 0.00128 0.00127 0.00127
small β 1.148570 0.04282 0.04322 0.04970 0.05018 0.05029
large α 6.57E-05 9.61E-05 9.67E-05 8.28E-05 8.53E-05 8.53E-05
large β 0.993957 0.00267 0.00268 0.00257 0.00262 0.00262

59-79 small α 0.003406 0.00185 0.00185 0.00175 0.00174 0.00174
small β 1.266719 0.07075 0.07256 0.08201 0.08955 0.08957
large α -0.000198 0.00011 0.00012 0.00010 0.00011 0.00011
large β 0.986656 0.00380 0.00390 0.00371 0.00415 0.00415

80-99 small α -0.00135 0.00186 0.00189 0.00190 0.00192 0.00192
small β 1.03827 0.05451 0.05457 0.05389 0.05439 0.05441
large α 0.00031 0.00013 0.00013 0.00012 0.00012 0.00012
large β 1.00045 0.00358 0.00358 0.00350 0.00358 0.00358



Table 6
Tests for residual heteroskedasticity and correlations

Residuals are calculated using the market model; Pearson test = a chi-square
test for correlation; White test = F test with no cross terms; Q test = Q statistic for
testing 12 lags of autocorrelation; P-values in parentheses

residual property f. size test 59-99 59-79 80-99

correlation across equations Pearson test -0.839 -0.921 -0.762
(0.000) (0.000) (0.000)

across time small Q-test 42.388 64.828 9.879
(0.000) (0.000) (0.627)

large Q-test 76.814 88.868 18.852
(0.000) (0.000) (0.092)

heteroskedasticity small White test 14.074 27.126 3.796
(0.000) (0.000) (0.000)

large White test 31.056 45.867 5.997
(0.000) (0.000) (0.000)



Table 7
Market model: Hypothesis testing, Part I

p-values in parentheses

Covariance Matrix Estimator

hypothesis years test NW NW-P A AM VARHAC

equal parameters 59-99 score 8.87 8.77 8.40 8.10 8.18
(0.01) (0.01) (0.02) (0.02) (0.02)

wald 12.17 11.96 9.37 8.94 8.93
(0.00) (0.00) (0.01) (0.01) (0.01)

59-79 score 11.32 11.14 10.41 10.07 10.14
(0.00) (0.00) (0.01) (0.01) (0.01)

wald 18.25 17.64 13.84 11.53 11.50
(0.00) (0.00) (0.00) (0.00) (0.00)

80-99 score 0.78 0.77 0.75 0.74 0.75
(0.68) (0.68) (0.69) (0.69) (0.69)

wald 0.88 0.87 0.86 0.85 0.85
(0.64) (0.65) (0.65) (0.65) (0.65)

equal slopes 59-99 score 8.37 8.31 7.72 7.65 7.71
(0.00) (0.00) (0.01) (0.01) (0.01)

wald 11.78 11.56 8.86 8.68 8.64
(0.00) (0.00) (0.00) (0.00) (0.00)

59-79 score 10.47 10.31 8.88 8.99 8.96
(0.00) (0.00) (0.00) (0.00) (0.00)

wald 14.28 13.57 10.76 9.01 9.01
(0.00) (0.00) (0.00) (0.00) (0.00)

80-99 score 0.39 0.39 0.40 0.39 0.39
(0.53) (0.53) (0.53) (0.53) (0.53)

wald 0.43 0.43 0.44 0.43 0.43
(0.51) (0.51) (0.51) (0.51) (0.51)



Table 8
Market model: Hypothesis testing, Part II

p-values in parentheses

Covariance Matrix Estimator

hypothesis years test NW NW-P A AM VARHAC

equal intercepts 59-99 score 0.27 0.27 0.32 0.32 0.32
(0.60) (0.61) (0.57) (0.57) (0.57)

wald 0.27 0.27 0.32 0.32 0.32
(0.60) (0.61) (0.57) (0.57) (0.57)

59-79 score 2.94 2.94 3.63 3.63 3.62
(0.09) (0.09) (0.06) (0.06) (0.06)

wald 3.38 3.40 3.81 3.84 3.83
(0.07) (0.07) (0.05) (0.05) (0.05)

80-99 score 0.69 0.66 0.65 0.65 0.65
(0.41) (0.42) (0.42) (0.42) (0.42)

wald 0.71 0.69 0.69 0.67 0.68
(0.40) (0.41) (0.41) (0.41) (0.41)

zero intercepts 59-99 score 5.36 5.28 6.54 6.35 6.37
(0.07) (0.07) (0.04) (0.04) (0.04)

wald 6.07 5.94 6.80 6.52 6.53
(0.05) (0.05) (0.03) (0.04) (0.04)

59-79 score 2.94 2.94 3.89 3.63 3.62
(0.23) (0.23) (0.14) (0.16) (0.16)

wald 3.39 3.40 3.89 3.85 3.85
(0.18) (0.18) (0.14) (0.15) (0.15)

80-99 score 6.68 6.74 7.69 8.66 8.69
(0.04) (0.03) (0.02) (0.01) (0.01)

wald 8.93 8.89 9.57 10.22 10.24
(0.01) (0.01) (0.01) (0.01) (0.01)



Table 9
Wald Tests (VARHAC method) of assorted univariate models

p-values in parentheses

independent variable

hypothesis years rDEF rTERM gIP gCONS πUI gMON

equal parameters 59-99 2.75 1.90 0.90 15.90 9.26 2.45
(0.25) (0.39) (0.64) (0.00) (0.01) (0.29)

59-79 4.59 3.99 3.85 12.44 5.58 3.27
(0.10) (0.14) (0.15) (0.00) (0.06) (0.20)

80-99 9.27 3.78 1.18 7.03 8.24 1.82
(0.01) (0.15) (0.55) (0.03) (0.02) (0.40)

equal slopes 59-99 1.96 1.26 0.08 14.13 8.54 1.31
(0.16) (0.26) (0.77) (0.00) (0.00) (0.25)

59-79 2.01 0.28 0.01 7.18 3.06 0.00
(0.16) (0.60) (0.94) (0.01) (0.08) (0.99)

80-99 9.09 3.28 0.78 6.68 8.12 1.54
(0.00) (0.07) (0.38) (0.01) (0.00) (0.21)

equal intercepts 59-99 0.88 1.01 0.80 0.04 0.95 2.42
(0.35) (0.31) (0.37) (0.84) (0.33) (0.12)

59-79 0.33 3.30 2.26 0.90 3.58 0.89
(0.56) (0.07) (0.13) (0.34) (0.06) (0.34)

80-99 9.12 0.17 0.13 2.24 0.70 0.45
(0.00) (0.68) (0.72) (0.13) (0.40) (0.50)

zero intercepts 59-99 9.67 6.27 7.19 2.33 8.27 5.15
(0.01) (0.04) (0.03) (0.31) (0.02) (0.08)

59-79 7.08 3.34 2.27 1.27 3.81 2.29
(0.03) (0.19) (0.32) (0.53) (0.15) (0.32)

80-99 10.00 8.81 15.92 10.61 11.34 4.75
(0.01) (0.01) (0.00) (0.00) (0.00) (0.09)



Table 10
Wald Tests (VARHAC method) of assorted bivariate models

p-values in parentheses

independent variable (in addition to market return)

hypothesis years rDEF rTERM gIP gCONS πUI gMON

equal parameters 59-99 9.48 11.24 9.63 22.13 14.70 10.83
(0.02) (0.01) (0.02) (0.00) (0.00) (0.01)

59-79 11.83 11.50 14.61 18.74 11.67 11.50
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

80-99 12.62 4.25 1.79 8.77 12.26 3.51
(0.01) (0.24) (0.62) (0.03) (0.01) (0.32)

equal slopes (market) 59-99 8.15 9.69 8.73 6.90 6.97 8.71
(0.00) (0.00) (0.00) (0.01) (0.01) (0.00)

59-79 8.82 8.60 8.83 7.80 8.52 9.00
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00)

80-99 0.04 1.08 0.33 0.20 0.10 0.46
(0.84) (0.30) (0.56) (0.66) (0.75) (0.50)

equal slopes (other) 59-99 0.83 4.88 0.07 9.07 4.97 2.14
(0.36) (0.03) (0.80) (0.00) (0.03) (0.14)

59-79 0.70 0.37 0.17 1.46 0.23 0.23
(0.40) (0.54) (0.68) (0.23) (0.63) (0.63)

80-99 10.63 3.25 0.75 5.86 9.89 2.46
(0.00) (0.07) (0.39) (0.02) (0.00) (0.12)

equal intercepts 59-99 0.33 0.44 0.33 0.25 0.38 2.50
(0.56) (0.50) (0.57) (0.62) (0.54) (0.11)

59-79 0.02 3.84 3.13 1.58 3.97 0.45
(0.88) (0.05) (0.08) (0.21) (0.05) (0.50)

80-99 11.77 0.47 0.29 3.07 0.92 0.45
(0.00) (0.49) (0.59) (0.08) (0.34) (0.50)

zero intercepts 59-99 0.84 6.40 6.25 5.70 6.72 9.31
(0.66) (0.04) (0.04) (0.06) (0.03) (0.01)

59-79 3.85 3.85 3.15 1.71 4.03 0.85
(0.15) (0.15) (0.21) (0.42) (0.13) (0.65)

80-99 18.02 9.48 9.11 15.71 10.17 10.91
(0.00) (0.01) (0.01) (0.00) (0.01) (0.00)
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