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Abstract 24 

Luteinized unruptured follicle (LUF) syndrome is a recurrent anovulatory dysfunction that 25 

affects up to 23% of women with normal menstrual cycles and up to 73% with endometriosis. 26 

Mechanisms underlying the development of LUF syndrome in mares were studied to provide a 27 

potential model for human anovulation. The effect of extended increase in circulating LH 28 

achieved by administration of recombinant equine LH (reLH) or a short surge of LH and 29 

decrease in progesterone induced by prostaglandin F2α (PGF2α) on LUF formation (Experiment 30 

1), identification of an optimal dose of COX-2 inhibitor (flunixin-meglumine, FM; to block the 31 

effect of prostaglandins) for inducing LUFs (Experiment 2), and evaluation of intrafollicular 32 

endocrine milieu in LUFs (Experiment 3) were investigated. In Experiment 1, mares were treated 33 

with reLH from Days 7−15 (Day 0 = ovulation), PGF2α on Day 7, or in combination. In 34 

Experiment 2, FM at doses of 2.0 or 3.0 mg/kg every 12 h and hCG (1500 IU) were administered 35 

after a follicle ≥32 mm was detected. In Experiment 3, FM at a dose of 2.0 mg/kg every 12 h 36 

plus hCG was used to induce LUFs and investigate the intrafollicular endocrine milieu. No LUFs 37 

were induced by reLH or PGF2α treatment; however, LUFs were induced in 100% of mares 38 

using FM. Intrafollicular PGF2α metabolite (PGFM), PGF2α, and PGE2 were lower and the ratio 39 

of PGE2:PGF2α was higher in the Induced LUF group. Higher levels of intrafollicular E2 and 40 

total primary sex steroids were observed in the Induced LUF group along with a tendency for 41 

higher levels of GH, cortisol, and T; however, LH, PRL, VEGF-A, and NO did not differ 42 

between groups. In conclusion, this study reveals part of the intrafollicular endocrine milieu and 43 

the association of prostaglandins in LUF formation, and indicates that the mare might be an 44 

appropriate model for studying the poorly understood LUF syndrome. 45 

 46 
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Introduction 47 

Anovulation is one of the main causes of infertility in women and females of many domestic 48 

species. One of the types of anovulatory dysfunction is luteinized unruptured follicle (LUF) 49 

syndrome, which has been reported in women (Marik & Hulka 1978, Koninckx et al. 1981, 50 

Hamilton et al. 1985, Hulka 1985, Katz 1988, Check 2007), mares (Kaiser et al. 1999, Gastal et 51 

al. 2006, Ginther et al. 2007a, Cuervo-Arango & Newcombe 2009), cattle (Peter 2004), llamas 52 

(Adams et al. 1991), rhinoceroses (Stoops et al. 2004), and elephants (Lueders et al. 2011). 53 

LUFs, also known as hemorrhagic anovulatory follicles (HAFs) in veterinary medicine, occur 54 

when the preovulatory follicle fails to rupture or ovulate and the antrum gets increasingly filled 55 

with blood. LUF/HAF is the most common form of anovulation in mares. LUF syndrome during 56 

the breeding season is considered a serious economic concern for the equine industry. Similarly, 57 

anovulation can have significant financial implications for women undergoing assisted 58 

reproductive techniques (Eijkemans et al. 2005). Therefore, it is important to investigate the 59 

mechanisms of development of LUF syndrome. Greater knowledge about the pathophysiology of 60 

LUFs can be applied to prevent their occurrence and thus to develop safe and effective 61 

treatments to optimize reproductive health in both animals and humans. 62 

The ultrasonographic morphological characteristics of naturally occurring or induced LUFs 63 

are similar in women (Priddy et al. 1990, Zaidi et al. 1995) and mares (Coetsier & Dhont 1996, 64 

Cuervo-Arango & Newcombe 2012). LUF formation involves the development of well-65 

vascularized luteal tissue, as indicated by echotexture and color Doppler signals in both women 66 

and mares (Zaidi et al. 1995, Ginther et al. 2007a). In the absence of ovulation, the antrum of the 67 

follicle becomes permeated with blood, which appears as echogenic foci and fibrin-like strands 68 

on a B-mode ultrasonogram. Due to similarities in antral follicular dynamics (Ginther et al. 69 
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2004, Baerwald 2009, Gastal 2011) and LUF morphology between species, we have proposed 70 

the mare as an appropriate model for understanding LUF syndrome in women. 71 

The reported incidence of LUFs in women is highly variable. LUFs have been documented to 72 

occur in 11-23% of women with normal menstrual cycles (Vanrell et al. 1982, Kerin et al. 1983, 73 

Dal et al. 2005), 13-73% of women with endometriosis (Kaya & Oral 1999), and 4-58% of 74 

women with unexplained infertility (Koninckx & Brosens 1983, Kugu et al. 1991). In addition to 75 

this, LUFs have been reported in women with pelvic inflammatory disease (Hamilton et al. 76 

1986) and inflammatory arthritis (Smith et al. 1996). LUFs are highly repeatable across cycles 77 

(79-90%), resulting in recurrent anovulation (Hamilton et al. 1986, Qublan et al. 2006) and 78 

infertility. 79 

In cycling mares, the incidence of LUFs is also highly variable (5-25%; Lefranc & Allen 80 

2003, Ginther et al. 2008a, Cuervo-Arango & Newcombe 2009, 2010). A 5% incidence of LUFs 81 

has been reported during the early ovulatory season, followed by 20% during the late 82 

reproductive season (Gastal et al. 1998). Similarly, LUF syndrome has been shown to occur 83 

more often in older mares and be recurrent in some individuals (>50% of the estrous cycles), 84 

encompassing much or all of the breeding season (Ginther et al. 2007a, Cuervo-Arango & 85 

Newcombe 2009, 2010). Therefore, recurrent LUFs result in prolonged periods of anovulation 86 

and long interovulatory intervals (Ginther et al. 2007a). 87 

The systemic and intrafollicular endocrine milieu associated with LUF syndrome is poorly 88 

understood. Knowledge about the endocrine changes associated with LUF formation is lacking 89 

(Hamilton et al. 1985, Ginther et al. 2007). The use of luteinizing hormone (LH) during early 90 

proestrus in rodents has successfully induced LUFs (Plas-Roser et al. 1985, Mattheij & Swarts 91 

1995). Similarly, the use of luteinizing hormone releasing hormone, human chorionic 92 
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gonadotropin (hCG), and human menopausal gonadotropin has been associated with LUFs in 93 

women (Bergquist & Lindgren 1983, Ghanem et al. 2009), and hCG in guinea pigs (Westfahl 94 

1988). Continued investigations are required to determine the effects of chronic administration of 95 

LH on the incidence of LUFs in mares and women. It has been well documented that a PGF2α 96 

injection causes immediate release of LH, resulting in induction of ovulation in several species 97 

such as cows (Hafs et al. 1975), sows (Srikandakumar & Downey 1989), and mares (Gastal et al. 98 

2005). In a recent study, administration of PGF2α with or without complete ablation of antral 99 

follicles increased LH concentrations early in the ovulatory wave and also during the 100 

preovulatory period and were associated with a high incidence of LUFs in mares (Ginther et al. 101 

2008b). Although it is not known exactly what physiological mechanism (interference with 102 

luteinization or maturation of granulosa cells) might be disturbed when LH levels are affected at 103 

the beginning of the follicular wave or during the ovulatory period, there is enough evidence to 104 

allow the test of a hypothesis of LH participation in LUF formation. 105 

The advances in knowledge regarding LUF syndrome in women and animals have been slow, 106 

in part because of the difficulty of predicting the occurrence of such ovarian structures. 107 

Therefore, the use of pharmacologically induced LUFs is a promising way to study this 108 

syndrome. Use of pharmacological agents in fertility or superovulatory treatments has increased 109 

the occurrence of LUFs and/or anovulatory follicles in women (Martinez et al. 1991, Ghanem et 110 

al. 2009) and mares (Lefranc & Allen 2003, Ginther et al. 2008a, Cuervo-Arango & Newcombe 111 

2010, Meyers-Brown et al. 2011). Similarly, intrafollicular or systemic administration of 112 

prostaglandin inhibitors has been shown to cause luteinization of follicles in rats (Armstrong & 113 

Grinwich 1972), rabbits (Salhab et al. 2003), mares (Watson & Sertich 1991, Ginther et al. 114 

2008a, Cuervo-Arango & Domingo-Ortiz 2011), and women (Killick & Elstein 1987, Priddy et 115 
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al. 1990, Jesam et al. 2010, 2014). In mares, flunixin meglumine (FM) at a dose rate of 1.7 or 2.0 116 

mg/kg body weight has been shown to induce LUFs in 73-83% of mares, respectively (Cuervo-117 

Arango et al. 2011, Cuervo-Arango & Domingo-Ortiz 2011). Furthermore, intrafollicular 118 

administration of prostaglandins has successfully prevented FM-induced LUF formation, 119 

allowing subsequent ovulation and conception in mares (Martínez-Boví & Cuervo-Arango 120 

2015). In women, NSAIDs have been used experimentally to inhibit ovulation, and a dose-121 

dependent effect has been observed (Athanasiou et al. 1996, Bata et al. 2006, Jesam et al. 2010, 122 

2014). Therefore, pharmacological approaches to inhibit ovulation and induce LUF formation, 123 

such as the use of COX-2 inhibitors, may serve as an effective model to elucidate the 124 

pathophysiology of LUF syndrome. 125 

The objectives of the experiments conducted in this study were to investigate: the role of 126 

reLH and PGF2α in the formation of LUFs (Experiment 1), the optimum dose of FM required to 127 

experimentally induce LUFs (Experiment 2), and the intrafollicular endocrine milieu 128 

(Experiment 3) in induced LUFs in the mare. The hypotheses tested were that: (1) reLH, when 129 

administered during diestrus alone or along with PGF2α, would increase the incidence of LUFs; 130 

(2) higher doses of FM would increase the incidence of LUFs; (3) inhibition of intrafollicular 131 

prostaglandin synthesis would be associated with LUF formation; (4) intrafollicular 132 

prostaglandins (PGF2α and PGE2) concentrations would be decreased during systemic FM 133 

treatment; (5) imbalance in the intrafollicular endocrine milieu is associated with LUF formation. 134 

 135 

Materials and Methods 136 

 137 

Animals 138 
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Mares (n = 36) were evaluated during two ovulatory seasons (April to October) in the northern 139 

hemisphere and handled in accordance with the United States Department of Agriculture Guide 140 

for Care and Use of Agricultural Animals in Research. This study was approved by the Southern 141 

Illinois University Institutional Animal Care and Use Committee (IACUC, 10-041). The mares 142 

were Quarter-Horse type breed, 5−15 years of age, weighed 400−550 kg, had docile 143 

temperament, and did not present any apparent abnormality of the reproductive tract as 144 

determined by ultrasonographic examination. Mares were reused in subsequent experiments after 145 

ultrasonographically confirming at least two normal ovulatory cycles in between experiments. 146 

All mares had good body condition score (average score ~6-7; score 1 = emaciated and score 9 = 147 

obese; Henneke et al. 1983) throughout the study. Mares were kept under natural light in pasture 148 

with free access to water and trace-mineralized salt. 149 

 150 

Experiment 1. Effect of reLH and PG on LUF formation 151 

 152 

Animals and treatments 153 

On Day 7 (Day 0 = ovulation), mares (n = 30) were randomly divided into six different treatment 154 

groups to receive either saline, PGF2α (5 mg i.m.; Lutalyse, Pfizer Animal Health, Kalamazoo, 155 

MI, USA), reLH (0.5 mg or 1.0 mg i.v.; AspenBio Pharma Inc., Castle Rock, CO), or a 156 

combination of PGF2α and reLH. The groups were: Control (10 ml saline, i.v.), LH 0.5 (0.5 mg 157 

of reLH), LH 0.5 + PG (0.5 mg reLH and 5 mg PGF2α), PG (5 mg PGF2α), LH 1.0 (1 mg reLH), 158 

and LH 1.0 + PG (1 mg reLH and 5 mg PGF2α). Mares were treated with PGF2α (5 mg/mare) 159 

only once on Day 7 and with reLH once every day from Days 7−15. 160 

 161 
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Ultrasonographic examinations and end points 162 

Transrectal ultrasonographic examinations were performed daily from Day 0 until 4 days after 163 

the next ovulation or the beginning of LUF formation. A LUF was detected ultrasonographically 164 

by the presence of a thick and echoic follicle wall, suggestive of luteinization, decreased 165 

turgidity, echoic foci and/or fibrin septae in the antrum, a gel-like substance in antrum, and/or 166 

pronounced serration of the granulosa layer around the whole follicle, as previously described 167 

(Ginther et al. 2006, Cuervo-Arango & Newcombe 2012). A series of comparative ultrasound 168 

images of LUFs in women and mares is given for illustration purposes regarding the similarities 169 

shown by both species (Fig. 1). For transrectal scanning, a duplex B-mode (gray-scale) and 170 

pulsed-wave color-Doppler ultrasound instrument (Aloka SSD-3500; Aloka America, 171 

Wallingford, CT, USA) equipped with a finger-mounted 3.5−10 MHz convex-array transducer 172 

was employed. The color-flow mode was used to display follicle, corpus luteum (CL), and LUF 173 

blood flow as previously described (Ginther et al. 2007a, 2007b). Constant color-gain, velocity, 174 

and filter settings were used for all Doppler examinations. The entire follicle, CL, and LUF were 175 

scanned in a gradual, steady motion several times. 176 

Follicle diameter was calculated from the average of height and width of the antrum at the 177 

apparent maximal area from two frozen images. The largest follicle was measured on each day of 178 

examination. CL diameter was measured throughout the study. In addition, endometrial 179 

echotexture was scored from 1 to 4 (minimal to maximal) during each examination, based on the 180 

extent of anechoic areas of the endometrial folds (Ginther & Pierson 1984). Follicle wall blood 181 

flow was quantified in follicles ≥28 mm until ovulation or LUF formation, using color-flow 182 

Doppler as previously described in mares (Acosta et al. 2004) and women (Campbell et al. 183 

1993). 184 
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 185 

Experiment 2. Optimum dose of flunixin-meglumine (FM) to induce LUF 186 

 187 

Animals and treatments 188 

At the beginning of estrus, cycling mares (n = 18) with a growing follicle ≥32 mm (Hour 0), in 189 

the presence of endometrial edema (echotexture score ≥3) were administered 1500 IU of hCG 190 

(Chorulon®, i.v.; Intervet Inc, Millsboro, DE). Immediately, mares were randomly divided (n = 191 

6 mares/group) into three treatment groups (FM-2, FM-3, and Control), and treatments were 192 

started. All groups were treated every 12 h with FM or saline until Hour 36. FM-2 and FM-3 193 

groups received 2.0 or 3.0 mg/kg of body weight of FM (Flunixiject™, i.v.; Henry Schein® 194 

Animal Health, Dublin, OH), respectively, and the Control group received 10 ml of saline (i.v.) 195 

solution. Mares were monitored for any adverse effects from the above mentioned doses of FM, 196 

as the normal dose was exceeded (1.1 mg/kg of body weight per day). 197 

 198 

Ultrasound evaluations 199 

Mares were scanned every other day from Day 12 after ovulation until a follicle reached 25−27 200 

mm in diameter; subsequently, scans were conducted daily. Mares with a ≥32-mm follicle were 201 

randomly allocated to a treatment group and scans were performed: every 12 h from Hours 0−36, 202 

every 2 h between Hours 36−48, and every 12 h from Hours 60-96. Mares with more than one 203 

≥32-mm follicle at the beginning of treatment were not included in the study. 204 

Follicle diameter, follicle blood flow, LUFs, and endometrial echotexture were evaluated 205 

using the same ultrasound methodology as in Experiment 1. The thickness of the follicle wall 206 

(granulosa layer) was determined by averaging measurements made on three different locations 207 
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(Gastal et al. 1998, 2006). In addition, the following qualitative B-mode characteristics of the 208 

preovulatory follicle were recorded from Hour 0 until ovulation or LUF formation: 1) presence 209 

of echoic foci floating in the antrum, 2) detection of follicle wall serration (i.e., irregular or 210 

notched surfaces of the granulosa layer; Gastal et al. 2007), and 3) loss of spherical shape. 211 

 212 

Experiment 3. Systemic and intrafollicular hormones and growth factors  213 

 214 

Animals and treatments 215 

Cycling mares (n = 23) with a growing follicle ≥28-mm were scanned daily after Day 15 using 216 

B-mode and color-Doppler ultrasonography (Gastal et al. 1998, 2006) until a follicle ≥32 mm 217 

was detected. When the largest follicle reached ≥32 mm (Hour 0) and the score for endometrial 218 

echotexture was between 3 and 4 (estrus-like), mares were randomly assigned into two treatment 219 

groups: Control (n = 11) and Induced LUF (n = 12). Mares received an injection of 1500 IU of 220 

hCG and were treated twice daily with saline (10 ml, i.v.; Control group) or FM (2.0 mg FM/kg 221 

of body weight; Induced LUF group) until 36 h after hCG injection.  222 

 223 

Collection of follicular fluid and end points 224 

Follicular fluid was collected from the preovulatory follicle in the Induced LUF and the Control 225 

groups by ultrasound-guided transvaginal follicle aspiration at Hour 36 after hCG injection as 226 

described (Gastal et al. 1995, 1999b). The aspirated follicular-fluid was immediately processed 227 

in a refrigerated centrifuge (1500 xg for 10 min), and 10 ml of the supernatant was stored at 228 

−20ºC until hormone assays were performed. Follicle diameter, follicle blood flow, and 229 

endometrial echotexture were measured, as described in Experiment 1. 230 
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 231 

Blood samples and hormone assays 232 

Jugular blood samples were collected in heparinized tubes, immediately placed in ice water bath, 233 

processed in a refrigerated centrifuge (1500 xg for 10 min), decanted, and stored (−20ºC) until 234 

analyzed. For Experiment 1, samples were collected daily between Days 7−15. For Experiment 235 

2, samples were collected every 12 h between Hours 0−36 and then every 2 h until ovulation or 236 

LUF formation. For Experiment 3, samples were collected every 12 h between Hours 0−36. For 237 

Experiment 1, systemic LH was assayed from Days 7−9 to investigate the effect of treatment on 238 

the increase in circulating LH, and progesterone (P4) was assayed from Days 7−15. For 239 

Experiment 2, systemic PGFM (prostaglandin F2α metabolite) and P4 were assayed from Hours 240 

0−38. For Experiment 3, PGFM was assayed in both plasma and follicular fluid; additionally, 241 

follicular fluid was assayed for PGF2α, prostaglandin E2 (PGE2), estradiol 17-β (E2), P4, 242 

testosterone (T), LH, nitric oxide (NO), vascular endothelial growth factor-A (VEGF-A), 243 

cortisol, prolactin (PRL), and growth hormone (GH). Furthermore, the ratios of PGE2:PGF2α, 244 

E2:P4, E2:T, and P4:T were calculated. Total primary sex steroids were calculated by combining 245 

the E2, P4, and T. 246 

Plasma P4 concentrations were determined using a solid-phase radioimmunoassay kit 247 

containing antibody-coated tubes and I125-labeled P4 (Coat-A Count Progesterone, Diagnostic 248 

Products Corporation, Los Angeles, CA, USA) as described and validated for mare plasma 249 

(Ginther et al. 2005). Plasma LH was assayed using an equine ELISA kit (Endocrine 250 

Technologies, INC., Freemont, CA, USA). Plasma and follicular fluid PGFM, PGF2α, PGE2, and 251 

E2 concentration was determined using ELISA kits (Neogen Co., Lexington, KY, USA) after 252 

extraction with diethyl-ether, as previously described (Ginther et al. 2010). Intrafollicular LH, 253 
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GH, cortisol, PRL, and testosterone concentrations were determined by ELISA kits (Endocrine 254 

Technologies, INC., Freemont, CA, USA). Intrafollicular NO was estimated using a colorimetric 255 

kit (Cayman Chemical Company, Ann Arbor, MI, USA). Intrafollicular VEGF-A was assayed by 256 

ELISA kit (Kingfisher Biotech, Inc., Saint Paul, MN, USA). All the assays were performed 257 

following the manufacturers’ protocol and were validated for equine follicular fluid by using 258 

multiple dilutions and pilot assays to determine the optimal dilutions required for the hormone 259 

concentration to be within the detection range of the assay. The intra-assay CVs and sensitivities 260 

for the different hormone assays were as follows: P4, 8.7% (experiment 1), 6.3% (experiment 2), 261 

6.6% (experiment 3), and 0.02 ng/ml; PGFM, 6.3% (experiment 2) and 3.2% (experiment 3), and 262 

20 pg/ml; PGF2α, 6.1% and 2 pg/ml; PGE2, 2.6% and 0.1 ng/ml; E2, 4.9% and 0.1 ng/ml; NO, 263 

5.1% and 20 µM/ml; LH, 4.5% (plasma) and 8.9% (follicular fluid), and 0.25 ng/ml; GH, 5.2% 264 

and 0.25 ng/ml; cortisol, 9.5% and 1 ng/ml; testosterone, 6.1% and 0.1 ng/ml; and VEGF-A, 265 

3.6% and 28.5 pg/ml. 266 

 267 

Statistical analyses 268 

The Shapiro-Wilk test was used for testing normal distribution of the data. Data not normally 269 

distributed were transformed to log or rank before any statistical analyses. Dixon’s test was used 270 

to identify outlier observations, which were excluded from any statistical analyses. Sequential 271 

data were analyzed by one-way ANOVA for main effects of group, time, and group by time 272 

interaction. The analyses were done using SAS PROC MIXED (Version 9.2; SAS Institute, Inc.) 273 

with a REPEATED statement to minimize autocorrelation between sequential measurements. 274 

When a group effect or interaction was obtained, differences among groups within time points 275 

were further analyzed. Tukey’s test was used between time points within a group to identify 276 
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significant differences. A probability of P < 0.05 indicated that a difference was significant and 277 

P > 0.05 or < 0.1 indicated that results tended to be different. Data are presented as mean ± 278 

S.E.M. 279 

 280 

Results 281 

 282 

Experiment 1. Effect of reLH and PG on LUF formation 283 

No LUFs were observed in this experiment, regardless of treatment. More specifically, reLH 284 

(0.5−1.0mg) given for 9 days during the diestrous phase and/or PG administered on Day 7 did 285 

not induce LUF formation. Furthermore, reLH had no effect on any other endpoint. The diameter 286 

of the largest follicle increased (P < 0.0001) for all groups, but no overall group effect was 287 

observed during the treatment period (data not shown). A group-by-day interaction (P < 0.02) 288 

was potentially caused by the greater diameters in the PG groups when compared with the 289 

Control and LH groups. After combining the reLH (LH 0.5 + LH 1.0) groups and PG (LH 290 

0.5+PG, LH 1.0+PG, and PG) groups, a larger (P < 0.05) follicle diameter was seen on Days 291 

13−16 for the PG group when compared with the Control and LH groups (Fig. 2A). The growth 292 

rate of the largest follicle from Days 7−16 was greater (P < 0.001) in the PG group than in the 293 

Control and reLH groups (Table 1). In addition, maximum follicle diameter during the treatment 294 

period and on Day 16 was greater (P < 0.01) in the PG group compared to the Control and reLH 295 

groups. The percentage of blood flow of the dominant follicle 3 days before ovulation did not 296 

differ (P > 0.05) among groups. 297 

PGF2α had a marked effect on CL diameter and half-life, which affected the plasma P4 298 

concentrations and shortened the interovulatory interval (IOI; Table 1). As expected, CL 299 
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diameter and P4 concentration decreased (P < 0.007) faster in PG-treated groups, compared to 300 

the other groups (data not shown). The Control and reLH groups did not differ throughout 301 

treatment, whereas PG-treated groups had a smaller CL diameter on Day 12 (P < 0.0001). 302 

Therefore, the reLH (0.5 and 1.0 mg) groups and the PG groups were combined for further 303 

analyses (Fig. 2B). The Control and reLH-treated groups had a larger (P < 0.0001) CL diameter 304 

and greater P4 concentration from Days 9−15 than the PG group (Fig. 2B, C). The reLH 305 

treatment had no effect on CL diameter or P4 concentration when compared to the Control 306 

group. P4 concentration was greater (P < 0.0002) on Day 12 and lower (P < 0.004) on the day of 307 

the beginning of luteolysis in the Control and reLH groups compared to the PG-treated group 308 

(Table 1). Also, the mean day of the beginning of luteolysis (day before P4 was <1.0 ng/ml) was 309 

earlier (P < 0.0001) in the PG-treated group compared to the Control and reLH-treated groups 310 

(Table 1). Endometrial echotexture was greater (P < 0.002) in the PG (3.3 ± 0.1) versus Control 311 

(2.9 ± 0.1) and reLH (2.8 ± 0.1) groups. Plasma LH concentrations from Days 7−9 increased (P 312 

< 0.03) for reLH (3.7 ± 0.7 ng/ml) and PG (3.0 ± 0.6 ng/ml) groups; however, an increase was 313 

not observed in the Control group (1.8 ± 0.2 ng/ml). 314 

 315 

Experiment 2. Optimum dose of flunixin-meglumine to induce LUF 316 

In the Control group, ovulation was detected at 38.7 ± 0.7 h (range, 36 to 40 h) in all mares. In 317 

FM groups, both doses (2 and 3 mg/kg of body weight) resulted in induction of LUFs in 100% of 318 

the animals; no complications were observed in any animal after FM treatment. LUFs were first 319 

observed in treated mares at 49.2 ± 1.9 h (range, 44 to 60 h). No difference was observed in the 320 

time of first detection of LUFs and plasma PGFM concentration between FM treated groups. 321 

Therefore, FM groups were combined for further analyses (i.e., Induced LUF group). The plasma 322 
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PGFM concentration was lower (P < 0.05) in the Induced LUF group when compared to the 323 

Control group at Hour 24 (Fig. 3). Plasma P4 concentration was not different (P>0.05) between 324 

groups from Hour 0 to 36 (data not shown). 325 

Follicle diameters of Induced LUF and Control groups were not different (P > 0.05) between 326 

Hours 0−38. However, Induced LUFs grew to a larger (P < 0.009) diameter from Hours 0−60 327 

(Fig. 4A). Follicle wall serration, follicle wall thickness, and follicular shape (round/irregular) 328 

were not different between Induced LUF and Control groups up to Hour 38. The first increase (P 329 

< 0.05) in follicle wall serration occurred between Hours 0−24 in both groups (Fig. 4B). Follicle 330 

wall thickness and follicle wall serration continued to increase between Hours 38−60 for the 331 

Induced LUF group (Fig. 4B, C). 332 

Follicle blood flow (Fig. 5D) increased differentially between groups after the beginning of 333 

treatment (time effect, P < 0.001; interaction, P < 0.02). The follicle blood flow of the largest 334 

follicle was greater (P < 0.02) in the Induced LUF group at Hour 38 than in the Control group. 335 

Follicle blood flow increased earlier in the Control group (Hour 12) compared to the Induced 336 

LUF group (Hour 24).The number of echoic foci in the follicular fluid before ovulation or LUF 337 

formation was lower (P < 0.0001) in the Control group (0.8 ± 0.3) than in the Induced LUF 338 

group (3.5 ± 0.2). Endometrial echotexture (overall score, 3.8 ± 0.1) was not different between 339 

groups. 340 

 341 

Experiment 3. Systemic and intrafollicular hormones and growth factors 342 

Plasma PGFM concentration was lower (P < 0.0002) at Hour 24 in the Induced LUF group 343 

versus the Control group (Fig. 5A). Overall, the follicle diameter tended (P < 0.07) to be greater 344 

in the Induced LUF group when compared with the Control group at Hours 0−36 (Fig. 5B). The 345 
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follicle diameter was greater in the Induced LUF group at Hour 24 (P < 0.02) and Hour 36 (P < 346 

0.05). Follicle diameters at Hours 12, 24, and 36 increased in both groups, when compared to 347 

Hour 0. Follicle blood flow did not differ between groups (Fig. 5C), but increased earlier in the 348 

Control group (Hour 12) compared to the Induced LUF group (Hour 24). In addition, 349 

endometrial echotexture did not differ between groups; however, a faster decrease (P < 0.05) in 350 

edema score was detected between Hours 24−36 in the Control group (Fig. 5D).  351 

Differences in follicular fluid hormone concentrations were observed between the Control 352 

and Induced LUF groups (Fig. 6). PGFM concentration was lower (P < 0.004) in the Induced 353 

LUF group (49.6 ± 2.0 pg/ml) versus the Control group (102.3 ± 20.5 pg/ml; Fig. 6A). PGF2α 354 

was lower (P < 0.0006) in the Induced LUF group (0.013 ± 0.005 ng/ml) compared to the 355 

Control group (22.4 ± 6.1 ng/ml; Fig. 6B). Also, PGE2 concentration was lower (P < 0.004) in 356 

the Induced LUF group (0.35 ± 0.05 ng/ml) compared to the Control group (24.7 ± 8.5 ng/ml; 357 

Fig. 6C). The PGE2:PGF2α ratio was higher (P < 0.03) in Induced LUF (93.0 ± 43.0) compared 358 

to Control (3.6 ± 1.5) mares (Fig. 6D). 359 

Differences in follicular fluid primary sex steroids and their ratios were detected between 360 

treatment groups (Fig. 7). Intrafollicular E2 concentration was greater (P < 0.02) in the Induced 361 

LUF group (1993.0 ± 325.6 ng/ml) compared to the Control group (1114.3 ± 173.0 ng/ml). P4 362 

was not different between groups (Fig. 7B); however, T concentration tended (P < 0.1) to be 363 

greater in the Induced LUF group (Fig. 7C). Furthermore, the total primary sex steroid 364 

concentration was greater (P < 0.009) in the Induced LUF group (3340.6 ± 350.4 ng/ml) versus 365 

the Control group (2047.4 ± 320.4 ng/ml; Fig. 7D). The ratios of E2:P4 and P4:T tended (P < 366 

0.1) to be lower in the Induced LUF group (Fig. 7E, F); however, the E2:T ratio was not different 367 

between groups (Fig. 7G). 368 
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The follicular fluid LH, PRL, VEGF-A, and NO concentrations did not differ between the 369 

Control and Induced LUF groups (Fig. 8A, B, E, F). However, the concentration of cortisol 370 

tended (P < 0.09) to be higher in the Induced LUF group (6.8 ± 1.9 ng/ml) compared to the 371 

Control group (3.2 ± 0.5 ng/ml; Fig. 8D). Also, the follicular GH levels tended (P < 0.07) to be 372 

higher in the Induced LUF (0.59 ± 0.05 ng/ml) versus the Control group (0.48 ± 0.05 ng/ml; Fig. 373 

8C). 374 

 375 

Discussion 376 

The pathophysiologic mechanisms underlying LUF syndrome in mares, women, or other species 377 

are not known. This series of experiments was conducted to gain insight about the effects of 378 

exogenous and endogenous LH and PGF2α on LUF formation, as well as the effects on 379 

intrafollicular prostaglandins and other hormones in induced LUFs when a COX-2 inhibitor 380 

(FM) was used. This study is apparently the first to report and compare a wide range of 381 

intrafollicular biomarkers between ovulatory follicles and LUFs. Thus, the results herein 382 

presented are clinically relevant to veterinary and human medicine. 383 

Low levels of follicular fluid prostaglandins and PGFM in mares with induced LUFs were 384 

the most consistent and novel finding in this study (Experiment 3). Our hypotheses that 385 

intrafollicular prostaglandins would be inhibited by systemic FM administration and that 386 

inhibition of intrafollicular prostaglandin synthesis would be associated with LUF formation 387 

were therefore substantiated. Intrafollicular PGF2α, PGFM, and PGE2 were consistently 388 

decreased in mares of the Induced LUF group. Similar results have been shown in the follicular 389 

fluid of women treated with various NSAIDs (Priddy et al. 1990). Prostaglandins are vital for the 390 

ovulatory process in vertebrates (reviewed in Murdoch et al. 1993). It has been reported that 391 
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intrafollicular prostaglandins increased 36 h after hCG treatment in mares (Watson & Sertich 392 

1991, Sirois & Dore 1997). A recent study (Martínez-Boví & Cuervo-Arango 2015) 393 

demonstrated the importance of prostaglandins in the ovulation process in mares by using 394 

intrafollicular injection of a supra-physiological cocktail of PGE2 and PGF2α (500 μg and 125 395 

μg, respectively) to reverse the anovulatory effects of FM. Another novel finding from our study 396 

was the increased intrafollicular PGE2:PGF2α ratio in mares with induced LUFs. High 397 

intrafollicular PGE2:PGF2α ratio has been associated with lower pregnancy rates in humans 398 

(Smith et al. 1991). These findings corroborate the role of lowered intrafollicular prostaglandins 399 

in LUF formation and support the concept that an altered PGE2:PGF2α ratio may be caused by a 400 

compensatory mechanism when prostaglandin synthetase is blocked. These results highlight the 401 

importance of the mare as a possible animal model to study LUF syndrome in women.  402 

Increased follicular fluid E2 in mares with induced LUFs was another novel finding in this 403 

study. We have previously reported that mares had higher E2 concentrations 3 days before the 404 

beginning of LUF formation (Ginther et al. 2007a). Likewise, higher plasma E2 concentrations 405 

have been described in women with spontaneous LUFs (Hamilton et al. 1985). However, no 406 

differences in intrafollicular E2 concentrations were previously documented in women following 407 

NSAID treatment (Priddy et al. 1990). Estradiol-mediated stimulation of PGE2 synthesis in 408 

preovulatory follicles in mice (Toda et al. 2012), may explain the increased PGE2:PGF2α ratio in 409 

mares of the Induced LUF group. Furthermore, intrafollicular total primary sex steroids were 410 

higher in the Induced LUF group, although no differences were found in P4 concentrations. 411 

Greater overall steroid concentrations can be due to low levels of intrafollicular prostaglandins 412 

since prostaglandins decrease intracellular transport of cholesterol, reduce cellular cholesterol 413 

uptake, and lower the activity of steroidogenic enzymes (reviewed in Niswender et al. 2000). 414 
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Higher intrafollicular E2 levels in Induced LUF mares were consistent with a more differentiated 415 

endometrium with higher uterine edema. 416 

LH, VEGF-A, NO, and PRL do not seem to be involved in LUF formation as the levels were 417 

not different between Induced LUF and Control groups. Cortisol and GH levels only tended to be 418 

higher in the Induced LUF group. Cortisol is thought to be involved in controlling the 419 

inflammatory process of ovulation (Espey & Lipner 1994, Andersen 2002). The role of cortisol 420 

in LUF formation is unclear at this point. It is possible that over-inhibition of the inflammatory 421 

process results in anovulation. Growth hormone has been shown to increase steroidogenesis in 422 

granulosa cells, and GH receptors (GHR) have been detected in granulosa cells in mice (Silva et 423 

al. 2009). 424 

In this study, higher doses of FM were used in an attempt to increase the incidence of LUFs. 425 

Our hypothesis was not substantiated because both 2 mg and 3mg doses of FM induced LUFs in 426 

all mares (100% success rate). Nevertheless, the use of FM and hCG provides a reliable model 427 

for the study of LUF syndrome (Experiment 2). FM treatments were administered every 12 h and 428 

no adverse effects were noted in any animal. The percentage of LUFs in our study was higher 429 

than the 83% incidence of LUFs reported following FM treatment in mares (Cuervo-Arango & 430 

Domingo-Ortiz 2011) and the 36% incidence following treatment with higher doses of COX-2 431 

inhibitor (meloxicam) in women (Jesam et al. 2014). The increased incidence of LUFs in the 432 

present study was, in part, attributed to a higher dose of FM in our study compared to previous 433 

study (Cuervo-Arango et al. 2011), and/or to a lower dose (1500 IU) of hCG in our study versus 434 

2500 IU in a previous study (Cuervo-Arango et al. 2011, Cuervo-Arango & Domingo-Ortiz 435 

2011). Therefore, it seems that for proper experimental induction of LUFs, an optimum balance 436 
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between ovulatory stimulus (hCG) and an adequate decrease of intrafollicular prostaglandin (by 437 

the use of COX-2 inhibitor) must be achieved. 438 

The systemic concentration of PGFM was reduced in FM treated mares at Hour 24 in 439 

Experiment 2 and at Hours 12 and 24 in Experiment 3. These results were consistent with 440 

previous reports in mares (Ginther et al. 2011, Cuervo-Arango et al. 2011). Plasma PGFM 441 

concentrations are indicative of systemic PGF2α concentrations, since PGF2α is rapidly 442 

metabolized in the body (Shrestha et al. 2012). Lower systemic PGFM levels were also an 443 

indicative of the effectiveness of FM treatment in blocking prostaglandin synthesis in our study. 444 

In Experiment 1, we aimed to induce LUFs by injecting reLH between Days 7−15 with or 445 

without treating with PGF2α on Day 7. However, our hypothesis was not supported because 446 

reLH did not induce any LUFs. Furthermore, no differential effect on dominant follicle growth, 447 

CL development, or plasma P4 was seen by the use of reLH. PGF2α decreased the CL lifespan 448 

and plasma P4, and shortened the IOIs. LH has been shown to be important for the establishment 449 

of follicle dominance in mares (Gastal et al. 1999a, 2000). Daily injections of eLH at the 450 

preovulatory phase, after a 32-mm follicle was detected, failed to induce anovulatory follicles in 451 

mares (Schauer et al. 2013). Similarly, in our study, the reLH treatment did not affect follicular 452 

growth before and after deviation phases, nor did it induce anovulation (LUF). Although the 453 

results of our experiment are not similar to what has been described in women (Bergquist & 454 

Lindgren 1983) and rats (Mattheij & Swarts 1995), it seems to be premature to assume that LH 455 

does not affect LUF formation in mares. The dose and frequency of LH administrations were not 456 

evaluated in our study. Continued titration studies are required to fully understand the role of LH 457 

in LUF formation. 458 
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In summary, COX-2 inhibitors used in conjunction with hCG can be used to 459 

pharmacologically induce LUFs with 100% success in mares. We postulated that LUFs result 460 

from decreased intrafollicular prostaglandin concentrations and/or altered prostaglandin 461 

synthesis, as indicated by disparity in PGE2:PGF2α ratio. Increased intrafollicular E2 was 462 

associated with LUF formation; however, further studies are necessary to ascertain the cause-463 

effect relationship and also to understand the role of testosterone, cortisol, and GH. The effect of 464 

LH on LUF formation remains unclear. This study further encourages the use of intrafollicular 465 

versus systemic biomarkers for evaluating ovulatory disorders. Finally, results from this study 466 

suggest the use of the mare as a potential model for investigating anovulatory infertility in 467 

women. 468 
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Figure Legends 749 

 750 

Figure 1. A series of comparative ultrasound images of preovulatory follicles and LUFs in four 751 

women (A–D) and one mare (E–H). Images were obtained before ovulation in women (A) and a 752 

mare (E), and various stages of LUF formation. Large diameter, thicker and echogenic follicle 753 

wall (luteinized; long arrows), and echoic foci and fibrin-like strands (short arrows) in the 754 

follicle antrum can be observed in different degrees in LUFs in women (B–D) and mare (F–H). 755 

 756 

Figure 2. Mean (± S.E.M.) diameters of the largest follicle and CL, and corresponding 757 

concentrations of P4 for Days 7−15 after ovulation (Day 0) for the Control, LH combined, and 758 

LH + PG combined groups. Arrow indicates beginning of treatments on Day 7. The probabilities 759 

for a group effect (G), day effect (D), and group-by-day interaction (GD) are shown. An asterisk 760 

(*) indicates days of a significant difference (P < 0.05) between groups and a pound mark (#) 761 

indicates a difference that approached significance (P < 0.1). 762 

 763 

Figure 3. Mean (± S.E.M.) PGF2α metabolite (PGFM) concentration for the Induced LUF group 764 

(flunixin meglumine treatments combined) versus the Control group (saline). The probabilities 765 

for a group effect (G), hour effect (H), and group-by-hour interaction (GH) are shown. An 766 

asterisk (*) indicates hours of a significant difference (P < 0.05) between groups. 767 

 768 

Figure 4. Mean (± S.E.M.) follicle diameter, follicle wall serration, follicle wall thickness, and 769 

follicle blood flow for the Induced LUF group (flunixin meglumine treatments combined) versus 770 

the Control group (saline). The probabilities for a group effect (G), hour effect (H), and group-771 
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by-hour interaction (GH) are shown for Hours 0−38. An asterisk (*) indicates the first increase 772 

(P < 0.05) within a group. 773 

 774 

Figure 5. Mean (± S.E.M.) plasma PGF2α metabolite (PGFM) concentration, follicle diameter, 775 

follicle blood flow, and endometrial echotexture score for the Induced LUF group (flunixin 776 

meglumine treatment) versus the Control group (saline). The probabilities for a group effect (G), 777 

hour effect (H), and group-by-hour interaction (GH) are shown. An asterisk (*) indicates hours 778 

of a significant difference (P < 0.05) between groups, and a pound mark (#) indicates a 779 

difference that approached significance (P < 0.1) between groups. 780 

 781 

Figure 6. Mean (± S.E.M.) follicular fluid concentrations of PGF2α metabolite (PGFM), PGF2α, 782 

PGE2, and PGE2:PGF2α ratio for the Induced LUF group (flunixin meglumine treatment) versus 783 

the Control group (saline). Bars with different superscripts within an endpoint are different (P < 784 

0.05). 785 

 786 

Figure 7. Mean (± S.E.M.) follicular fluid concentrations of E2, P4, T, and total primary sex 787 

steroids for the Induced LUF group (flunixin meglumine treatment) versus the Control group 788 

(saline). Bars with different superscripts within an endpoint are different (P < 0.05), and a pound 789 

mark (#) indicates a difference that approached significance (P < 0.1) between groups. NS, non-790 

significant. 791 

 792 

Figure 8. Mean (± S.E.M.) follicular fluid concentrations of LH, cortisol, GH, VEGF-A, and NO 793 

for the Induced LUF group (flunixin meglumine treatment) versus the Control group (saline). 794 
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Bars with a pound mark (#) indicate a difference that approached significance (P < 0.1) between 795 

groups. 796 

 797 
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