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Outline

Get formula for pricing European options when
stock price follows a non-linear stochastic delay (or
functional) differential equation.

Proposed model is sufficiently flexible to fit real
market data, yet allows for a closed-form explicit
representation of the option price during the last
delay period before maturity.

Construction of an equivalent local martingale
measure via successive backward conditioning.

Model maintains the no-arbitrage property and
completeness of the market.

Hedging strategy.
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Introduction

Black and Scholes model for pricing European options is
based on the assumption of constant volatility:

But empirical evidence shows that volatility depends on
time and chance: Smiles and frowns.

Need better ways of understanding stock dynamics.

Proposal: Allow volatility to depend on the history of the
stock price: Predictions about the evolution of financial
variables take into account the knowledge of their past.

Objective: To derive an option pricing formula under
stock-dynamics with finite memory. (Theorem 4).

A Delayed OptionPricing Formula – p.4/78



Introduction

Black and Scholes model for pricing European options is
based on the assumption of constant volatility:

But empirical evidence shows that volatility depends on
time and chance: Smiles and frowns.

Need better ways of understanding stock dynamics.

Proposal: Allow volatility to depend on the history of the
stock price: Predictions about the evolution of financial
variables take into account the knowledge of their past.

Objective: To derive an option pricing formula under
stock-dynamics with finite memory. (Theorem 4).

A Delayed OptionPricing Formula – p.4/78



Introduction

Black and Scholes model for pricing European options is
based on the assumption of constant volatility:

But empirical evidence shows that volatility depends on
time and chance: Smiles and frowns.

Need better ways of understanding stock dynamics.

Proposal: Allow volatility to depend on the history of the
stock price: Predictions about the evolution of financial
variables take into account the knowledge of their past.

Objective: To derive an option pricing formula under
stock-dynamics with finite memory. (Theorem 4).

A Delayed OptionPricing Formula – p.4/78



Introduction

Black and Scholes model for pricing European options is
based on the assumption of constant volatility:

But empirical evidence shows that volatility depends on
time and chance: Smiles and frowns.

Need better ways of understanding stock dynamics.

Proposal: Allow volatility to depend on the history of the
stock price:

Predictions about the evolution of financial
variables take into account the knowledge of their past.

Objective: To derive an option pricing formula under
stock-dynamics with finite memory. (Theorem 4).

A Delayed OptionPricing Formula – p.4/78



Introduction

Black and Scholes model for pricing European options is
based on the assumption of constant volatility:

But empirical evidence shows that volatility depends on
time and chance: Smiles and frowns.

Need better ways of understanding stock dynamics.

Proposal: Allow volatility to depend on the history of the
stock price: Predictions about the evolution of financial
variables take into account the knowledge of their past.

Objective: To derive an option pricing formula under
stock-dynamics with finite memory. (Theorem 4).

A Delayed OptionPricing Formula – p.4/78



Introduction

Black and Scholes model for pricing European options is
based on the assumption of constant volatility:

But empirical evidence shows that volatility depends on
time and chance: Smiles and frowns.

Need better ways of understanding stock dynamics.

Proposal: Allow volatility to depend on the history of the
stock price: Predictions about the evolution of financial
variables take into account the knowledge of their past.

Objective: To derive an option pricing formula under
stock-dynamics with finite memory. (Theorem 4).

A Delayed OptionPricing Formula – p.4/78



Definitions

An option is a contract giving the owner the right to buy
or sell an asset, in accordance with certain conditions and
within a specified period of time.

A European call option gives its owner the right to buy a
share of stock at the maturity or expiration date of the
option, for a specified exercise price.

The option is exercised when the exercise price is paid.

European call options can only be exercised at the matu-

rity date.
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Delayed Stock Model

Consider a stock whose price S(t) at any time t satisfies
the following stochastic delay differential equation
(sdde):

dS(t) = h(t, S(t − a))S(t) dt + g(S(t − b))S(t) dW (t),

t ∈ [0, T ]

S(t) = ϕ(t), t ∈ [−L, 0]





(1)

on a probability space (Ω,F , P ) with a filtration

(Ft)0≤t≤T satisfying the usual conditions.
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Delayed Stock Model-contd

In Drift: Continuous function h : R+ × R → R.

Volatility function: g : R → R is continuous.

Maximum delay: L := max{a, b}, positive delays a, b.
C([−L, 0], R) := Banach space of continuous functions
[−L, 0] → R given the sup norm.

Initial process: ϕ : Ω → C([−L, 0], R) is F0-measurable
with respect to the Borel σ-algebra of C([−L, 0], R).

Brownian motion: W -one-dimensional standard, adapted

to (Ft)0≤t≤T .
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Feasibility of Delayed Stock Model

Model is feasible: Admits pathwise unique solution such
that S(t) > 0 almost surely for all t ≥ 0 whenever the
initial path ϕ(t) > 0 for all t ∈ [−L, 0].

Hypotheses (E):

(i) h : R+ × R → R is continuous.

(ii) g : R → R is continuous.

(iii) Delays a and b are positive and fixed.
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Theorem 1

Assume Hypotheses (E). Then the delayed stock model

dS(t) = h(t, S(t − a))S(t) dt + g(S(t − b))S(t) dW (t),

t ∈ [0, T ]

S(t) = ϕ(t), t ∈ [−L, 0]





(1)

admits a pathwise unique solution S for a given F0-

measurable initial process ϕ : Ω → C([−L, 0], R). If

ϕ(0) > 0 a.s., then S(t) > 0 a.s. for all t ≥ 0.
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Proof of Theorem 1

Define minimum delay l := min{a, b} > 0.

Let t ∈ [0, l]. The delayed stock model gives

dS(t) = S(t)[h(t, ϕ(t − a)) dt + g(ϕ(t − b)) dW (t)]

t ∈ [0, l]

S(0) = ϕ(0).




(1)
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Proof of Theorem 1– Cont’d

Define the semimartingale

N(t) :=

∫ t

0

h(u, ϕ(u− a)) du +

∫ t

0

g(ϕ(u− b)) dW (u),

for t ∈ [0, l].

Its quadratic variation is given by
[N,N ](t) =

∫ t

0 g(ϕ(u − b))2 du, t ∈ [0, l].

Then (1) becomes

dS(t) = S(t) dN(t), t > 0, S(0) = ϕ(0),

with the unique solution:
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Proof of Theorem 1– Cont’d

S(t) = ϕ(0) exp{N(t) − 1

2
[N,N ](t)},

= ϕ(0) exp
{∫ t

0

h(u, ϕ(u − a)) du

+

∫ t

0

g(ϕ(u − b)) dW (u)

−1

2

∫ t

0

g(ϕ(u − b))2 du
}

,

for t ∈ [0, l]. This implies that S(t) > 0 almost surely

for all t ∈ [0, l], when ϕ(0) > 0 a.s..
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Proof of Theorem 1– Cont’d

Similarly, since S(l) > 0, then S(t) > 0 for all t ∈ [l, 2l]
a.s.. Therefore S(t) > 0 for all t ≥ 0 a.s., by induction
using forward steps of lengths l.

Above argument also gives existence and pathwise
uniqueness of the strong solution to the delayed stock
model. �
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Remark 1

In the delayed stock model, we need only require
ϕ(0) ≥ 0 (or ϕ(0) > 0) to conclude that a.s. S(t) ≥ 0 for
all t ≥ 0 (or S(t) > 0 for all t ≥ 0, resp.).
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An Extension of the Model

Another feasible model for the stock price is

dS(t) = f(t, St−a)S(t) dt + g(St−b)S(t) dW (t),

t ∈ [0, T ],

S(t) = ϕ(t), t ∈ [−L, 0],

where f : [0, T ] × C([−L, T ], R) → R is a continuous
functional; and St ∈ C([−L, T ], R), t ∈ [−L, T ], is
defined by

St(s) := S(t ∧ s), s ∈ [−L, T ],

for S ∈ C([−L, T ], R).
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The Delayed Market

Consider a market consisting of:

a riskless asset (e.g., a bond or bank account) B(t)
with rate of return r ≥ 0 (i.e., B(t) = exp{rt} ).

a single stock with price S(t) at time t satisfying the
delayed stock model (1) with ϕ(0) > 0 a.s..

Consider an option, written on the stock, with maturity at
some future time T > 0 and exercise price K. Assume:

No transaction costs.

Stock pays no dividends.

Positive delays a, b; h, g continuous.

g(v) 6= 0 whenever v 6= 0.
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Delayed Market – Cont’d

Main objectives:

Derive a formula for the fair price V (t) of the option
on the delayed stock, at any time t < T .

Obtain an equivalent local martingale measure (via
Girsanov’s theorem).

Establish completeness and no-arbitrage property of
the market.

Obtain a hedging strategy.

A Delayed OptionPricing Formula – p.17/78



Delayed Market – Cont’d

Main objectives:

Derive a formula for the fair price V (t) of the option
on the delayed stock, at any time t < T .

Obtain an equivalent local martingale measure (via
Girsanov’s theorem).

Establish completeness and no-arbitrage property of
the market.

Obtain a hedging strategy.

A Delayed OptionPricing Formula – p.17/78



Delayed Market – Cont’d

Main objectives:

Derive a formula for the fair price V (t) of the option
on the delayed stock, at any time t < T .

Obtain an equivalent local martingale measure (via
Girsanov’s theorem).

Establish completeness and no-arbitrage property of
the market.

Obtain a hedging strategy.

A Delayed OptionPricing Formula – p.17/78



Delayed Market – Cont’d

Main objectives:

Derive a formula for the fair price V (t) of the option
on the delayed stock, at any time t < T .

Obtain an equivalent local martingale measure (via
Girsanov’s theorem).

Establish completeness and no-arbitrage property of
the market.

Obtain a hedging strategy.

A Delayed OptionPricing Formula – p.17/78



Delayed Market – Cont’d

Main objectives:

Derive a formula for the fair price V (t) of the option
on the delayed stock, at any time t < T .

Obtain an equivalent local martingale measure (via
Girsanov’s theorem).

Establish completeness and no-arbitrage property of
the market.

Obtain a hedging strategy.

A Delayed OptionPricing Formula – p.17/78



Delayed Market – Cont’d

Main objectives:

Derive a formula for the fair price V (t) of the option
on the delayed stock, at any time t < T .

Obtain an equivalent local martingale measure (via
Girsanov’s theorem).

Establish completeness and no-arbitrage property of
the market.

Obtain a hedging strategy.

A Delayed OptionPricing Formula – p.17/78



Discounted Stock

Let

S̃(t) :=
S(t)

B(t)
= e−rtS(t), t ∈ [0, T ],

be the discounted stock price. Then by the product rule:

dS̃(t) = e−rtdS(t) + S(t)(−re−rt) dt

= S̃(t)
[{

h(t, S(t − a)) − r
}

dt

+g
(
S(t − b)

)
dW (t)

]
.
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Discounted Stock – Cont’d

Define

Ŝ(t) :=

∫ t

0

{
h(u, S(u − a)) − r

}
du

+

∫ t

0

g
(
S(u − b)

)
dW (u),

for t ∈ [0, T ].

Then
dS̃(t) = S̃(t) dŜ(t), 0 < t < T. (2)
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Discounted Stock – Cont’d

Since S̃(0) = ϕ(0), then

S̃(t) = ϕ(0) +

∫ t

0

S̃(u) dŜ(u), t ∈ [0, T ]. (3)

To establish an equivalent local martingale measure,
recall Girsanov’s theorem:
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Theorem 2 (Girsanov)

Let W (t), t ∈ [0, T ], be a standard Wiener process on
(Ω,F , P ). Let Σ be a predictable process such that∫ T

0 |Σ(u)|2du < ∞ a.s.. Define

%(t) := exp

{∫ t

0

Σ(u) dW (u) − 1

2

∫ t

0

|Σ(u)|2 du

}
,

for t ∈ [0, T ]. Suppose that EP (%(T )) = 1, where EP

denotes expectation with respect to the probability mea-

sure P . Define the probability measure Q on (Ω,F) by

dQ := %(T ) dP .
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Theorem 2 – Cont’d

Then the process

Ŵ (t) := W (t) −
∫ t

0

Σ(u) du, t ∈ [0, T ],

is a standard Wiener process under the measure Q.
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Backward Conditioning

Apply Girsanov’s theorem with the process

Σ(u) := −{h(u, S(u − a)) − r}
g
(
S(u − b)

) , u ∈ [0, T ].

The hypothesis on g implies that Σ is well-defined, since
by Theorem 1, S(t) > 0 for all t ∈ [0, T ] a.s.. Clearly
Σ(t), t ∈ [0, T ], is a predictable process.

The process S(t), t ∈ [0, T ], is a.s. bounded because it is
sample continuous. The hypothesis on g implies that
1/g(v), v ∈ (0,∞), is bounded on bounded intervals.

Thus
∫ T

0 |Σ(u)|2du < ∞ a.s..
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Backward Conditioning– Cont’d

Remains to check the integrability condition in
Girsanov’s theorem.

Let l := min{a, b}, minimum delay.
Set Ft := F0 for t ≤ 0.

Then Σ(u), u ∈ [0, T ], is measurable with respect to the
σ-algebra FT−l.

Hence, the stochastic integral
∫ T

T−l Σ(u) dW (u)

conditioned on FT−l has a normal distribution with mean
zero and variance

∫ T

T−l Σ(u)2 du.
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Backward Conditioning– Cont’d

By normality (e.g. moment generating function):

EP

(
exp

{∫ T

T−l

Σ(u) dW (u)

} ∣∣∣∣FT−l

)

= exp

{
1

2

∫ T

T−l

|Σ(u)|2 du

}

a.s..

Hence

EP

(
exp

{∫ T

T−l

Σ(u)dW (u) − 1

2

∫ T

T−l

|Σ(u)|2du

} ∣∣∣∣FT−l

)

= 1, a.s..
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Backward Conditioning– Cont’d

This implies:

EP

(
exp

{∫ T

0

Σ(u) dW (u) − 1

2

∫ T

0

|Σ(u)|2du

} ∣∣∣∣FT−l

)

= exp

{∫ T−l

0

Σ(u) dW (u) − 1

2

∫ T−l

0

|Σ(u)|2 du

}

a.s..
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Backward Conditioning– Cont’d

Let k to be a positive integer such that 0 ≤ T − kl ≤ l.
Successive conditioning using backward steps of length
l, and induction give:

EP

(
exp

{∫ T

0

Σ(u) dW (u) − 1

2

∫ T

0

|Σ(u)|2du

} ∣∣∣∣FT−kl

)

= exp

{∫ T−kl

0

Σ(u) dW (u) − 1

2

∫ T−kl

0

|Σ(u)|2 du

}

a.s..
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Backward Conditioning– Cont’d

Take conditional expectation with respect to F0 on both
sides of above equation:

EP

(
exp

{∫ T

0

Σ(u) dW (u)

− 1

2

∫ T

0

|Σ(u)|2du

} ∣∣∣∣F0

)

= EP

(
exp

{ ∫ T−kl

0

Σ(u) dW (u)

− 1

2

∫ T−kl

0

|Σ(u)|2du

} ∣∣∣∣F0

)
= 1

a.s..
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Backward Conditioning– Cont’d

Taking the expectation of the above equation, we get

EP (%(T )) = 1

where

%(T ) := exp

{
−

∫ T

0

{h(u, S(u − a)) − r}
g
(
S(u − b)

) dW (u)

−1

2

∫ T

0

∣∣∣∣∣
h(u, S(u − a)) − r

g
(
S(u − b)

)
∣∣∣∣∣

2

du





a.s..
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Backward Conditioning– Cont’d
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0
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g
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2

∫ T

0

∣∣∣∣∣
h(u, S(u − a)) − r

g
(
S(u − b)

)
∣∣∣∣∣

2

du
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
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Martingale Measure

Therefore, the Girsanov theorem (Theorem 2) applies
and the process

Ŵ (t) := W (t)+

∫ t

0

{h(u, S(u − a)) − r}
g
(
S(u − b)

) du, t ∈ [0, T ],

is a standard Wiener process under the measure Q
defined by:

dQ := %(T ) dP.
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Martingale Measure– Cont’d

Since

Ŝ(t) =

∫ t

0

g
(
S(u − b)

)
dŴ (u), t ∈ [0, T ], (4)

then Ŝ(t), t ∈ [0, T ], is a continuous Q-local martingale.

By the representation

S̃(t) = ϕ(0) +

∫ t

0

S̃(u) dŜ(u), t ∈ [0, T ], (3)

the discounted stock price S̃(t), t ∈ [0, T ], is also a
continuous Q-local martingale.
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No Aribtrage

I.e. Q is an equivalent local martingale measure.

By well-known results on trading strategies (e.g.,
Theorem 7.1 in [K.K]), it follows that the market
consisting of {B(t), S(t) : t ∈ [0, T ]} satisfies the
no-arbitrage property: There is no admissible
self-financing strategy which gives an arbitrage
opportunity.
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Completeness

Next get completeness of the market {B(t), S(t) :
t ∈ [0, T ]}.

By proof of Theorem 1, the solution of the delayed stock
model (1) satisfies:

S(t) =ϕ(0) exp

{∫ t

0

g
(
S(u − b)

)
dW (u)

+

∫ t

0

h(u, S(u − a)) du − 1

2

∫ t

0

g
(
S(u − b)

)2
du

}

a.s. for t ∈ [0, T ].
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Completeness– Cont’d

Hence,

S̃(t) =ϕ(0) exp

{∫ t

0

g
(
S(u − b)

)
dŴ (u)

−1

2

∫ t

0

g
(
S(u − b)

)2
du

} (5)

for t ∈ [0, T ].
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Completeness– Cont’d

By definitions of S̃, Ŵ , Ŝ and equation (2), then for

t ≥ 0, FS
t = F S̃

t = F Ŵ
t = FW

t , the σ-algebras generated

by {S(u) : u ≤ t}, {S̃(u) : u ≤ t}, {Ŵ (u) : u ≤ t},
{W (u) : u ≤ t}, respectively. (Clearly, FW

t ⊆ Ft.)

Let X be a contingent claim, viz. an integrable
non-negative FS

T -measurable random variable. Consider
the Q-martingale

M(t) := EQ(e−rTX | FS
t ) = EQ(e−rTX | F Ŵ

t ),

for t ∈ [0, T ].
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Completeness– Cont’d

By the martingale representation theorem, there exists an

(F Ŵ
t )-predictable process h0(t), t ∈ [0, T ], such that

∫ T

0

h0(u)2 du < ∞ a.s.,

and

M(t) = EQ(e−rTX) +

∫ t

0

h0(u) dŴ (u), t ∈ [0, T ].
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Completeness– Cont’d

Combining the two relations

dS̃(t) = S̃(t) dŜ(t), dŜ(t) = g
(
S(t − b)

)
dŴ (t),

gives:

dS̃(t) = S̃(t)g
(
S(t − b)

)
dŴ (u), t ∈ [0, T ].

Define

πS(t) :=
h0(t)

S̃(t)g
(
S(t − b)

) , πB(t) := M(t) − πS(t)S̃(t)

for t ∈ [0, T ].
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Completeness– Cont’d

Consider the strategy {(πB(t), πS(t)) : t ∈ [0, T ]} which
consists of holding πS(t) units of the stock and πB(t)
units of the bond at time t. The value of the portfolio at
any time t ∈ [0, T ] is:

V (t) := πB(t)ert + πS(t)S(t) = ertM(t).

By the product rule and the definition of the strategy
{(πB(t), πS(t)) : t ∈ [0, T ]}, get

dV (t) = ertdM(t) + M(t)d(ert)

= πB(t)d(ert) + πS(t)dS(t),

for t ∈ [0, T ].
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Completeness– Cont’d

Hence, {(πB(t), πS(t)) : t ∈ [0, T ]} is a self-financing
strategy. Moreover, V (T ) = erTM(T ) = X a.s..
Therefore, the contingent claim X is attainable; thus the
market {B(t), S(t) : t ∈ [0, T ]} is complete: (every
contingent claim is attainable).

For the augmented market {B(t), S(t), X : t ∈ [0, T ]} to
satisfy the no-arbitrage property, the price of the claim X
must be

V (t) = e−r(T−t)EQ(X | FS
t )

at each t ∈ [0, T ] a.s. See, e.g., [B.R] or Theorem 9.2 in

[K.K].
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Delayed Option Pricing Formula

Summarize above discussion in the following formula
for the fair price V (t) of an option on the delayed stock.
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Theorem 3

Suppose that the stock price S is given by the delayed
stock model, where ϕ(0) > 0 and g satisfies the given
hypotheses. Let T be the maturity time of an option
(contingent claim) on the stock with payoff function X ,
i.e., X is an FS

T -measurable non-negative integrable
random variable. Then at any time t ∈ [0, T ], the fair
price V (t) of the option is given by the formula

V (t) = e−r(T−t)EQ(X | FS
t ), (6)
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where Q denotes the probability measure on (Ω,F)
defined by dQ := %(T ) dP with

%(t) := exp

{
−

∫ t

0

{h(u, S(u − a)) − r}
g
(
S(u − b)

) dW (u)

− 1

2

∫ t

0

∣∣∣∣∣
h(u, S(u − a)) − r

g
(
S(u − b)

)
∣∣∣∣∣

2

du





for t ∈ [0, T ].
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The measure Q is a local martingale measure and the
market is complete.

Moreover, there is an adapted and square integrable
process h0(u), u ∈ [0, T ] such that

EQ(e−rTX | FS
t ) = EQ(e−rTX) +

∫ t

0

h0(u) dŴ (u),

for t ∈ [0, T ],where Ŵ is a standard Q-Wiener process

given by
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Ŵ (t) := W (t)+

∫ t

0

{h(u, S(u − a)) − r}
g
(
S(u − b)

) du, t ∈ [0, T ],

The hedging strategy is given by

πS(t) :=
h0(t)

S̃(t)g
(
S(t − b)

) ,

πB(t) := M(t) − πS(t)S̃(t),

(7)

for t ∈ [0, T ].
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Delayed B-S Formula

The following result is a consequence of Theorem 3. It
gives a Black-Scholes-type formula for the value of a
European option on the stock at times prior to maturity.

Formula is explicit during last delay period before matu-

rity, or when delay is larger than maturity interval.
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Theorem 4

Assume the conditions of Theorem 3. Let V (t) be the fair
price of a European call option written on the stock S
with exercise price K and maturity time T . Let ϕ denote
the standard normal distribution function:

ϕ(x) :=
1√
2π

∫ x

−∞
e−u2/2 du, x ∈ R.

Then for all t ∈ [T − l, T ] (where l := min{a, b}), V (t)
is given by

V (t) = S(t)ϕ(β+(t)) − Ke−r(T−t)ϕ(β−(t)), (8)
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where

β±(t) :=
log S(t)

K +
∫ T

t

(
r ± 1

2g(S(u − b))2
)
du√∫ T

t g(S(u − b))2du
.

If T > l and t < T − l, then

V (t) = ertEQ

(
H

(
S̃(T − l),−1

2

∫ T

T−l

g
(
S(u − b)

)2
du,

∫ T

T−l

g
(
S(u − b)

)2
du

) ∣∣∣∣Ft

)

(9)
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where H is given by

H(x,m, σ2) := xem+σ2/2ϕ(α1(x,m, σ))

− Ke−rTϕ(α2(x,m, σ)),

and

α1(x,m, σ) :=
1

σ

[
log

( x

K

)
+ rT + m + σ2

]
,

α2(x,m, σ) :=
1

σ

[
log

( x

K

)
+ rT + m

]
,

for σ, x ∈ R+, m ∈ R.
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The hedging strategy is given by

πS(t) = ϕ(β+(t)),

πB(t) = −Ke−rTϕ(β−(t)),
(10)

for t ∈ [T − `, T ].
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Remarks 2

If g(x) = 1 for all x ∈ R+ then equation (8) reduces to
the classical Black and Scholes formula.

In contrast with the classical (non-delayed) Black and Sc-

holes formula, the fair price V (t) in the delayed model

in Theorem 4 depends not only on the stock price S(t)

at the present time t, but also on the whole segment

{S(v) : v ∈ [t − b, T − b]}. ([t − b, T − b] ⊂ [0, t]

since t ≥ T − l and l ≤ b.)
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Proof of Theorem 4

Consider a European call option in the above market
with exercise price K and maturity time T . Taking
X = (S(T ) − K)+ in Theorem 3, the fair price V (t) of
the option is given by

V (t) = e−r(T−t)EQ(
(
S(T ) − K

)+ | Ft)

= ertEQ(
(
S̃(T ) − Ke−rT

)+ | Ft),
(11)

at any time t ∈ [0, T ].
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We now derive an explicit formula for the option price
V (t) at any time t ∈ [T − l, T ]. The representation (5) of
S̃(t) implies:

S̃(T ) = S̃(t) exp

{∫ T

t

g
(
S(u − b)

)
dŴ (u)

−1

2

∫ T

t

g
(
S(u − b)

)2
du

}

for all t ∈ [0, T ]. Clearly S̃(t) is Ft-measurable. If

t ∈ [T − l, T ], then −1
2

∫ T

t g
(
S(u − b)

)2
du is also

Ft-measurable.
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Furthermore, when conditioned on Ft, the distribution of∫ T

t g
(
S(u − b)

)
dŴ (u) under Q is the same as that of

σξ, where ξ is a Gaussian N(0, 1)-distributed random

variable, and σ2 =
∫ T

t g
(
S(u − b)

)2
du. Consequently,

the fair price at time t is given by

V (t) = ertH

(
S̃(t),−1

2

∫ T

t

g
(
S(u − b)

)2
du,

∫ T

t

g
(
S(u − b)

)2
du

)
,
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where

H(x,m, σ2) := EQ(xem+σξ − Ke−rT )+,

for σ, x ∈ R+, m ∈ R. Now, an elementary computation
yields the following:

H(x,m, σ2) = xem+σ2/2ϕ(α1(x,m, σ))

− Ke−rTϕ(α2(x,m, σ)).
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Therefore, V (t) takes the form:

V (t) = S(t)ϕ(β+) − Ke−r(T−t)ϕ(β−), (12)

where

β± =
log S(t)

K +
∫ T

t

(
r ± 1

2g(S(u − b))2
)
du√∫ T

t g(S(u − b))2du
.
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For T > l and t < T − l, from the representation (5) of
S̃(t), we have

S̃(T ) = S̃(T − l) exp

{∫ T

T−l

g
(
S(u − b)

)
dŴ (u)

−1

2

∫ T

T−l

g
(
S(u − b)

)2
du

}
.
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Consequently, the option price at time t with t < T − l is
given by

V (t) = ertEQ

(
H

(
S̃(T − l),−1

2

∫ T

T−l

g
(
S(u − b)

)2
du,

∫ T

T−l

g
(
S(u − b)

)2
du

) ∣∣∣∣Ft

)
.

To calculate the hedging strategy for t ∈ [T − `, T ], it
suffices to use an idea from [B.R], pages 95–96. This
completes the proof of the theorem. �
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Remark 3

During last delay period [T − l, T ], it is possible to
rewrite the option price V (t), t ∈ [T − l, T ] in terms of
the solution of a random Black-Scholes pde of the form

∂F (t, x)

∂t
= −1

2
g(S(t − b))2x2∂

2F (t, x)

∂x2
− rx

∂F (t, x)

∂x
+ rF (t, x), 0 < t < T

F (T, x) = (x − K)+, x > 0.





(13)

Above time-dependent random final-value problem
admits a unique (Ft)t≥0-adapted random field F (t, x).
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Using the classical Itô-Ventzell formula ([Kun]) and (6)
of Theorem 3, it can be shown that

V (t) = e−r(T−t)F (t, S(t)), t ∈ [T − b, T ].

Note that the above representation is no longer valid if

t ≤ T − b, because in this range, the solution F of the

final-value problem (9) is anticipating with respect to the

filtration (Ft)t≥0.
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A Stock Model with Variable Delay

Consider an alternative model for the stock price
dynamics with variable delay.

Throughout this section, suppose h is a given fixed
positive number. Denote btc := kh if kh ≤ t < (k + 1)h.
Suppose market consist of a riskless asset ξ with a
variable (deterministic) continuous rate of return λ, and a
stock S satisfying sdde

dξ(t) = λ(t)ξ(t) dt

dS(t) = f(t, S(btc))S(t)dt + g(t, S(btc))S(t)dW (t)

}

(14)

for t ∈ (0, T ].
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A Model with Variable Delay – Cont’d

Initial conditions ξ(0) = 1 and S(0) > 0.

(Ft)0≤t≤T and W are as before.

f : [0, T ] × R → R is continuous.

g : [0, T ] × R → R is continuous.

g(t, v) 6= 0 for all (t, v) ∈ [0, T ] × R.

The model is feasible: That is S(t) > 0 a.s. for all t > 0.

Follows by an argument similar to the proof of Theorem
1.
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Theorem 5

Suppose that the stock price S is given by the sdde (14),
where S(0) > 0 and f, g satisfy given hypotheses. Let T
be the maturity time of an option (contingent claim) on
the stock with payoff function X , i.e., X is an
FS

T -measurable non-negative integrable random
variable. Then at any time t ∈ [0, T ], the fair price V (t)
of the option is given by the formula

V (t) = EQ(X | FS
t )e−

∫
T

t
λ(s) ds, (15)

where Q denotes the probability measure on (Ω,F) de-

fined by dQ := %(T ) dP with
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%(t) := exp

{
−

∫ t

0

{f(u, S(buc)) − λ(u)}
g(u, S(buc)) dW (u)

− 1

2

∫ t

0

∣∣∣∣
f(u, S(buc)) − λ(u)

g(u, S(buc))

∣∣∣∣
2

du

}

for t ∈ [0, T ]. The measure Q is a local martingale
measure and the market is complete.
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Moreover, there is an adapted and square integrable
process h1(t), t ∈ [0, T ], such that

EQ

(
X

ξ(T )

∣∣∣∣FS
t

)
= EQ

(
X

ξ(T )

)
+

∫ t

0

h1(u) dŴ (u),

t ∈ [0, T ],

where

Ŵ (t) := W (t)+

∫ t

0

{f(u, S(buc)) − λ(u)}
g(u, S(buc)) du, t ∈ [0, T ].
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The hedging strategy is given by

πS(t) :=
h1(t)

S̃(t)g(t, S(btc))
,

πξ(t) := M(t) − πS(t)S̃(t),

(16)

for t ∈ [0, T ].

The following result gives a Black-Scholes-type formula
for the value of a European option on the stock at any
time prior to maturity.
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Theorem 6

Assume the conditions of Theorem 5. Let V (t) be the fair
price of a European call option written on the stock S
with exercise price K and maturity time T . Then for all
t ∈

[
T − bT c, T

]
, V (t) is given by

V (t) = S(t)ϕ(β+(t)) − Kϕ(β−(t))e−
∫

T

t
λ(s)ds, (17)

where

β±(t) :=
log S(t)

K +
∫ T

t

(
λ(u) ± 1

2g(u, S(buc))2
)
du√∫ T

t g(u, S(buc))2du
.
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If T > h and t < T − bT c, then

V (t) = e
∫

t

0
λ(s)dsEQ

(
H

(
S̃(T − bT c),

− 1

2

∫ T

T−bT c
g(u, S(buc))2du,

∫ T

T−bT c
g(u, S(buc))2du

) ∣∣∣∣Ft

)
(18)

where H is given by
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H(x,m, σ2) := xem+σ2/2ϕ(α1(x,m, σ))

− Kϕ(α2(x,m, σ))e−
∫

T

0
λ(s)ds,

and

α1(x,m, σ) :=
1

σ

[
log

( x

K

)
+

∫ T

0

λ(s)ds + m + σ2

]
,

α2(x,m, σ) :=
1

σ

[
log

( x

K

)
+

∫ T

0

λ(s)ds + m

]
,

for σ, x ∈ R+, m ∈ R.
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The hedging strategy is given by

πS(t) = ϕ(β+(t)),

πξ(t) = −Kϕ(β−(t))e−
∫

T

0
λ(s)ds,

for t ∈
[
T − bT c, T

]
.
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